Predicting freshwater production in seawater greenhouses using hybrid artificial neural network models

Panahi, Fatemeh and Ahmed, Ali Najah and Singh, Vijay P. and Ehtearm, Mohammad and Elshafie, Ahmed and Haghighi, Ali Torabi (2021) Predicting freshwater production in seawater greenhouses using hybrid artificial neural network models. Journal of Cleaner Production, 329. ISSN 0959-6526, DOI https://doi.org/10.1016/j.jclepro.2021.129721.

Full text not available from this repository.

Abstract

Freshwater production in seawater greenhouses (SWGH) is an important topic for decision-makers in arid lands. Since arid and semi-arid lands face water shortages, the use of SWGH helps farmers to supply water. This study proposed an integrated artificial neural network (ANN) model, namely, the ANN-antlion optimization algorithm (ANN-ALO), for predicting freshwater production in a seawater greenhouse. The width, length, and height of the evaporators and the roof transparency coefficient of the SWGH were used as the inputs of the models. The ability of ANN-ALO was benchmarked against the ANN-particle swarm optimization (ANN-PSO), ANN, and ANN-bat algorithms (ANN-BA). The novelties of the current study are the novel hybrid ANN models, the fuzzy reasoning concept for reducing the computational time, the comprehensive analysis of the uncertainty of the parameters and inputs, and the use of non-climate data. Comparing the models' performances in the test phase demonstrated that the ANN-ALO model performed best, with a Root Mean Square Error (RMSE) value that was 18%, 33%, and 39% lower than that of the ANN-BA, ANN-PSO, and ANN models, respectively. For the ANN model, the percent bias (PBIAS) value in the training stage was 0.20, whereas for the ANN-BA, ANN-PSO, and ANN-ALO models, it was 0.14, 0.16, and 0.12, respectively. This study also indicated that the width of the seawater greenhouse was the most important parameter for predicting freshwater production. Furthermore, the results suggested that an evaporator height of 2 m resulted in the highest predicted freshwater production for all the widths except 200 m. The lowest freshwater production for different widths occurred at an evaporator height of 3 m. The generalized likelihood estimation for uncertainty analysis indicated that the uncertainty of the input parameters was lower than that of the model parameters.

Item Type: Article
Funders: UNSPECIFIED
Uncontrolled Keywords: ANN; Optimization algorithm; Seawater greenhouse; Water production
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Engineering > Department of Civil Engineering
Depositing User: Ms Zaharah Ramly
Date Deposited: 31 Jul 2022 11:46
Last Modified: 31 Jul 2022 11:46
URI: http://eprints.um.edu.my/id/eprint/28364

Actions (login required)

View Item View Item