Multilinear-model predictive control of a tubular solid oxide fuel cell system

Hajimolana, S. and Hussain, Mohd Azlan and Soroush, M. and Wan Daud, W.A. and Chakrabarti, M.H. (2012) Multilinear-model predictive control of a tubular solid oxide fuel cell system. Industrial & Engineering Chemistry Research, 52 (1). pp. 430-441. ISSN 0888-5885, DOI https://doi.org/10.1021/ie301107r.

Full text not available from this repository.
Official URL: http://www.scopus.com/inward/record.url?eid=2-s2.0...

Abstract

As solid oxide fuel cells (SOFCs) are highly nonlinear systems, a single linear controller cannot perform satisfactorily over a wide range of operating conditions of the processes. This work studies multilinear-model predictive control of a tubular SOFC. The objective is to control the fuel cell outlet voltage over a wide range of operating conditions by manipulating inlet fuel pressure (flow rate). A first-principles model of an ammonia fed-tubular solid oxide fuel cell is used for the controller design. The model accounts for diffusion, inherent impedance, transport (momentum, heat and mass transfer), electrochemical reactions, activation and concentration polarizations, and the ammonia decomposition reaction. The servo and regulatory performances of the multimodel predictive controller (MMPC) are compared with those of a single-model predictive controller (SMPC) and a proportional-integral (PI) controller. For small load changes, the MMPC, SMPC, and PI controller all provide zero offset, and the MMPC yields the best closed-loop performance. However, for large load changes, the SMPC and PI controller fail to provide zero offset; under these two controllers the closed-loop system with the large load changes is unstable.

