Textural characteristics, surface chemistry and activation of bleaching earth: A review

Hussin, F. and Aroua, M.K. and Daud, W.M.A.W. (2011) Textural characteristics, surface chemistry and activation of bleaching earth: A review. Chemical Engineering Journal, 170 (1). pp. 90-106. ISSN 1385-8947, DOI https://doi.org/10.1016/j.cej.2011.03.065.

Full text not available from this repository.
Official URL: http://www.sciencedirect.com/science/article/pii/S...

Abstract

The unique properties of clay and clay minerals had made them valuable in the wide range of industrial applications. Low cost, local availability and effectiveness are the prevailing factors that have made clay and clay mineral to be used extensively as adsorbent in the purification of vegetable oils. The textural characteristics and surface chemistry play important roles in the bleaching earth performance. These two factors can be modified by various techniques including acid, basic, organic, thermal and pillaring activation. In these reviews, a comprehensive list of literatures on chemical and physical modification techniques of the bleaching earth was compiled and reviewed in relation to its effect on the structure, surface chemistry and adsorption capacity.

Item Type: Article
Funders: UNSPECIFIED
Additional Information: Cited By (since 1996):2 Export Date: 21 April 2013 Source: Scopus CODEN: CMEJA :doi 10.1016/j.cej.2011.03.065 Language of Original Document: English Correspondence Address: Aroua, M.K.; Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; email: mkaroua@um.edu.my References: Rossi, M., Gianazza, M., Alamprese, C., Stanga, F., The role of bleaching clays and synthetic silica in palm oil physical refining (2003) Food Chem., 82, pp. 291-296; Valenzuela-Diaz, F.R., Souza-Santos, P., Studies on the acid activation of Brazilian smectite clays (2001) Quim. Nova., 24, pp. 345-353; Morad, N.A., Aziz, M.K.A., Zain, R.M., (2001), Process design in degumming and bleaching of palm oil, Master Thesis, Universiti Teknologi Malaysia (UTM)AL-Zahrani, A.A., Daous, M.A., Recycling of spent bleaching clay and oil recovery (2000) Trans. IChemE., 78, pp. 224-228; Tsai, W.T., Chen, H.P., Hsien, W.Y., Lai, C.W., Lee, M.S., Thermochemical regeneration of bleaching earth waste with zinc chloride (2003) Resour. Conserv. Recycl., 39, pp. 65-77; Foletto, E.L., Volzone, C., Porto, L.M., Clarification of cottonseed oil: how structural properties of treated bentonites by acid affect bleaching efficiency (2006) Lat. Am. Appl. Res., 36, pp. 37-40; Nguetnkam, J.P., Kamga, R., Villieras, F., Ekodeck, G.E., Yvon, J., Assessing the bleaching capacity of some cameroonian clays on vegetable oils (2008) Appl. Clay Sci., 39, pp. 113-121; Bockish, M., (1998) Fats and Oils Handbook, pp. 613-719. , AOCS Press; Hymore, F.K., Effects of some additives on the performance of acid-activated clays in the bleaching of palm oil (1996) Appl. Clay Sci., 10, pp. 379-385; Bayrak, Y., Adsorption isotherms in bleaching hazelnut oil (2003) J. Am. Oil. Chem. Soc., 80, pp. 1143-1146; Gulsah Kirali, E., Lacin, O., Statistical modelling of acid activation on cotton oil bleaching by Turkish bentonite (2006) J. Food Eng., 75, pp. 137-141; Joy, N.A.B., Richard, K., Pierre, N.J., Adsorption of palm oil carotene and free fatty acids onto acid activated Cameroonian clays (2007) J. Appl. Sci., 7, pp. 2462-2467; Woumfo, D., Kamga, R., Figueras, F., Njopwouo, D., Acid activation and bleaching capacity of some Cameroonian smectite soil clays (2007) Appl. Clay Sci., 37, pp. 