Thermal performance analysis of Al2O3/R-134a nanorefrigerant

Mahbubul, I.M. and Saadah, A. and Saidur, R. and Khairul, M.A. and Kamyar, A. (2015) Thermal performance analysis of Al2O3/R-134a nanorefrigerant. International Journal of Heat and Mass Transfer, 85. pp. 1034-1040. ISSN 0017-9310

[img]
Preview
PDF (Thermal performance analysis of Al2O3/R-134a nanorefrigerant)
Thermal_performance_analysis_of_Al2O3_R-134a_nanorefrigerant.pdf - Published Version

Download (1MB)
Official URL: http://www.sciencedirect.com/science/article/pii/S...

Abstract

Nowadays, nanofluids are being considered as an efficient heat transfer fluid in various thermal applications. Refrigerant-based nanofluids, termed as "nanorefrigerants", have the potential to improve the heat transfer performances of refrigeration and air-conditioning systems. This study analyzed the thermophysical properties and their effects on the coefficient of performance (COP) resulted by addition of 5 vol. Al2O3 nanoparticles into R-134a refrigerant at temperatures of 283-308 K. The analysis has been done for a uniform mass flux through a horizontal smooth tube using established correlations. The results indicate that the thermal conductivity, dynamic viscosity, and density of Al2O3/R-134a nanorefrigerant increased about 28.58, 13.68, and 11, respectively compared to the base refrigerant (R-134a) for the same temperature. On the other hand, specific heat of nanorefrigerant is slightly lower than that of R-134a. Moreover, Al2O3/R-134a nanorefrigerant shows the highest COP of 15, 3.2, and 2.6 for thermal conductivity, density, and specific heat, respectively compared to R-134a refrigerant. Therefore, application of nanoparticles in refrigeration and air-conditioning systems is promising to improve the performances of the systems. (C) 2015 Elsevier Ltd. All rights reserved.

