Optimizing the external optical cavity parameters for performance improvement of a fiber grating fabry-perot laser

Hisham, H.K. and Abas, A.F. and Mahdiraji, G.A. and Mahdi, M.A. and Adikan, Faisal Rafiq Mahamd (2015) Optimizing the external optical cavity parameters for performance improvement of a fiber grating fabry-perot laser. Optical Review, 22 (2). pp. 278-288. ISSN 1340-6000, DOI https://doi.org/10.1007/s10043-015-0064-y.

[img]
Preview
PDF (Optimizing the external optical cavity parameters for performance improvement of a fiber grating Fabry-Perot laser)
Optimizing_the_external_optical_cavity_parameters_for_performance.pdf - Published Version

Download (1MB)
Official URL: http://link.springer.com/article/10.1007/s10043-01...

Abstract

The effects of the external optical cavity parameters (external optical cavity length (L-ext), amplitude coupling (C-o) and anti-reflection coating (ARC) reflectivity coefficients) on the noise and modulation spectra of a fiber grating Fabry-Perot laser are numerically analyzed for designing a laser that operates in strong feedback regime (Regime V). Fiber Bragg grating (FBG) is used as a wavelength selective element to control the properties of the laser output by controlling the external optical feedback (OFB) level. The study is performed by modifying a set of rate equations that are solved by considering the effects of external OFB and ambient temperature (T) variations. We proposed a model to calculate the temperature dependence (TD) of laser characteristics according to the TD of laser parameters. An accurate analytical expression for the TD of threshold carrier density (N-th,N- fe) has been derived. The TD of N-th,N- fe was calculated according to the TD of laser cavity parameters instead of using well-known empirical Pankove relationship via the use of characteristics temperature (T-o) and current (I-o). Results show that the optimum external fiber length (L-ext) is 3.1 cm. Also, it is shown that ARC with reflectivity value of 1 x 10(-2) is sufficient for the laser to operate at low noise, good modulation response, and low fabrication complexity.