149-156; Wu, Z., Li, C., Kinetics and thermodynamics of β-carotene and chlorophyll adsorption onto acid-activated bentonite from Xinjiang in xylene solution (2009) J. Hazard. Mater., 171, pp. 582-587; Liu, Y., Huang, J., Wang, X., Adsorption isotherms for bleaching soybean oil with activated attapulgite (2008) J. Am. Oil. Chem. Soc., 85, pp. 979-984; Okwara, C.A., Osoka, E.C., Caustic activation of local clays for palm oil bleaching (2006) J. Eng. Appl. Sci., 1, pp. 526-529; Zschau, W., 80 years activated bleaching earth (1987) Fat Sci. Tech., 5, pp. 184-189; Kaynak, G., Ersoz, M., Kara, H., Investigation of the properties of oil at the bleaching unit of an oil refinery (2004) J. Colloid Interface Sci., 280, pp. 131-138; Temuujin, J., Jadambaa, T., Burmaa, G., Erdenechimeg, S., Amarsanaa, J., MacKenzie, K.J.D., Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia) (2004) Ceramics Int., 30, pp. 251-255; Wei, P.C., May, C.Y., Ngan, M.A., Hock, C.C., Degumming and bleaching: effect on selected constituents of palm oil (2004) J. Oil Palm Res., 16, pp. 57-63; Lin, S.W., Yoo, C.K., Adsorption isotherms for removal of iron, copper, phosphorus and oxidation products from crude palm oil using natural and acid-activated clays (2007) J. Oil Palm Res., 19, pp. 356-363; Beneke, K., Lagaly, G., (2002), pp. 57-78. , From fuller's earth to bleaching earth: a historical note, ECGA Newsletter No 5Sabah, E., Decolorization of vegetable oils: chlorophyll-a adsorption by acid activated sepiolite (2007) J. Colloid Interface Sci., 310, pp. 1-7; Sabah, E., Majdan, M., Removal of phosphorus from vegetable oil by acid-activated sepiolite (2009) J. Food Eng., 91, pp. 423-427; Rich, A.D., Major factors that influence bleaching performance (1967) J. Am. Oil. Chem. Soc., 44, pp. 298A-323A; Richardson, L.L., Use of bleaching clays, in processing edible oils (1978) J. Am. Oil. Chem. Soc., 55, pp. 777-780; Patterson, H.B.W., Bleaching practices in europe (1976) J. Am. Oil. Chem. Soc., 53, pp. 339-341; Andrews, J.T.R., Durkee, M.M., Ganucheau, J.J., Hopper, T.H., Law, T.C., Parsons, L.B., King, R.R., Official bleaching earths. Special report of the uniform methods committee (1948) J. Am. Oil. Chem. Soc, 25, pp. 12-13; Falaras, P., Kovanis, I., Lezou, F., Seiragakis, G., Cottonseed oil bleaching by acid activated montmorillonite (1999) Clay Miner., 34, pp. 221-232; Tsai, W.T., Chang, C.Y., Ing, C.H., Chang, C.F., Adsorption of acid dyes from aqueous solution on activated bleaching earth (2004) J. Colloid Interface Sci., 275, pp. 72-78; Babaki, H., Salem, A., Jafarizad, A., Kinetic model for the isothermal activation of bentonite by sulfuric acid (2008) Mater. Chem. Phys., 108, pp. 263-268; Gunawan, N.S., Indraswati, N., Ju, Y.H., Soetaredjo, F.E., Ayucitra, A., Ismadji, S., Bentonites modified with anionic and cationic surfactants for bleaching of crude palm oil (2010) Appl. Clay Sci., 47, pp. 462-464; Morgan, D.A., Shaw, D.B., Sidebottom, M.J., Soon, T.C., Taylor, R.S., The function of bleaching earths in the processing of palm, palm kernel and coconut oils (1985) J. Am. Oil. Chem. Soc., 62, pp. 292-299; Schoonheydt, R.A., Johnston, C.T., Developments in clay science: handbook of clay science (2006) Surface and Interface Chemistry of Clay Minerals, 1, p. 87. , Elsevier, Oxford; Bergaya, F., Aouad, A., Mandalia, T., Developments in clay science: handbook of clay science (2006) Pillared Clays and Clay Minerals, 1, pp. 393-421. , Elsevier, Oxford; Heller-Kallai, L., Developments in clay science: handbook of clay science (2006) Thermally Modified Clay Minerals, 1, pp. 289-308. , Elsevier, Oxford; Komadel, P., Madejova, J., Developments in clay science: handbook of clay science (2006) Acid Activation of Clay Minerals, 1, pp. 263-287. , Elsevier, Oxford; Lagaly, G., Ogawa, M., Dékány, I., Developments in clay science: handbook of clay science (2006) Clay Mineral Organic Interactions, 1, pp. 309-377. , Elsevier, Oxford; Murray, H.H., Applied clay mineralogy today and tomorrow (1999) Clay Miner., 34, pp. 39-49; Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Formoso, M.L.L., Stanjek, H., Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour I'Etude des Argiles (AIPEA) nomenclature committee for 2006 (2006) Clay Miner., 41, pp. 863-877; Madejova, J., FTIR technique in clay mineral studies (Review) (2003) Vib. Spectrosc., 31, pp. 1-10; Brigatti, M.F., Galan, E., Theng, B.K.G., Developments in clay science: handbook of clay science (2006) Structures and Mineralogy of Clay Minerals, 1, pp. 19-86. , Elsevier, Oxford; Madejová, J., Bujdák, J., Janek, M., Komadel, P., Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite (1998) Spectrochim. Acta A, 54, pp. 1397-1409; Tyagi, B., Chudasama, C.D., Jasra, R.V., Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy (2006) Spectrochim. Acta A, 64, pp. 273-278; Hassan, M., El-Shall, H., Glauconitic clay of El Gidida, Egypt: evaluation and surface modification (2004) Appl. Clay Sci., 27, pp. 219-222; Murray, H.H., Developments in clay science: applied clay mineralogy (2007) Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays, 1, pp. 1-179. , Elsevier, Oxford; Zschau, W., Bleaching of edible fats and oils (2001) Eur. J. Lipid. Sci. Tech., 103, pp. 9-513; Lomi�, G.A., Kiš, E.E., Dimi�, E.B., Romani�, R.S., Investigation of activated al-pillared clay efficiency in vegetable oil purification (2004) APTEFF, 35, pp. 31-36; Christidis, G.E., Scott, P.W., Dunham, A.C., Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece (1997) Appl. Clay Sci., 12, pp. 329-347; Kheok, S.C., Lim, E.E., Mechanism of palm oil bleaching by montmorillonite clay activated at various acid concentrations (1982) J. Am. Oil. Chem. Soc., 59, pp. 129-131; Srasra, E., Trabelsi-Ayedi, M., Textural properties of acid activated glauconite (2000) Appl. Clay Sci., 17, pp. 71-84; Noyan, H., �nal, M., Sarikaya, Y., The effect of sulphuric acid activation on the crystallinity, surface area, porosity, surface acidity and bleaching power of a bentonite (2007) Food Chem., 105, pp. 156-163; Gregg, S.J., Sing, K.S.W., (1982) Adsorption, Surface Area and Porosity, 2. , Academic press, London; Dai, J.C., Huang, J.T., Surface modification of clays and clay-rubber composite (1999) Appl. Clay Sci., 15, pp. 51-65; Sposito, G., Skipper, N.T., Sutton, R., Park, S., Soper, A.K., Greathouse, J.A., Surface geochemistry of the clay minerals (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 3358-3364; Matocha, C.J., (2006), Clay: charge properties, in: Encyclopedia of Soil Science, Taylor & FrancisJaynes, W.F., Boyd, S.A., (2008), Hydrophilicity and hydrophobicity, in: W. Chesworth, Encyclopedia of soil science, SpringerSchrader, M.E., Yariv, S., Wettability of clay minerals (1990) J. Colloid Interface Sci., 136, pp. 85-94; Sposito, G., (1984) The Surface Chemistry of Soils, pp. 1-321. , Oxford University Press, New York; Jaynes, W.F., Boyd, S.A., Hydrophobicity of siloxane surface in smectites as revealed by aromatic hydrocarbon adsorption from water (1991) Clays Clay Miner., 39, pp. 428-436; Meesuk, L., Vorasith, N., The