Metasurface reflector (MSR) loading for high performance small microstrip antenna design

Ahsan, M.R. and Islam, M.T. and Ullah, M.H. and Singh, M.J. and Ali, M.T. (2015) Metasurface reflector (MSR) loading for high performance small microstrip antenna design. PLoS ONE, 10 (5). p. 20. ISSN 1932-6203

[img]
Preview
PDF (Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design)
Metasurface_Reflector_(MSR)_Loading_for_High_Performance_Small_Microstrip.pdf - Published Version

Download (5MB)
Official URL: http://www.ncbi.nlm.nih.gov/pubmed/26018795

Abstract

A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (epsilon(r) = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17), 467 to 606 MHz (29) and 758 MHz to 1062 MHz (40) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications.

Item Type: Article
Additional Information: ISI Document Delivery No.: CJ0RO Times Cited: 0 Cited Reference Count: 49 Cited References: Ahsan MR, 2015, APPL COMPUT ELECTROM, V30, P213 Ahsan MR, 2014, SCI WORLD J, DOI 10.1155/2014/856504 Aksun MI, 2008, IEEE T MICROW THEORY, V56, P1423, DOI 10.1109/TMTT.2008.923870 Antoniades MA, 2008, IEEE ANTENN WIREL PR, V7, P652, DOI 10.1109/LAWP.2008.2007813, 10.1109/I.AWP.2008.2007813 Balanis Constantine A., 2005, ANTENNA THEORY, P816 Booker H.G., 1946, Journal of the Institution of Electrical Engineers. IIIA. Radiolocation, V93 Burns RW, 1993, ENG SCI EDUC J, V2, P115 Chaimool S, 2010, Progress In Electromagnetics Research B, V22, DOI 10.2528/PIERB10031901 Chaimool S, 2013, APPL PHYS A-MATER, V112, P669, DOI 10.1007/s00339-013-7703-6 Chen XD, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.016608 Chung K. L., 2011, P 5 EUR C ANT PROP E, P48 Chung KL, 2012, MICROW OPT TECHN LET, V54, P529, DOI 10.1002/mop.26574 Devireddy B, 2011, APPL COMPUT ELECTROM, V26, P170 Enoch S, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.213902 Fang DG, 2010, ANTENNA THEORY AND MICROSTRIP ANTENNAS, P1 Fiedziuszko SJ, 2002, IEEE T MICROW THEORY, V50, P706, DOI 10.1109/22.989956 Finkenzeller K., 2010, RFID HDB FUNDAMENTAL, VThird Ge YH, 2012, IEEE T ANTENN PROPAG, V60, P743, DOI 10.1109/TAP.2011.2173113 Goussetis G, 2006, IEEE T ANTENN PROPAG, V54, P82, DOI 10.1109/TAP.2005.861575 Holloway CL, 2012, IEEE ANTENN PROPAG M, V54, P10, DOI 10.1109/MAP.2012.6230714 Honari MM, 2011, IEEE ANTENN WIREL PR, V10, P1413, DOI 10.1109/LAWP.2011.2178998 Cui TJ, 2010, METAMATERIALS: THEORY, DESIGN, AND APPLICATIONS, P1, DOI 10.1007/978-1-4419-0573-4 Krishna DD, 2008, PROG ELECTROMAGN RES, V83, P245, DOI 10.2528/PIER08052201 Lee KF, 2011, IEEE ANTENN PROPAG M, V53, P60, DOI 10.1109/MAP.2011.6028422 Liberal I, 2012, IEEE T ANTENN PROPAG, V60, P3020, DOI 10.1109/TAP.2012.2194836 Liu HJ, 2014, IEEE T ANTENN PROPAG, V62, P2856, DOI 10.1109/TAP.2014.2308525 Liu Y, 2013, INT J ANTENNAS PROPA, V2013 Lu JH, 2003, IEEE T ANTENN PROPAG, V51, P1126, DOI 10.1109/TAP.2003.811481 Maci S, 1997, IEEE ANTENNAS PROPAG, V39, P13, DOI 10.1109/74.646798 Maddani GP, 2010, MICROW OPT TECHN LET, V52, P2841, DOI 10.1002/mop.25612 Munk B.A, 2000, FREQUENCY SELECTIVE Numan AB, 2013, IEEE ANTENN PROPAG M, V55, P202, DOI 10.1109/MAP.2013.6735515 Pendry JB, 2000, PHYS REV LETT, V85, P3966, DOI 10.1103/PhysRevLett.85.3966 Rehman SU, 2011, APPL COMPUT ELECTROM, V26, P624 Saenz E, 2007, ELECTRON LETT, V43, P850, DOI 10.1049/el:20071591 Smith DR, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.195104 Tiang JJ, 2011, J ELECTROMAGNET WAVE, V25, P1851, DOI 10.1163/156939311797454042 Ullah MH, 2014, SMART MATER STRUCT, V23, DOI 10.1088/0964-1726/23/8/085015 Ullah MH, 2013, APPL PHYS LETT, V103, DOI 10.1063/1.4833496 VESELAGO VG, 1968, SOV PHYS USPEKHI, V10, P509, DOI 10.1070/PU1968v010n04ABEH003699 WANG BF, 1984, IEEE T ANTENN PROPAG, V32, P938 Wang S, 2004, ELECTRON LETT, V40, P405, DOI 10.1049/el:20040306 Wong K-L, 2004, COMPACT BROADBAND MI Xiong H, 2012, RADIOENGINEERING, V21, P993 Yang F, 2005, MICROW OPT TECHN LET, V47, P240, DOI 10.1002/mop.21136 Zarifi D, 2012, PROG ELECTROMAGN RES, V123, P337, DOI 10.2528/PIER11110506 Zhai HQ, 2013, IEEE ANTENN WIREL PR, V12, P65, DOI 10.1109/LAWP.2013.2238881 Zhang RQ, 2012, IEEE MICROW WIREL CO, V22, P233, DOI 10.1109/LMWC.2012.2192419 Zhao YJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103945 Ahsan, Md Rezwanul Islam, Mohammad Tariqul Ullah, Mohammad Habib Singh, Mandeep Jit Ali, Mohd Tarmizi Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 Universiti Kebangsaan Malaysia DIP-2014-029 This work was supported by the Universiti Kebangsaan Malaysia through university research grant code no. DIP-2014-029. The funders had no role in study design, data collection and analysis, decision to preparation or publication of the manuscript. 0 PUBLIC LIBRARY SCIENCE SAN FRANCISCO PLOS ONE
Uncontrolled Keywords: Ground plane, bandwidth enhancement, patch antennas, band, gain, metamaterials, parameters, surfaces, mu,
Subjects: T Technology > T Technology (General)
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 08 Apr 2016 02:23
Last Modified: 05 Jul 2017 01:20
URI: http://eprints.um.edu.my/id/eprint/15744

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year