Synthesis of polyethylene glycol-functionalized multi-walled carbon nanotubes with a microwave-assisted approach for improved heat dissipation

Amiri, A. and Sadri, R. and Ahmadi, G. and Chew, B.T. and Kazi, S.N. and Shanbedi, M. and Alehashem, M.S. (2015) Synthesis of polyethylene glycol-functionalized multi-walled carbon nanotubes with a microwave-assisted approach for improved heat dissipation. RSC Advances, 5 (45). pp. 35425-35434. ISSN 2046-2069

[img]
Preview
PDF (Synthesis of polyethylene glycol-functionalized multi-walled carbon nanotubes with a microwave-assisted approach for improved heat dissipation)
Synthesis_of_polyethylene_glycol-functionalized_multi-walled_carbon_nanotubes_.pdf - Published Version

Download (1MB)
Official URL: http://pubs.rsc.org/en/content/articlepdf/2015/ra/...

Abstract

In order to improve the dispersibility of multi-walled carbon nanotubes (MWCNT) in aqueous media, MWCNT were functionalized with tetrahydrofurfuryl polyethylene glycol (TFPEG) in a one-pot, fast and environmentally friendly method. To reduce defects and eliminate the acid-treatment stage, an electrophonic addition reaction under microwave irradiation was employed. Surface functionalization was analyzed by FTIR, Raman spectroscopy, thermogravimetric analysis (TGA). In addition, the morphology of TFPEG-treated MWCNT (PMWCNT) was investigated by transmission electron microscopy (TEM). After the functionalization phase, the convective heat transfer coefficient and pressure drop in PMWCNT-based water nanofluids with various weight concentrations were analyzed and compared with that of the base fluid. The results suggest that the addition of PMWCNT into the water improved the convective heat transfer coefficient significantly. The pressure drop of prepared PMWCNT-based water nanofluids showed an insignificant variation as compared with the base fluid and could result from good dispersivity of PMWCNT. According to the laminar flow results, as the weight concentration and Reynolds number increase, the convective heat transfer coefficient and pressure drop increase.