use of bentonite to remove dark colour in repeatingly used palm oil (2006) J. Environ. Sci. Health A, 41, pp. 1189-1200; Steudel, A., Battenburg, L.F., Fischer, H.R., Weidler, P.G., Emmerich, K., Alteration of swelling clay minerals by acid activation (2009) Appl. Clay Sci., 44, pp. 105-115; Habashy, G.M., Gadalla, A.M., Ghazi, T.M., Mourad, W.E., Nashed, S., Characterization of some Egyptian clays to be used as bleaching agents (1982) Surf. Tech., 15, pp. 313-322; Franus, W., Klinik, J., Franus, M., Mineralogical characteristics and textural properties of acid-activated glauconite (2004) Miner. Polonica., 35, pp. 53-63; Rozic, L., Novakovic, T., Petrovic, S., Modeling and optimization process parameters of acid activation of Bentonite by response surface methodology (2010) Appl. Clay Sci., 48, pp. 154-158; Mehlich, A., Determination of cation- and anion-exchange properties of soils (1948) Soil Sci., 66, pp. 429-445; Peech, M., Determination of exchangeable cations and exchange capacity of soils (1945) Soil Sci., 59, p. 25; Fraser, A.R., Russell, J.D., A spectrophotometic method for determination of cation exchange capacity of clay minerals (1969) Clay Miner., 8, pp. 229-230; Busenberg, E., Clemency, C.V., Determination of the cation exchange capacity of clays and soils using an ammonia electrode (1973) Clays Clay Miner., 21, pp. 213-218; Janek, M., Lagaly, G., Interaction of a cationic surfactant with bentonite: a colloid chemistry study (2003) Colloid Polym. Sci., 281, pp. 293-301; Pleysier, J., Cremers, A., Stability of silver-thiourea complexes in montmorillonite clay (1975) J. Chem. Soc., Faraday Trans. 1, 71, pp. 256-264; Ciesielski, H., Sterckeman, T., Determination of cation exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions (1997) Agronomie, 17, pp. 1-7; Searle, P.L., The measurement of soil cation exchange properties using the single extraction, silver thiourea method-an evaluation using a range of New Zealand soils (1986) Australian J. Soil Research., 24, pp. 193-200; Bergaya, F., Vayer, M., CEC of clays: Measurement by adsorption of a copperethylendiamine complex (1997) Appl. Clay Sci., 12, pp. 275-280; Meier, L., Kahr, G., Determination of cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine (1999) Clays Clay Miner., 47, pp. 386-388; Lagaly, B., Mermut, A.R., Layer charge determination by alkylammonium ions in layer charge characteristics of 2:1 silicates clay minerals (1994) Clay Miner. Soc., 6, pp. 1-46; Lagaly, G., Characterization of clays by organic compounds (1981) Clay Miner., 16, pp. 1-21; Mackenzie, R.C., A micromethod for determination of cation exchange capacity of clay (1951) J. Colloid Sci., 6, pp. 219-221; Rodriguez, M.A.V., Gonzalez, J.D.L., Munoz, M.A.B., Acid activation of a spanish sepiolite: physicochemical characterization, free silica content and surface area of products obtained (1994) Clay Miner., 29, pp. 361-367; Komadel, P., Madejová, J., Stucki, J.W., Structural Fe(III) reduction in smectites (2006) Appl. Clay Sci., 34, pp. 88-94; Fernandes, C., Catrinescu, C., Castilho, P., Russo, P.A., Carrott, M.R., Breen, C., Catalytic conversion of limonene over acid activated Serra de Dentro (SD) bentonite (2007) Appl. Catalysis A: Gen., 318, pp. 108-120; kaviratna, H., Pinnavaia, T.J., Acid hydrolysis of octahedral Mg2+ sites in 2:1 layered silicates: an assessment of edge attack and gallery access mechanisms (1994) Clays Clay Miner., 42, pp. 717-723; Breen, C., Madejová, J., Komadel, P., Correlation of catalytic activity with