Lim, K.T. and Teh, C.S.J. and Mohd Yasim, M.Y. and Thong, Kwai Lin (2013) Mutations in rpoB and fusA cause resistance to rifampicin and fusidic acid in methicillin-resistant Staphylococcus aureus strains from a tertiary hospital in Malaysia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 108 (2). pp. 112-118. ISSN 0035-9203,
PDF
Lim,_2013.pdf Restricted to Registered users only Download (187kB) | Request a copy |
|
PDF
Lim,_2013.pdf - Published Version Restricted to Registered users only Download (187kB) | Request a copy |
Abstract
Abstract Background The prevalence of resistance to rifampicin and fusidic acid among Malaysian strains of methicillin-resistant Staphylococcus aureus (MRSA) is increasing. This study aimed to determine the mechanisms of rifampicin and fusidic acid resistance and the genetic diversity of MRSA strains from a Malaysian tertiary hospital. Methods Minimum inhibitory concentrations (MIC) for 21 MRSA strains were determined by agar dilution test and Etest. The resistance genes, staphylococcal chromosome cassette mec (SCCmec) types, multilocus-sequence typing (MLST) types and spa types, were determined by PCR and DNA sequencing. Results MIC for rifampicin and fusidic acid resistance ranged from <1 to 8 µg/ml and from <1 to 256 µg/ml, respectively. A double mutation (484Arg/His and 517Glu/Gln) in rpoB causes high rifampicin resistance while a mutational change (461Leu/Lys) in fusA was observed in seven strains highly resistant to fusidic acid. Five of the seven were also resistant to rifampicin (MIC 8 µg/ml) and carried a mutated rpoB gene (484Arg/His). No other acquired fusidic acid resistance gene (fusB, fusC or fusD) was detected. Most (14/21) of the strains belonged to clone ST239-III-t037. Three belonged to ST22-IV-t1378 and the remaining four to ST239-III-t2029, ST239-III-t421, ST1178-IV-t1107 and ST241-III-t363, respectively. Conclusions The study showed that both rifampicin and fusidic acid resistance was associated with mutational change in rpoB and fusA, respectively. All rifampicin-resistant strains were from the same clone ST239-III-t037 whereas strains resistant to fusidic acid were genetically more diverse.
Item Type: | Article |
---|---|
Funders: | UNSPECIFIED |
Uncontrolled Keywords: | MLST; mutation; rifampicin fusidic acid; spa; Staphylococcus aureus |
Subjects: | Q Science > QR Microbiology |
Divisions: | Faculty of Science > Institute of Biological Sciences |
Depositing User: | Prof. Dr Kwai Lin Thong |
Date Deposited: | 25 Jun 2014 06:52 |
Last Modified: | 18 Mar 2019 08:16 |
URI: | http://eprints.um.edu.my/id/eprint/10649 |
Actions (login required)
View Item |