Alamgeer, Muhammad and Tahir, Muhammad R. and Sarker, Mahidur and Ali, Shabina and Hussian, Shahid and Ali, Sajad and Imran Khan, Muhammad and Khan, Dil Nawaz and Ali, Rashid and Said, Suhana Mohd (2023) Polyaniline/ZnO hybrid nanocomposite: Morphology, spectroscopy and optimization of ZnO concentration for photovoltaic applications. Polymers, 15 (2). ISSN 20734360, DOI https://doi.org/10.3390/polym15020363.
Full text not available from this repository.Abstract
The appropriate combination of semiconducting polymer-inorganic nanocomposites can enhance the existing performance of polymers-only-based photovoltaic devices. Hence, polyaniline (PANI)/zinc oxide (ZnO) nanocomposites were prepared by combining ZnO nanoparticles with PANI in four distinct ratios to optimize their photovoltaic performance. Using a simple coating method, PANI, ZnO, and its nanocomposite, with varying weight percent (wt%) concentrations of ZnO nanoparticles, i.e., (1 wt%, 2 wt%, 3 wt%, and 4 wt%), were fabricated and utilized as an active layer to evaluate the potential for the high-power conversion efficiency of various concentrations, respectively. PANI/ZnO nanocomposites are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) absorption, energy dispersive X-ray (EDX), and I-V measurement techniques. The XRD analysis showed a distinct, narrow peak, which corresponds to the wurtzite ZnO (101) plane. The SEM analysis verified the production of the PANI/ZnO composite by demonstrating that the crystalline ZnO was integrated into the PANI matrix. The elemental composition was determined by energy dispersive X-ray analysis (EDX), which confirmed the existence of PANI and ZnO without any impurities, respectively. Using Fourier transform infrared (FTIR) spectroscopy, various chemical bonds and stretching vibrations were analyzed and assigned to different peaks. The bandgap narrowing with an increasing PANI/ZnO composition led to exceptional optical improvement. The I-V characterization was utilized to investigate the impact of the nanocomposite on the electrical properties of the PANI/ZnO, and various concentrations of ZnO (1 wt%, 2 wt%, 3 wt%, and 4 wt%) in the PANI matrix were analyzed under both light and dark conditions at an STC of 1.5 AM globally. A high PCE of 4.48% was achieved for the PANI/ZnO (3 wt%), which revealed that the conductivity of the PANI/ZnO nanocomposite thin films improved with the increasing nanocomposite concentration.
Item Type: | Article |
---|---|
Funders: | Universiti Kebangsaan Malaysia [Grant No: GGPM-2021-050, GP-2021-K023619], Higher Education Commission, Pakistan [Grant No: 10170/R&D/NRPU/HEC/2017] |
Uncontrolled Keywords: | Polyaniline; Zinc Oxide; Nanocomposite thin film; I-V characteristics; Heterojunction solar cell; Optical band gap |
Subjects: | Q Science > Q Science (General) T Technology > T Technology (General) |
Divisions: | Faculty of Engineering > Department of Electrical Engineering |
Depositing User: | Ms Zaharah Ramly |
Date Deposited: | 24 Nov 2024 03:40 |
Last Modified: | 24 Nov 2024 03:40 |
URI: | http://eprints.um.edu.my/id/eprint/38929 |
Actions (login required)
View Item |