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1 Introduction

Let My(c) be an n-dimensional complete and simply connected non-flat complex space
form with constant holomorphic sectional curvature 4c, i.e., it is either a complex pro-
jective space CP™ or a complex hyperbolic space CH™ (according to as the holomorphic
sectional curvature 4c is positive or negative). Suppose M is a connected real hyper-
surface in My(c) and N is a unit normal vector field of M. Then the complex structure
J of My(c) induces an almost contact metric structure (¢,&,7,(,)) on M, i..,

JX =¢X +n(X)N, JN=-¢ n(X)=(X)

We denote by I'(V) the module of all differentiable sections on the vector bundle V
over M. Typical examples of real hypersurfaces are the homogeneous real hypersur-
faces M. In 1973, Takagi [17] classified these homogeneous real hypersurfaces in CP?
into six types, so-called real hypersurfaces of type Aj, A2, B, C, D and E. A Hopf
hypersurface M in My(c) is characterized by the condition that the structure vector
field ¢ is principal, i.e., A = a€, and it can be shown that this principal curvature o
is a constant.

By looking at Takagi’s classification, one may verify that the homogeneous real
hypersurfaces are Hopf and with constant principal curvatures. In 1986, Kimura [7]
showed that the converse is also true, i.e., Hopf hypersurfaces with constant principal

1



curvatures in CP™ are in fact those real hypersurfaces of type Aj, As, etc. Also, Berndt
[2] showed a CH™’s version for Kimura’s result, i.e., Hopf hypersurfaces with constant
principal curvatures could be divided into four types, nowadays known as type Ag,
A1, Ay and B. In what follows, by real hypersurfaces of type A, we mean of type Aj,
Ay (resp. of type Ag, A1, Ag) for ¢ > 0 (resp. for ¢ < 0). Other than these Hopf
hypersurfaces, another example of real hypersurfaces in M,(c) are the class of ruled
real hypersurfaces. Ruled real hypersurfaces in My,(c) are characterized by having a
one-codimensional foliation whose leaves are complex totally geodesic hyperplanes in
My (c). The geometry of ruled real hypersurfaces in My (c) was studied in [10].

One of the first result in the theory of real hypersurfaces M in My(c) is the shape
operator A of M in My (c) cannot be parallel, i.e., VA # 0, where V is the Levi-Civita
connection of M. The non-existence of real hypersurfaces in M, (c) with parallel shape
operator motivates the study of the weaker notion of 7-parallelism, which was first
introduced by Kimura and Maeda [8]. The shape operator A is said to be n-parallel if
it satisfies the following condition:

(VxA)Y,Z) =0

for any X,Y and Z € I'(D), where D := span{¢}, called the holomorphic distribution
on M. The complete classification of real hypersurfaces with n-parallel shape operator
in M, (c) remain open up to this point, nevertheless, many partial characterizations
have been obtained either by imposing an additional condition or by considering a
condition that is slightly stronger than the n-parallelism (for instance, cf.[1, 4, 5, 8, 15,
16], etc). It is worthy to note that real hypersurfaces that appeared in the list of these
characterizations are those of type A, B and ruled real hypersurfaces.

In this paper, we shall continue the study of real hypersurfaces in M,(c) with
n-parallel shape operator. In particular, several partial characterizations of real hyper-
surfaces in My(c) with n-parallel shape operator are obtained.

This paper is organized as follows. Section 2 recalls some basic formulas and briefly
reviews certain known results on real hypersurfaces in My (c) with n-parallel shape
operator. Some auxiliary lemmas are derived in Section 3. In Section 4 we focus on
contact real hypersurfaces in My (c) and give a characterization for ruled real hypersur-
faces and contact real hypersurfaces. In Section 5 we characterize real hypersurfaces in
M, (c) with n-parallel shape operator under the commutativity assumption on ¢A¢ and
#?A¢?. In the last section we characterize real hypersurfaces in M, (c) with prescribed
covariant derivative of the shape operator.

2 Preliminaries

Consider a connected real hypersurface M in My (c), the induced almost contact metric
structure (¢, &, 7, (,)) on M has the following properties

$X =-X+0(X)§, ¢£=0, n¢X)=0, n()=1 (1)
(Vx9)Y =n(Y)AX - (AX,Y){, Vx¢{=¢AX (2)




for any X,Y € I'(TM). Let R be the curvature tensor of M. Then the equations of
Gauss and Codazzi are given respectively by
R(X,Y)Z =c{(Y,Z2)X — (X, Z)Y + (¢Y, Z)¢X — (¢ X, Z)pY
—2(¢X,Y)pZ} + (AY, Z)AX — (AX,Z)AY

(VxA)Y — (Vy A)X = c{n(X)oY —n(Y)$X — 2(¢X,Y)E}.

The second order covariant derivative VxVy A on the shape operator A is defined by
(VxVyA)Z =Vx{(VyA)Z} — (VyyvA)Z — (VyA)VxZ.

Next, we state two necessary and sufficient conditions for real hypersurfaces in
M, (c) to be of type A.