Item Type: Article
Additional Information: ISI Document Delivery No.: CG9PK Times Cited: 1 Cited Reference Count: 53 Cited References: Amiri A, 2013, J BIOMED MATER RES A, V101, P2219, DOI 10.1002/jbm.a.34527 Amiri A, 2015, ENERG CONVERS MANAGE, V92, P322, DOI 10.1016/j.enconman.2014.12.051 Amiri A, 2012, J PHYS CHEM C, V116, P3369, DOI 10.1021/jp210484a Amiri A, 2014, APPL THERM ENG, V71, P450, DOI 10.1016/j.applthermaleng.2014.06.064 Amiri A, 2012, MATER LETT, V72, P153, DOI 10.1016/j.matlet.2011.12.114 Amiri M. M. A., 2011, APPL SURF SCI, V257, P10261 Aravind SSJ, 2011, J PHYS CHEM C, V115, P16737, DOI 10.1021/jp201672p Aravind SSJ, 2013, RSC ADV, V3, P4199, DOI 10.1039/c3ra22653k Azizi M, 2013, IND ENG CHEM RES, V52, P10015, DOI 10.1021/ie401543n Baby TT, 2011, J MATER CHEM, V21, P9702, DOI 10.1039/c0jm04106h Balamurugan K, 2012, J PHYS CHEM C, V116, P4365, DOI 10.1021/jp206882f BRINKMAN HC, 1952, J CHEM PHYS, V20, P571, DOI 10.1063/1.1700493 Brown SDM, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.073403 Choi S. U., 1995, ENHANCING THERMAL CO Choi S. U. S., 1995, INT MECH ENG C EXP Choi S. U. S., 2001, U.S. Pat., Patent No. 6,221,275, 6221275 Choi SUS, 2001, APPL PHYS LETT, V79, P2252, DOI 10.1063/1.1408272 Cui WZ, 2014, RSC ADV, V4, P55580, DOI 10.1039/c4ra07736a Datsyuk V, 2008, CARBON, V46, P833, DOI 10.1016/j.carbon.2008.02.012 Ding YL, 2006, INT J HEAT MASS TRAN, V49, P240, DOI 10.1016/j.ijheatmasstransfer.2005.07.009 Heris S. Z., 2013, J DISPERSION SCI TEC, V35, P677 Heris S. Z., 2015, HEAT MASS TRANSFER, DOI 10.1007/s00231-015-1548-9, DOI 10.1007/S00231-015-1548-9 Holman J. P., 1981, HEAT TRANSFER Hussein AM, 2014, HEAT MASS TRANSFER, V50, P1553, DOI 10.1007/s00231-014-1369-2 Hussein AM, 2014, INT COMMUN HEAT MASS, V53, P195, DOI 10.1016/j.icheatmasstransfer.2014.01.003 Ivanov AS, 2012, RUSS CHEM B+, V61, P1882 Kalinina I, 2011, CHEM MATER, V23, P1246, DOI 10.1021/cm10303s Liu ZD, 2015, RSC ADV, V5, P29017, DOI 10.1039/c5ra00639b Mahian O., 2012, J THERMOPHYS HEAT TR, V27, P161 Mahian O, 2013, INT J HEAT MASS TRAN, V65, P514, DOI 10.1016/j.ijheatmasstransfer.2013.06.010 Nan CW, 2003, CHEM PHYS LETT, V375, P666, DOI 10.1016/S0009-2614(03)00956-4 Noie SH, 2009, INT J HEAT FLUID FL, V30, P700, DOI 10.1016/j.ijheatfluidflow.2009.03.001 Pak BC, 1998, EXP HEAT TRANSFER, V11, P151, DOI 10.1080/08916159808946559 Qingwen L., 2002, J PHYS CHEM B, V106, P11085, DOI 10.1021/jp026512c Rashidi MM, 2012, CHEM ENG COMMUN, V199, P231, DOI 10.1080/00986445.2011.586756 Rashidi MM, 2013, INT J HEAT MASS TRAN, V62, P515, DOI 10.1016/j.ijheatmasstransfer.2013.03.004 Shah R. K., 1975, 3 NAT HEAT MASS TRAN Shanbedi M, 2013, EXP HEAT TRANSFER, V26, P26, DOI 10.1080/08916152.2011.631078 Shanbedi M, 2012, IND ENG CHEM RES, V51, P1423, DOI 10.1021/ie202110g Shanbedi M, 2014, J DISPER SCI TECHNOL, V35, P1086, DOI 10.1080/01932691.2013.833101 Shanbedi M, 2015, HEAT TRANSFER ENG, V36, P315, DOI 10.1080/01457632.2014.916161 Sreeremya TS, 2014, RSC ADV, V4, P28020, DOI 10.1039/c4ra03270e Tian R, 2008, APPL SURF SCI, V255, P3294, DOI 10.1016/j.apsusc.2008.09.040 Tumuluri K, 2011, INT J HEAT MASS TRAN, V54, P5554, DOI 10.1016/j.ijheatmasstransfer.2011.07.031 Vazquez E, 2009, ACS NANO, V3, P3819, DOI 10.1021/nn901604j Xuan YM, 2000, INT J HEAT FLUID FL, V21, P58, DOI 10.1016/S0142-727X(99)00067-3 Xuan YM, 2014, RSC ADV, V4, P16206, DOI 10.1039/c4ra00630e Xue QZ, 2006, NANOTECHNOLOGY, V17, P1655, DOI 10.1088/0957-4484/17/6/020 Xue QZ, 2005, PHYSICA B, V368, P302, DOI 10.1016/j.physb.2005.07.024 Xue QZ, 2003, PHYS LETT A, V307, P313, DOI 10.1016/S0375-9601(02)01728-0 Yarmand H, 2014, ENTROPY-SWITZ, V16, P6116, DOI 10.3390/e16116116 Zardini HZ, 2014, J BIOMED MATER RES A, V102, P1774, DOI 10.1002/jbm.a.34846 Zardini HZ, 2012, COLLOID SURFACE B, V92, P196, DOI 10.1016/j.colsurfb.2011.11.045 Amiri, Ahmad Sadri, Rad Ahmadi, Goodarz Chew, B. T. Kazi, S. N. Shanbedi, Mehdi Alehashem, Maryam Sadat Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 Bright Sparks Unit of the University of Malaya, UMRG Grant RP012B-13AET; High Impact Research Grant, Faculty of Engineering, University of Malaya, Malaysia UM.C/625/1/HIR/MOHE/ENG/45 The authors gratefully acknowledge Bright Sparks Unit of the University of Malaya, UMRG Grant RP012B-13AET and High Impact Research Grant UM.C/625/1/HIR/MOHE/ENG/45, Faculty of Engineering, University of Malaya, Malaysia for support to conduct this research work. 1 ROYAL SOC CHEMISTRY CAMBRIDGE RSC ADV
Uncontrolled Keywords: 2-phase closed thermosiphon, thermal-conductivity, entropy generation, transfer enhancement, molecular-dynamics, nanofluids, water, performance, composites, model,
Subjects: T Technology > T Technology (General)
T Technology > TJ Mechanical engineering and machinery
T Technology > TP Chemical technology
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 04 Apr 2016 01:00
Last Modified: 04 Apr 2016 01:00
URI: http://eprints.um.edu.my/id/eprint/15722

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year