Item Type: Article
Funders: UNSPECIFIED
Additional Information: Export Date: 5 March 2013 Source: Scopus CODEN: IECRE Language of Original Document: English Correspondence Address: Hussain, M.A.; Department of Chemical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; email: mohdazlan@um.edu.my References: Li, J.-H., Fu, X.-Z., Luo, J.-L., Chuang, K.T., Sanger, A.R., Application of BaTiO3 as anode materials for H 2S-containing CH4 fueled solid oxide fuel cells (2012) J. Power Sources, 213, pp. 69-77; Sadhukhan, J., Zhao, Y., Shah, N., Brandon, N.P., Performance analysis of integrated biomass gasification fuel cell (BGFC) and biomass gasification combined cycle (BGCC) systems (2006) Chem. Eng. Sci., 26, p. 1942; Ma, Q., Peng, R., Lin, Y., Gao, J., Meng, G., A high-performance ammonia-fueled solid oxide fuel cell (2006) J. Power Sources, 161, pp. 95-98; Pelletier, L., McFarlan, A., Maffei, N., Ammonia fuel cell using doped barium cerate proton conducting solid electrolytes (2005) J. Power Sources, 145, pp. 262-265; Wojcik, A., Middleton, H., Damopoulos, I., Van Herle, J., Ammonia as a fuel in solid oxide fuel cells (2003) J. Power Sources, 118, pp. 342-348; Fournier, G.G.M., Cumming, I.W., Hellgardt, K., High performance direct ammonia solid oxide fuel cell (2006) J. Power Sources, 162, pp. 198-206; Meng, G., Jiang, C., Ma, J., Ma, Q., Liu, X., Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen (2007) J. Power Sources, 173, pp. 189-193; Ni, M., 2D thermal-fluid modeling and parametric analysis of a planar solid oxide fuel cell (2010) Energy Convers. Manage., 51, pp. 714-721; Ni, M., Thermo-electrochemical modeling of ammonia-fueled solid oxide fuel cells considering ammonia thermal decomposition in the anode (2011) Int. J. Hydrogen Energy, 36, pp. 3153-3166; Wang, G., Yang, Y., Zhang, H., Xia, W., 3-D model of thermo-fluid and electrochemical for planar SOFC (2007) J. Power Sources, 167, pp. 398-405; Ni, M., Leung, D.Y.C., Leung, M.K.H., Mathematical modeling of ammonia-fed solid oxide fuel cells with different electrolytes (2008) Int. J. Hydrogen Energy, 33, pp. 5765-5772; Ni, M., Leung, D.Y.C., Leung, M.K.H., Electrochemical modeling of ammonia-fed solid oxide fuel cells based on proton conducting electrolyte (2008) J. Power Sources, 183, pp. 687-692; Farhad, S., Hamdullahpur, F., Conceptual design of a novel ammonia-fuelled portable solid oxide fuel cell system (2011) J. Power Sources, 195, pp. 3084-3090; Knyazkin, V., Soder, L., Canizares, C., Control challenges of fuel cell-driven distributed generation (2003) IEEE Bologna Power-Tech. Conf., pp. 328-333; Wu, X.-J., Zhu, X.-J., Cao, G.-Y., Tu, H.-Y., Dynamic modeling of SOFC based on a T-S fuzzy model (2008) Simulat. Model. Pract. Theory, 16, pp. 494-504; Jurado, F., Robust control for fuel cell-microturbine hybrid power plant using biomass (2005) Energ., 30, pp. 1711-1727; Larminie, J., Dicks, A., (2003) Fuel Cell Systems Explained, , John Wiley & Sons Inc. Chichester, West Sussex 3 rd ed; Bavarian, M., Soroush, M., Kevrekidis, I.G., Benziger, J.B., Mathematical Modeling, Steady-State and Dynamic Behavior, and Control of Fuel Cells: A Review (2010) Ind. Eng. Chem. Res., 49, pp. 7922-7950; Li, Q., Chen, W., Wang, Y., Jia, J., Han, M., Nonlinear robust control of proton exchange membrane fuel cell by state feedback exact linearization (2009) J. Power Sources, 194, pp. 338-348; Pukrushpan, J.T., Stefanopoulou, A.G., Peng, H., (2004) Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design, , Springer Verlag; London; Hajimolana, S.A., Soroush, M., Dynamics and Control of a Tubular Solid-Oxide Fuel Cell (2009) Ind. Eng. Chem. Res., 48, pp. 6112-6125; Kandepu, R., Imsland, L., Foss, B.A., Stiller, C., T, B.R., Bolland, O., Modeling and control of a SOFC-GT-based autonomous power system (2007) Energy, 32, pp. 406-417; Aguiar, P., Adjiman, C.S., Brandon, N.P., Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell: II. Model-based dynamic performance and control (2005) J. Power Sources, 147, pp. 136-147; Kaneko, T., Brouwer, J., Samuelsen, G.S., Power and temperature control of fluctuating biomass gas fueled solid oxide fuel cell and micro gas turbine hybrid system (2006) J. Power Sources, 160, pp. 316-325; Chaisantikulwat, A., Diaz-Goano, C., Meadows, E.S., Dynamic modelling and control of planar anode-supported solid oxide fuel cell. Comp (2008) Chem. Eng., 32, pp. 2365-2381; Sedghisigarchi, K., Feliachi, A., Dynamic and transient analysis of power distribution systems with fuel cells. Part i (2004) IEEE Trans. Energy Convers., 19, pp. 423-428; Zhang, X.W., Chan, S.H., Ho, H.K., Li, J., Li, G., Feng, Z., Nonlinear model predictive control based on the moving horizon state estimation for the solid oxide fuel cell (2008) Int. J. Hyd. Energy, 33, pp. 2355-2366; Yang, J., Li, X., Mou, H.-G., Jian, L., Control-oriented thermal management of solid oxide fuel cells based on a modified Takagi-Sugeno fuzzy model (2009) J. Power Sources, 188, pp. 475-482; Wang, X., Huang, B., Chen, T., Data-driven predictive control for solid oxide fuel cells (2007) J. Process Control, 17, pp. 103-114; Huo, H.-B., Zhong, Z.-D., Zhu, X.-J., Tu, H.