Enhancing capacitive performance of magnetite-reduced graphene oxide nanocomposites through magnetic field-assisted ion migration

Abdul Jalil, Nur Alya Syakirah and Aboelazm, Eslam and Khe, Cheng Seong and Ali, Gomaa A. M. and Chong, Kwok Feng and Lai, Chin Wei and You, Kok Yeow (2024) Enhancing capacitive performance of magnetite-reduced graphene oxide nanocomposites through magnetic field-assisted ion migration. PLoS ONE, 19 (2). e0292737. ISSN 1932-6203, DOI https://doi.org/10.1371/journal.pone.0292737.

Full text not available from this repository.
Official URL: https://doi.org/10.1371/journal.pone.0292737

Abstract

The transition towards renewable energy sources necessitates efficient energy storage systems to meet growing demands. Electrochemical capacitors, particularly electric double-layer capacitors (EDLCs), show promising performance due to their superior properties. However, the presence of resistance limits their performance. This study explores using an external magnetic field to mitigate ion transfer resistance and enhance capacitance in magnetite-reduced graphene oxide (M-rGO) nanocomposites. M-rGO nanocomposites with varying weight ratios of magnetite were synthesized and comprehensively characterized. Characterization highlighted the difference in certain parameters such as C/O ratio, the Id/Ig ratio, surface area and particle size that contribute towards alteration of M-rGO's capacitive behaviour. Electrochemical studies demonstrated that applying a magnetic field increased specific capacitance by approximately 20% and reduced resistance by 33%. Notably, a maximum specific capacitance of 16.36 F/g (at a scan rate of 0.1 V/s) and 27.24 F/g (at a current density of 0.25 A/g) was achieved. These improvements were attributed to enhanced ion transportation and migration at the electrode/electrolyte interface, lowering overall resistance. However, it was also observed that the aforementioned parameters can also limit the M-rGO's performance, resulting in saturated capacitive state despite a reduced resistance. The integration of magnetic fields enhances energy storage in nanocomposite systems, necessitating further investigation into underlying mechanisms and practical applications.

Item Type: Article
Funders: Fundamental Research Grant Scheme (FRGS/1/2023/STG05/UTP/02/1)
Uncontrolled Keywords: Nanocomposites; magnetic; ion migration; electrode
Subjects: Q Science > Q Science (General)
Q Science > QD Chemistry
T Technology > T Technology (General)
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Deputy Vice Chancellor (Research & Innovation) Office > Nanotechnology & Catalysis Research Centre
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 07 Nov 2024 06:38
Last Modified: 07 Nov 2024 06:38
URI: http://eprints.um.edu.my/id/eprint/45649

Actions (login required)

View Item View Item