Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid

Faizal, M. and Saidur, R. and Mekhilef, S. and Hepbasli, A. and Mahbubul, I.M. (2015) Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid. Clean Technologies and Environmental Policy, 17 (6). pp. 1457-1473. ISSN 1618-954X

[img]
Preview
PDF (Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid)
Energy,_economic,_and_environmental_analysis_of_a_flat-plate_solar_collector.pdf - Published Version

Download (2MB)
Official URL: http://link.springer.com/article/10.1007/s10098-01...

Abstract

To overcome the environmental impact and declining source of fossil fuels, renewable energy sources need to meet the increasing demand of energy. Solar thermal energy is clean and infinite, suitable to be a good replacement for fossil fuel. However, the current solar technology is still expensive and low in efficiency. One of the effective ways of increasing the efficiency of solar collector is to utilize high thermal conductivity fluid known as nanofluid. This research analyzes the impact on the performance, fluid flow, heat transfer, economic, and environment of a flat-plate solar thermal collector by using silicon dioxide nanofluid as absorbing medium. The analysis is based on different volume flow rates and varying nanoparticles volume fractions. The study has indicated that nanofluids containing small amount of nanoparticles have higher heat transfer coefficient and also higher energy and exergy efficiency than base fluids. The measured viscosity of nanofluids is higher than water but it gives negligible effect on pressure drop and pumping power. Using SiO2 nanofluid in solar collector could also save 280 MJ more embodied energy, offsetting 170 kg less CO2 emissions and having a faster payback period of 0.12 years compared to conventional water-based solar collectors.

