An optimized clustering approach to investigate the main features in predicting the punching shear capacity of steel fiber-reinforced concrete

Zhang, Shaojie and Hasanipanah, Mahdi and He, Biao and Rashid, Ahmad Safuan A. and Ulrikh, Dmitrii Vladimirovich and Fang, Qiancheng (2022) An optimized clustering approach to investigate the main features in predicting the punching shear capacity of steel fiber-reinforced concrete. Sustainability, 14 (19). ISSN 2071-1050, DOI https://doi.org/10.3390/su141912950.

Full text not available from this repository.

Abstract

We developed an optimized system for solving engineering problems according to the characteristics of data. Because data analysis includes different variations, the use of common features can increase the performance and accuracy of models. Therefore, this study, using a combination of optimization techniques (K-means algorithm) and prediction techniques, offers a new system and procedure that can identify and analyze data with similarity and close grouping. The system developed using the new sparrow search algorithm (SSA) has been updated as a new hybrid solution to optimize development engineering problems. The data for proposing the mentioned techniques were collected from a series of laboratory works on samples of steel fiber-reinforced concrete (SFRC). To investigate the issue, the data were first divided into different clusters, taking into account common features. After introducing the top clusters, each cluster was developed using three predictive models, i.e., multi-layer perceptron (MLP), support vector regression (SVR), and tree-based techniques. This process continues until the criteria are met. Accordingly, the K-means-artificial neural network 3 structure shows the best performance in terms of accuracy and error. The results also showed that the structure of hybrid models with cluster numbers 2, 3, and 4 is higher than the baseline models in terms of accuracy for assessing the punching shear capacity (PSC) of SFRC. The K-means-ANN3-SSA generated a new methodology for optimizing PSC. The new proposed model/procedure can be used for a similar situation by combining clustering and prediction methods.

Item Type: Article
Funders: Project of Tackling Key Problems of Science and Technology in Henan Province (222102320164), Key Scientific Research Project Plan of Henan Province Colleges and Universities (22B560009)
Uncontrolled Keywords: Cluster; K-means; Sparrow search algorithm; Artificial neural network; SFRC; PSC
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering > Department of Civil Engineering
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 21 Aug 2023 08:20
Last Modified: 21 Aug 2023 08:20
URI: http://eprints.um.edu.my/id/eprint/41079

Actions (login required)

View Item View Item