-Y., Nonlinear dynamic modeling for a SOFC stack by using a Hammerstein model (2008) J. Power Sources, 175, pp. 441-446; Vijay, P., Samantaray, A.K., Mukherjee, A., A bond graph model-based evaluation of a control scheme to improve the dynamic performance of a solid oxide fuel cell (2009) Mechatronics, 19, pp. 489-502; Li, Y., Shen, J., Lu, J., Constrained model predictive control of a solid oxide fuel cell based on genetic optimization (2011) J. Power Sources, 196, pp. 5873-5880; Sanandaji, B.M., Vincent, T.L., Colclasure, A.M., Kee, R.J., Modeling and control of tubular solid-oxide fuel cell systems: II. Nonlinear model reduction and model predictive control (2011) J. Power Sources, 196, pp. 208-217; Wu, X.-J., Zhu, X.-J., Cao, G.-Y., Tu, H.-Y., Predictive control of SOFC based on a GA-RBF neural network model (2008) J. Power Sources, 179, pp. 232-239; Jurado, F., Predictive control of solid oxide fuel cells using fuzzy Hammerstein models (2006) J. Power Sources, 158, pp. 245-253; Auld, A.E., Mueller, F., Smedley, K.M., Samuelsen, S., Brouwer, J., Applications of one-cycle control to improve the interconnection of a solid oxide fuel cell and electric power system with a dynamic load (2008) J. Power Sources, 179, pp. 155-163; Chan, S.H., Khor, K.A., Xia, Z.T., A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness (2001) J. Power Sources, 93, pp. 130-140; Campanari, S., Iora, P., Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry (2004) J. Power Sources, 132, pp. 113-126; Qi, Y., Huang, B., Luo, J., Dynamic modeling of a finite volume of solid oxide fuel cell: The effect of transport dynamics (2006) Chem. Eng. Sci., 61, pp. 6057-6076; Meng, N., Thermo-electrochemical modeling of ammonia-fueled solid oxide fuel cells considering ammonia thermal decomposition in the anode (2011) Int. J. Hyd. Energ., 36, pp. 3153-3166; Bonis, I., Theodoropoulos, C., A reduced linear model predictive control algorithm for nonlinear distributed parameter systems (2010) Comput. Aid. Chem. Eng., 28, pp. 553-558; Garcã-A, C.E., Prett, D.M., Morari, M., Model predictive control: Theory and practice: A survey (1989) Automatica, 25, pp. 335-348; Anderson, B., Brinsmead, T., De Bruyne, F., Hespanha, J., Liberzon, D., Morse, S., Multiple model adaptive control I: Finite controller coverings (2000) Int. J. Robust Nonlin. Control, 10, pp. 909-929; Morse, A., Mayne, D., Goodwin, G., Applications of hysteresis switching in parameter adaptive control (1992) IEEE Trans. Autom. Control, 37, pp. 1343-1354; Shridhar, R., Cooper, D.J., A Tuning Strategy for Unconstrained SISO Model Predictive Control (1997) Ind. Eng. Chem. Res., 36, pp. 729-746; Ziegler, C., Göpel, W., Hämmerle, H., Hatt, H., Jung, G., Laxhuber, L., Schmidt, H.L., Zell, A., Bioelectronic noses: A status report. Part II (1998) Biosens. Bioelectron., 13, pp. 539-571; Singhal, S.C., Advances in solid oxide fuel cell technology (2000) Solid State Ionics, 135, pp. 305-313; Chellappa, A.S., Fischer, C.M., Thomson, W.J., Ammonia decomposition kinetics Ni Pt/Al2O3 PEM fuel cell applications (2000) Appl. Catal., 227, pp. 231-240; Hall, D.J., (1997) Transient Modelling and Simulation of A Solid Oxide Fuel Cell, , Ph.D. Thesis, University of Pittsburgh, Pittsburgh, PA; Yin, S.F., Xu, B.Q., Zhou, X.P., Au, C.T., A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications (2004) Appl. Catal., 277, pp. 1-9; Hajimolana, S.A., Hussain, M.A., Wan Daud, W.A., Soroush, M., Shamiri, A., Mathematical modeling of solid oxide fuel cells: A review. Renew. Sustain (2001) Energy Rev., 15, pp. 1893-1917; Bhattacharyya, D., Rengaswamy, R., A review of solid oxide fuel cell (SOFC) dynamic models (2009) Ind. Eng. Chem., 48, pp. 6068-6086; Chen, Q., Gao, L., Dougal, R.A., Quan, S., Multiple model predictive control for a hybrid proton exchange membrane fuel cell system J (2009) Power Sources, 191, pp. 473-482; Sleiti, A.K., Performance of tubular solid oxide fuel cell at reduced temperature and cathode porosity (2010) J. Power Sources, 195, pp. 5719-5725; Costamagna, P., Costa, P., Antonucci, V., Micro-modelling of solid oxide fuel cell electrodes (1998) Electrochim. Acta, 43, pp. 375-394; Constanting, G., Economou, Moral, M., Internal Model Control. 5. Extension to Nonlinear Systems (1986) Ind. Eng. Chem. Process Des. Dev., 25, pp. 403-411; Burt, A.C., Celik, I.B., Gemmen, R.S., Smirnov, A.V., A numerical study of cell-to-cell variations in a SOFC stack (2004) J. Power Sources, 126, pp. 76-87
Uncontrolled Keywords: Ammonia decomposition, Closed-loop performance, Concentration polarization, Controller designs, Electrochemical reactions, First-principles model, Fuel pressure, Heat and mass transfer, Linear controllers, Load change, Multi-model, Operating condition, PI Controller, Predictive control, Predictive controller, Proportional integral controllers, Regulatory performance, Small load, Tubular SOFC, Tubular solid oxide fuel cells, Work study, Zero offsets, Linear control systems, Model predictive control, Solid oxide fuel cells (SOFC), Predictive control systems.
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TP Chemical technology
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 10 Jul 2013 01:08
Last Modified: 10 Feb 2021 03:52
URI: http://eprints.um.edu.my/id/eprint/7009

Actions (login required)

View Item View Item