Item Type: Article
Additional Information: ISI Document Delivery No.: CN0GE Times Cited: 0 Cited Reference Count: 73 Cited References: Alim MA, 2013, ENERG BUILDINGS, V66, P289, DOI 10.1016/j.enbuild.2013.07.027 Anonymous, 2010, 9 MAL PLAN Anonymous, NANOSCALE RES LETT Ardante F, 2005, RENEW ENERG, V30, P1031 ASHRAE, 2010, METH TEST DET THERM Azmi WH, 2013, EXP THERM FLUID SCI, V51, P103, DOI 10.1016/j.expthermflusci.2013.07.006 Bejan A, 1996, ENTROPY GENERATION M, V2 BEJAN A, 1981, J SOL ENERG-T ASME, V103, P23 Bergman TL, 2011, FUNDAMENTALS HEAT MA Cengel YA, 2010, THERMODYNAMICS ENG A, V7th Chen YJ, 2013, INT J HEAT MASS TRAN, V56, P59, DOI 10.1016/j.ijheatmasstransfer.2012.09.048 Chen Z, 2008, ENVIRON SCI TECHNOL, V42, P8985, DOI 10.1021/es800975u Choi S.U.S., 1995, ASME FED, V231, P99 Das SK, 2009, ADV HEAT TRANSFER, P81 de Sanchez-Bautista AF, 2014, CLEAN TECHNOL ENVIR, DOI 10.1007/s10098-014-0818-4, DOI 10.1007/S10098-014-0818-4 Duangthongsuk W, 2009, INT J HEAT MASS TRAN, V52, P2059, DOI 10.1016/j.ijheatmasstransfer.2008.10.023 Dutta Gupta K.K., 1990, RENEW ENERGY ENV, V103, P283 Esen H, 2008, BUILD ENVIRON, V43, P1046, DOI 10.1016/j.buildenv.2007.02.016 Faizal M, 2013, EARTH ENV SCI, V16, P1 Faizal M, 2013, ENERG CONVERS MANAGE, V76, P162, DOI 10.1016/j.enconman.2013.07.038 Faizal M, 2014, ADV MATER RES-SWITZ, V832, P149, DOI 10.4028/www.scientific.net/AMR.832.149 Farahat S, 2009, RENEW ENERG, V34, P1169, DOI 10.1016/j.renene.2008.06.014 Foster R, 2009, SOL ENERGY RENEWABLE GARG HP, 1995, ENERG CONVERS MANAGE, V36, P87, DOI 10.1016/0196-8904(94)00046-3 He YR, 2007, INT J HEAT MASS TRAN, V50, P2272, DOI 10.1016/j.ijheatmasstransfer.2006.10.024 Ise N, 2005, STRUCTURE FORMATION Jiang HF, 2014, THERMOCHIM ACTA, V579, P27, DOI 10.1016/j.tca.2014.01.012 Kabeel AE, 2013, APPL THERM ENG, V52, P221, DOI 10.1016/j.applthermaleng.2012.11.027 Kahani M, 2013, J DISPER SCI TECHNOL, V34, P1704, DOI 10.1080/01932691.2013.764485 Kalogirou SA, 2009, SOLAR ENERGY ENGINEERING: PROCESSES AND SYSTEMS, P1 Kalogirou S, 2008, J SOLAR ENERGY, V83, P39 Kalogirou SA, 2004, ENERG CONVERS MANAGE, V45, P3075, DOI 10.1016/j.enconman.2003.12.019 Kamyar A, 2012, INT J HEAT MASS TRAN, V55, P4104, DOI 10.1016/j.ijheatmasstransfer.2012.03.052 Khairul MA, 2014, INT COMMUN HEAT MASS, V50, P8, DOI 10.1016/j.icheatmasstransfer.2013.11.006 Kosmulski M, 2001, CHEM PROPERTIES MAT Kotas TJ, 1995, EXERGY METHOD THERMA Kotulski Z, 2010, SOLID MECH APPL, V169, P1, DOI 10.1007/978-90-481-3570-7 Kulkarni DP, 2009, APPL ENERG, V86, P2566, DOI 10.1016/j.apenergy.2009.03.021 Lalchand G, 2012, ELECT DEMAND SUPPLY Lenert A, 2012, SOL ENERGY, V86, P253, DOI 10.1016/j.solener.2011.09.029 Leong KY, 2012, ENER EDUC SCI TECH-A, V30, P1 Leong KY, 2010, APPL THERM ENG, V30, P2685, DOI 10.1016/j.applthermaleng.2010.07.019 Li FC, 2013, THERMOCHIM ACTA, V556, P47, DOI 10.1016/j.tca.2013.01.023 Li Q, 2003, J HEAT TRANSFER, V125, P151 Liu ZH, 2008, INT J HEAT MASS TRAN, V51, P2593, DOI 10.1016/j.ijheatmasstransfer.2006.11.050 Lu L, 2011, SOL ENERGY, V85, P379, DOI 10.1016/j.solener.2010.11.008 Mahian O, 2013, INT J HEAT MASS TRAN, V65, P514, DOI 10.1016/j.ijheatmasstransfer.2013.06.010 Mahian O, 2012, ENERGY, V44, P438, DOI 10.1016/j.energy.2012.06.009 McClintock F., 1953, MECH ENG, V75, P3 Mekhilef S, 2012, RENEW SUST ENERG REV, V16, P386, DOI 10.1016/j.rser.2011.08.003 Namburu PK, 2007, MICRO NANO LETT, V2, P67, DOI 10.1049/mnl:20070037 Nemet A, 2012, CLEAN TECHNOL ENVIR, V14, P453, DOI 10.1007/s10098-012-0457-6 Otanicar TP, 2009, DIRECT ABSORPTION SO Otanicar TP, 2010, J RENEW SUSTAIN ENER, V2, DOI 10.1063/1.3429737 Owhaib W, 2004, EXP THERM FLUID SCI, V28, P105, DOI 10.1016/S0894-1777(03)00028-1 Ranjan KR, 2013, CLEAN TECHNOL ENVIR, V16, P791 Saidur R, 2011, ENER EDUC SCI TECH-A, V26, P87 Saidur R, 2012, RENEW SUST ENERG REV, V16, P350, DOI 10.1016/j.rser.2011.07.162 Shin D, 2011, INT J HEAT MASS TRAN, V54, P1064, DOI 10.1016/j.ijheatmasstransfer.2010.11.017 Singal RK, 2008, NONCONVENTIONAL ENER Spardo JV, 1999, INT J LCA, V4, P229 SUZUKI A, 1988, ENERGY, V13, P153, DOI 10.1016/0360-5442(88)90040-0 Taylor RA, 2011, NANOSCALE RES LETT, V6, DOI 10.1186/1556-276X-6-225 Tiwari AK, 2013, APPL THERM ENG, V57, P24, DOI 10.1016/j.applthermaleng.2013.03.047 Tora EA, 2009, CLEAN TECHNOL ENVIR, V11, P401, DOI 10.1007/s10098-009-0198-3 Tsilingiridis G, 2004, RENEW ENERG, V29, P1277, DOI 10.1016/j.renene.2003.12.007 Vatanpour V, 2011, J MEMBRANE SCI, V375, P284, DOI 10.1016/j.memsci.2011.03.055 Wang H, 2009, CURR OPIN COLLOID IN, V14, P364, DOI 10.1016/j.cocis.2009.06.004 Yousefi T, 2012, EXP THERM FLUID SCI, V39, P207, DOI 10.1016/j.expthermflusci.2012.01.025 Yousefi T, 2012, RENEW ENERG, V39, P293, DOI 10.1016/j.renene.2011.08.056 Yousefi T, 2012, SOL ENERGY, V86, P771, DOI 10.1016/j.solener.2011.12.003 Zamzamian A, 2014, RENEW ENERG, V71, P658, DOI 10.1016/j.renene.2014.06.003 Zhou SQ, 2008, APPL PHYS LETT, V92, DOI 10.1063/1.2890431 Faizal, M. Saidur, R. Mekhilef, S. Hepbasli, A. Mahbubul, I. M. University of Malaya RP015B-13AET; Ministry of Education Malaysia UM.C/HIR/MoHE/ENG/40 The authors would like to acknowledge the financial support provided by the University of Malaya under UMRG Project no.: RP015B-13AET and Ministry of Education Malaysia for UM-MoE High Impact Research Grant (HIRG) scheme (Project no.: UM.C/HIR/MoHE/ENG/40). 0 SPRINGER NEW YORK CLEAN TECHNOL ENVIR
Uncontrolled Keywords: Sio2 nanofluid, flat-plate solar collector, heat transfer, economic, exergy, pressure-drop characteristics, metal-oxide nanofluids, heat-transfer, entropy generation, thermal-conductivity, exergy analysis, size-reduction, exchanger, flow, efficiency,
Subjects: T Technology > T Technology (General)
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 04 Apr 2016 00:53
Last Modified: 11 Oct 2017 08:56
URI: http://eprints.um.edu.my/id/eprint/15719

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year