Item Type: Article
Additional Information: ISI Document Delivery No.: CG4IO Times Cited: 0 Cited Reference Count: 42 Cited References: Ahamed JU, 2011, RENEW SUST ENERG REV, V15, P1593, DOI 10.1016/j.rser.2010.11.039 Bi SS, 2008, APPL THERM ENG, V28, P1834, DOI 10.1016/j.applthermaleng.2007.11.018 Bi SS, 2011, ENERG CONVERS MANAGE, V52, P733, DOI 10.1016/j.enconman.2010.07.052 BRINKMAN HC, 1952, J CHEM PHYS, V20, P571, DOI 10.1063/1.1700493 Bukac H., 2004, INT COMPR ENG C PURD Chandrasekar M, 2010, EXP THERM FLUID SCI, V34, P210, DOI 10.1016/j.expthermflusci.2009.10.022 Chein RY, 2005, APPL THERM ENG, V25, P3104, DOI 10.1016/j.applthermaleng.2005.03.008 Didi, 2002, INT J REFRIG, V25, P935 Dittus F., 1930, PUBLIC ENG, V2 Henderson K, 2010, INT J HEAT MASS TRAN, V53, P944, DOI 10.1016/j.ijheatmasstransfer.2009.11.026 Jiang WT, 2009, HVAC&R RES, V15, P651, DOI 10.1080/10789669.2009.10390855 Jiang WT, 2009, INT J THERM SCI, V48, P1108, DOI 10.1016/j.ijthermalsci.2008.11.012 Kedzierski MA, 2011, INT J REFRIG, V34, P498, DOI 10.1016/j.ijrefrig.2010.10.007 Kedzierski MA, 2009, INT J REFRIG, V32, P791, DOI 10.1016/j.ijrefrig.2008.12.007 Klein SA, 2000, INT J REFRIG, V23, P588, DOI 10.1016/S0140-7007(00)00008-6 Kole M, 2011, INT J THERM SCI, V50, P1741, DOI 10.1016/j.ijthermalsci.2011.03.027 Lee K, 2009, CURR APPL PHYS, V9, pE128, DOI 10.1016/j.cap.2008.12.054 Lemmon E.W., 2002, NIST STANDARD REFERE, V23 Mahbubul I. M., 2012, INT J HEAT MASS TRAN, V55, P877 Mahbubul IM, 2013, IND ENG CHEM RES, V52, P6032, DOI 10.1021/ie302006n Mahbubul IM, 2013, INT COMMUN HEAT MASS, V43, P100, DOI 10.1016/j.icheatmasstransfer.2013.02.004 Mahbubul IM, 2013, INT J HEAT MASS TRAN, V57, P100, DOI 10.1016/j.ijheatmasstransfer.2012.10.007 Mahbubul I.M., 2012, INT J MECH MAT ENG, V7, P146 Mahbubul IM, 2013, PROCEDIA ENGINEER, V56, P323, DOI 10.1016/j.proeng.2013.03.126 Mahbubul I.M., 2011, ENG E T, V6, P124 Mahbubul IM, 2013, PROCEDIA ENGINEER, V56, P310, DOI 10.1016/j.proeng.2013.03.124 Mahbubul IM, 2014, INT J HEAT MASS TRAN, V73, P118, DOI 10.1016/j.ijheatmasstransfer.2014.01.073 Pak BC, 1998, EXP HEAT TRANSFER, V11, P151, DOI 10.1080/08916159808946559 Payne V, 2004, HVAC&R RES, V10, P73, DOI 10.1080/10789669.2004.10391092 Peng H, 2009, INT J REFRIG, V32, P1259, DOI 10.1016/j.ijrefrig.2009.01.025 Peng H, 2009, INT J REFRIG, V32, P1756, DOI 10.1016/j.ijrefrig.2009.06.005 Peng H, 2011, NANOSCALE RES LETT, V6, DOI 10.1186/1556-276X-6-219 Saidur R, 2011, RENEW SUST ENERG REV, V15, P310, DOI 10.1016/j.rser.2010.08.018 Shahrul IM, 2014, RENEW SUST ENERG REV, V38, P88, DOI 10.1016/j.rser.2014.05.081 Sitprasert C, 2009, J NANOPART RES, V11, P1465, DOI 10.1007/s11051-008-9535-4 STEPHAN K, 1980, INT J HEAT MASS TRAN, V23, P73, DOI 10.1016/0017-9310(80)90140-4 SUTERA SP, 1993, ANNU REV FLUID MECH, V25, P1 Wang K., 2007, P 22 INT C REFR BEIJ Wang K.-J., 2006, P 4 S REFR AIR COND Wang R., 2003, P 4 INT S HAVC Wang XQ, 2007, INT J THERM SCI, V46, P1, DOI 10.1016/j.ijthermalsci.2006.06.010 Wen MY, 2005, APPL THERM ENG, V25, P2921, DOI 10.1016/j.applthermaleng.2005.02.013 Mahbubul, I. M. Saadah, A. Saidur, R. Khairul, M. A. Kamyar, A. Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 University of Malaya under the High Impact Research MoE UM.C/625/1/HIR/MoE/ENG/40; Ministry of Education Malaysia D000040-16001 "The authors are thankful to University of Malaya for financial support under the High Impact Research MoE Grant: UM.C/625/1/HIR/MoE/ENG/40 (D000040-16001) from the Ministry of Education Malaysia." 0 PERGAMON-ELSEVIER SCIENCE LTD OXFORD INT J HEAT MASS TRAN
Uncontrolled Keywords: Nanofluid, thermal conductivity, viscosity, density, specific heat, coefficient of performance, refrigerant-based nanofluid, pressure-drop characteristics, heat-transfer characteristics, al2o3/r141b nanorefrigerant, nanoparticles, conductivity, viscosity, tube, migration, system,
Subjects: T Technology > T Technology (General)
T Technology > TJ Mechanical engineering and machinery
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 14 Apr 2016 06:58
Last Modified: 14 Apr 2016 06:58
URI: http://eprints.um.edu.my/id/eprint/15772

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year