infra-red, 29Si MAS NMR and acidity data for HCl-treated fine fractions of montmorillonites (1995) Appl. Clay Sci., 10, pp. 219-230; Agnello, V.N., (2005), pp. 1-68. , Bentonite, pyrophyllite and talc in the Republic of South Africa, 1st ed., Pretoria BulletinChitnis, S.R., Sharma, M.M., Industrial applications of acid-treated clays as catalysts (1997) React. Funct. Polym., 32, pp. 93-115; Sarier, N., Güler, C., The mechanism of β-carotene adsorption on activated montmorillonite (1989) J. Am. Oil. Chem. Soc., 66, pp. 917-923; Didi, M.A., Makhoukhi, B., Azzouz, A., Villemin, D., Colza oil bleaching through optimized acid activation of bentonite, a comparative study (2009) Appl. Clay Sci., 42, pp. 336-344; Allo, W.A., Murray, H.H., Mineralogy, chemistry and potential applications of a white bentonite in San Juan Province, Argentina (2004) Appl. Clay Sci., 25, pp. 237-243; James, O.O., Mesubi, M.A., Adekola, F.A., Odebunmi, E.O., Adekeye, J.I.D., Bale, R.B., Bleaching performance of a Nigerian (Yola) bentonite (2008) Lat. Am. Appl. Res., 38, pp. 45-49; Novakovic, T., Rozic, L., Petrovic, S., Rozic, A., Synthesis and characterization of acid activated Serbian smectite clays obtained by statistically designed experiments (2008) Chem. Eng. J., 137, pp. 436-442; Rozic, L., Novakovic, T., Petrovic, S., Vukovic, Z., Cupic, Z., Fractal analysis of physical adsorption on surfaces of acid activated bentonites from Serbia (2008) Chem. Ind. Chem. Eng. Q., 14, pp. 227-229; Konta, J., Clay and man: clay raw materials in the service of man (1995) Appl. Clay Sci., 10, pp. 275-335; Li, X., Cui, X., Song, M., Study on the alteration of chemical composition and structural parameters of modified montmorillonite (2003) Miner. Eng., 16, pp. 1303-1306; Howard, J.J., Roy, D.M., Development of layer charge and kinetics of experimental smectite alteration (1985) Clays Clay Miner., 33, pp. 81-88; Gates, W.P., Anderson, J.S., Raven, M.D., Churchman, G.J., Mineralogy of a bentonite from Miles, Queensland, Australia and characterization of its acid activation products (2002) Appl. Clay Sci., 20, pp. 189-197; Novák, I., �í�el, B., Dissolution of smectites in hydrochloric acid: II. Dissolution rate as a function of crystallochemical composition (1978) Clays Clay Miner., 26, pp. 341-344; Oboh, A.O., Aworh, O.C., Laboratory trials on bleaching palm oil with selected acid-activated Nigerian clays (1988) Food Chem., 27, pp. 311-317; Vicente Rodriguez, M.A., Lopez Gonzalez, J.D.D., Banares Munoz, M.A., Preparation of microporous solids by acid treatment of a Saponite (1995) Micropor. Mater., 4, pp. 251-264; Juanmao, T., Zhansheng, W., Xifang, S., Xiaolin, X., Chun, L., Adsorption kinetics of β-carotene and chlorophyll onto acid-activated bentonite in model oil (2008) Chin. J. Chem. Eng., 16, pp. 270-276; �nal, M., Sarikaya, Y., Preparation and characterization of acid-activated bentonite powders (2007) Powder Tech., 172, pp. 14-18; �n
Uncontrolled Keywords: Activation; Bleaching earth; Surface chemistry; Textural characteristics; Adsorption capacities; Low costs; Physical modifications; Textural characteristic; Adsorption; Bleaching; Chemical modification; Cleaning; Industrial applications; Silicate minerals; Surface structure; Vegetable oils; Clay minerals.
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TP Chemical technology
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 16 Jul 2013 03:27
Last Modified: 08 Nov 2017 08:40
URI: http://eprints.um.edu.my/id/eprint/7410

Actions (login required)

View Item View Item