Item Type: Article
Funders: MOSTI Science Fund SF001-2013
Additional Information: ISI Document Delivery No.: CG9JJ Times Cited: 0 Cited Reference Count: 49 Cited References: Ab-Rahman MS, 2011, OPTIK, V122, P266, DOI 10.1016/j.ijleo.2010.01.002 Agrawal G. P., 1993, SEMICONDUCTOR LASERS, V2nd, P112 AHMED Z, 1995, IEEE J SEL TOP QUANT, V1, P505, DOI 10.1109/2944.401235 Cai Haiwen �海�, 2003, Chinese Optics Letters, V1, P12 Campbell RJ, 1996, ELECTRON LETT, V32, P119, DOI 10.1049/el:19960075 Cardoza-Avendano L, 2011, OPT LASER TECHNOL, V43, P949, DOI 10.1016/j.optlastec.2010.12.009 Dogru N, 2003, OPT LASER TECHNOL, V35, P163, DOI 10.1016/S0030-3992(02)00166-4 Genty G, 2000, IEEE J QUANTUM ELECT, V36, P1193, DOI 10.1109/3.880660 Gnauck AH, 2008, J LIGHTWAVE TECHNOL, V26, P79, DOI 10.1109/JLT.2007.912110 Han JM, 2007, OPT LASER TECHNOL, V39, P313, DOI 10.1016/j.optlastec.2005.07.011 Hashimoto JI, 2003, J LIGHTWAVE TECHNOL, V21, P2002, DOI 10.1109/JLT.2003.815498 Hashimoto JI, 2002, IEEE PHOTONIC TECH L, V14, P1617, DOI 10.1109/LPT.2002.803874 Hisham H. K., 2012, IEEE PHOTONICS J, V2353 Hisham H. K., 2012, IEEE J QUANTUM ELECT, V48, P385 Hisham HK, 2012, OPT REV, V19, P64, DOI 10.1007/s10043-012-0014-x Hisham HK, 2012, OPT LASER TECHNOL, V44, P1698, DOI 10.1016/j.optlastec.2012.01.027 Hisham HK, 2013, OPTIK, V124, P1763, DOI 10.1016/j.ijleo.2012.05.004 Hisham HK, 2012, IEEE PHOTONICS J, V4, P1662, DOI 10.1109/JPHOT.2012.2214207 Hisham HK, 2012, J MOD OPTIC, V59, P393, DOI 10.1080/09500340.2011.629060 IKEDA K, 1986, J STAT PHYS, V44, P955, DOI 10.1007/BF01011917 Jia XH, 2007, OPT COMMUN, V279, P356, DOI 10.1016/j.optcom.2007.07.044 Kallimani K., 1998, IEE P-OPTOELECTRON, P319 Kuwashima F, 2001, JPN J APPL PHYS 1, V40, P601, DOI 10.1143/JJAP.40.601 Lee JH, 2009, OPT FIBER TECHNOL, V15, P310, DOI 10.1016/j.yofte.2009.01.001 Lin B, 2011, OPT FIBER TECHNOL, V17, P120, DOI 10.1016/j.yofte.2011.01.002 Liu M. M. K., 1996, PRINCIPLE APPL OPTIC, V1st, P213 Loh W, 2011, IEEE PHOTONIC TECH L, V23, P974, DOI 10.1109/LPT.2011.2146245 Morgado JAP, 2003, IEEE J SEL TOP QUANT, V9, P1315, DOI 10.1109/JSTQE.2003.819513 Naumenko A, 2003, IEEE J QUANTUM ELECT, V39, P1216, DOI 10.1109/JQE.2003.817669 Ohtsubo J., 2008, SEMICONDUCTOR LASERS, V2<SUP>nd</SUP>, P65 Othonos A., 1999, FIBER BRAGG GRATING, V2<SUP>nd</SUP>, P65 Park KY, 2008, IEEE J QUANTUM ELECT, V44, P995, DOI 10.1109/JQE.2008.2000913 Pittoni F, 2001, IEEE J SEL TOP QUANT, V7, P280, DOI 10.1109/2944.954140 Premaratne M, 1997, IEEE J SEL TOP QUANT, V3, P290, DOI 10.1109/2944.605670 Sato T, 2002, IEEE PHOTONIC TECH L, V14, P1001, DOI 10.1109/LPT.2002.1012412 Shih FY, 2010, OPT FIBER TECHNOL, V16, P46, DOI 10.1016/j.yofte.2009.10.001 Silver M, 2002, IEEE PHOTONIC TECH L, V14, P741, DOI 10.1109/LPT.2002.1003078 Tang JG, 2010, OPT FIBER TECHNOL, V16, P299, DOI 10.1016/j.yofte.2010.06.004 Timofeev F. N., 1997, P ECOC, V1 Timofeev FN, 2000, FIBER INTEGRATED OPT, V19, P327 Timofeev FN, 1997, ELECTRON LETT, V33, P1406, DOI 10.1049/el:19970921 Wu YZ, 2011, OPT COMMUN, V284, P1139, DOI 10.1016/j.optcom.2010.10.052 Wu ZM, 2009, OPTIK, V120, P136, DOI 10.1016/j.ijleo.2007.08.001 Xu QY, 2011, MICROW OPT TECHN LET, V53, P1615, DOI 10.1002/mop.26083 Yan LS, 2010, IEEE PHOTONIC TECH L, V22, P1391, DOI 10.1109/LPT.2010.2060478 Yeh C. H., 2010, OPTICAL FIBER TECHNO, V271, P271 Yu HG, 2005, IEEE J QUANTUM ELECT, V41, P1492, DOI 10.1109/JQE.2005.857706 Zhang Y, 2001, OPTIK, V112, P91, DOI 10.1078/0030-4026-00016 Zhou H, 2005, OPTO-ELECTRON REV, V13, P27 Hisham, Hisham Kadhum Abas, Ahmad Fauzi Mahdiraji, Ghafour Amouzad Mahdi, Mohd Adzir Adikan, Faisal Rafiq Mahamd Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 MOSTI Science Fund SF001-2013 This work is partially supported by the MOSTI Science Fund grant number SF001-2013. 0 OPTICAL SOC JAPAN TOKYO OPT REV
Uncontrolled Keywords: External cavity semiconductor lasers, external optical feedback, fiber bragg grating, wdm access network, semiconductor-laser, output characteristics, single-mode, dfb laser, feedback, modulation, noise, linewidth, module,
Subjects: T Technology > T Technology (General)
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Engineering
Depositing User: Mr Jenal S
Date Deposited: 09 Mar 2016 01:50
Last Modified: 11 Oct 2018 01:54
URI: http://eprints.um.edu.my/id/eprint/15686

Actions (login required)

View Item View Item