Gas sensing properties of zinc stannate (Zn2SnO4) nanowires prepared by carbon assisted thermal evaporation process

Tharsika, T. and Haseeb, A.S. Md. Abdul and Akbar, S.A. and Sabri, M.F.M. and Wong, Y.H. (2015) Gas sensing properties of zinc stannate (Zn2SnO4) nanowires prepared by carbon assisted thermal evaporation process. Journal of Alloys and Compounds, 618. pp. 455-462. ISSN 0925-8388, DOI https://doi.org/10.1016/j.jallcom.2014.08.192.

Full text not available from this repository.
Official URL: http://www.sciencedirect.com/science/article/pii/S...

Abstract

Zn2SnO4 nanowires are successfully synthesized by a carbon assisted thermal evaporation process with the help of a gold catalyst under ambient pressure. The as-synthesized nanowires are characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) equipped with an energy dispersive X-ray spectroscopy (EDS). The XRD patterns and elemental mapping via TEM–EDS clearly indicate that the nanowires are Zn2SnO4 with face centered spinel structure. HRTEM image confirms that Zn2SnO4 nanowires are single crystalline with an interplanar spacing of 0.26 nm, which is ascribed to the d-spacing of (3 1 1) planes of Zn2SnO4. The optimum processing condition and a possible formation mechanism of these Zn2SnO4 nanowires are discussed. Additionally, sensor performance of Zn2SnO4 nanowires based sensor is studied for various test gases such as ethanol, methane and hydrogen. The results reveal that Zn2SnO4 nanowires exhibit excellent sensitivity and selectivity toward ethanol with quick response and recovery times. The response of the Zn2SnO4 nanowires based sensors to 50 ppm ethanol at an optimum operating temperature of 500 °C is about 21.6 with response and recovery times of about 116 s and 182 s, respectively.

Item Type: Article
Funders: UNSPECIFIED
Uncontrolled Keywords: Zinc stannate; Nanowires; Carbon assisted thermal evaporation; Gas sensors; Ethanol
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 13 Mar 2015 00:48
Last Modified: 17 Oct 2018 00:44
URI: http://eprints.um.edu.my/id/eprint/13020

Actions (login required)

View Item View Item