Theorem 2.1 ([3, 11, 12, 14]). Let M be .a real hypersurface in My(c), n > 3. Then
the following are equivalent:
1. M is locally congruent to one of real hypersurfaces of type A;
2. A = A¢;
3. (VxA)Y = —c{(¢X,Y)¢ +n(Y)¢dX}, for any X, Y € T(TM).
The following theorem, proved by Kimura and Maeda, and Suh respectively for

¢ > 0 and ¢ < 0, completely classified Hopf hypersurfaces with n-parallel shape operator
in My(c). '

Theorem 2.2 ([8, 16]). Let M be a Hopf hypersurface in My(c), n > 3, with n-parallel
shape operator. Then M is locally congruent to one of real hypersurfaces of type A and
B.

The above theorem is not true if the condition that M being Hopf is removed.

Theorem 2.3 ([1, 8]). Let M be a real hypersurface in My(c), n > 3. Suppose M
satisfies the following two conditions:

1. ¢(pA+ Ap)p =0, i.e., the holomorphic distribution D is integrable;
2. the shape operator A is n-parallel.

Then M is locally congruent to a ruled real hypersurface.

On the other hand, Ki and Suh studied real hypersurfaces M with 7-parallel shape
operator without assuming it is Hopf. By restricting Condition 2 and Condition 3 in
Theorem 2.1 to the holomorphic distribution D, they obtained the following result.

Theorem 2.4 ([4]). Let M be a real hypersurface in My(c), n > 3. Suppose M satisfies
the following two conditions:

1. ¢(¢A - Ag)¢ =0,
2. (VxA)Y = —c(¢X,Y)¢, for any X,Y € I'(D).
Then M is locally congruent to one of real hypersurfaces of type A.
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Observe that Condition 2 in this theorem is a special form for the shape operator
A to be n-parallel. Ahn, Lee and Suh weaken it to the n-parallelism condition on A
and proved the following.

Theorem 2.5 ([1]). Let M be a real hypersurface in My(c), n > 3. Suppose M satisfies
the following two conditions:

1. $($A— Ad)g =0,
2. the shape operator A is n-parallel.

Then M is locally congruent to a ruled real hypersurface or one of real hypersurfaces
of type A and B.

The above theorem gave a significant improvement of Theorem 2.4 as it allows
all the standard examples of real hypersurfaces with n-parallel shape operator to be
included in the list of characterization.

Before we end this section, we shall state the expression of VA on these standard
examples of real hypersurfaces with n-parallel shape operator.

Theorem 2.6. Let M be real hypersurface in My(c),n > 3, and X,Y € I'(D).

1. If M is of type A then
(VxA)Y = —c(¢X,Y)¢.

2. If M is of type B then
(VxA)Y = {~c(6X,¥) + (64 - 49)X, V)}¢.

8. If M is ruled and V = QAE then
(VxA)Y = {-c(¢X,Y) + n(AY)(X, V) + n(AX)(Y,V)}¢.

Statement 1 above is an immediate consequence of Statement 3 in Theorem 2.1
while Statement 3 above was derived in [15]. In order to verify Statement 2, we need
to recall a lemma.

Lemma 2.7 ([6]). Let M be a real hyperéurfaces in Mp(c). If A& = af then a is a
constant and (Ve A) = (a/2)(9A — Ag).

Since the shape operator of real hypersurfaces of type B is n-parallel, for X,Y €
I'(D) Statement 2 in the above theorem can be derived as follows:

(VxA)Y = ((VxA)Y,£)¢
={—(¢X,Y) + ((VeA)X,Y)}¢ (by the Codazzi equation)
= {—c(¢X,Y) + %((4»4 — A$)X,Y)}¢ (by Lemma 2.7).




3 Real hypersurfaces with non-principal struc-
ture vector field
Hopf hypersurfaces with 7-parallel shape operator A have already been completely

characterized in Theorem 2.2. In this section, we focus on real hypersurfaces M on
which the structure vector field ¢ is not principal, or equivalently, with the restriction

:= ||pAE|| # 0. Certain auxiliary lemmas that are needed in the following sections

are also derived here.
We shall first fix some notations as follows: V := V¢€ = @AE, a := n(A€) and

F = V¢A. Then it is clear that the shape operator A of a real hypersurface M is
n-parallel if and only if

The next lemma plays an important role in the rest of the paper.

Lemma 3.1. Let M be a real hypersurface in My(c) with n-parallel shape operator A.
Then
(Y, AZ) (X, W) — (X, AZ)(Y, W)
+(BY, AZ) (¢ X, W) — ($X, AZ)($Y, W) — 2(pX, Y, )($AZ, W)
- (Y’ Z)(X, AW) =+ (Xa Z)(K AW)
+ (AY, AZ)(AX, W) — (AX,AZ)(AY,W)
—(AY, Z){AX,AW) + (AX, Z)(AY, AW)
=c{(Z,9AY)(pX, W) + (W, $AY )(¢X, Z)
—(Z,9AX) (oY, W) — (W, pAX)(¢Y, Z)}
+ (Y, 0AX)(FZ, W) + (Z,$AX(FY,W) + (W, pAX)(FZ,Y)
— (X, 0AY(FZ,W) — (Z,pAY (FX, W) — (W, ¢AY }(FZ, X)
for any X,Y, Z,W € I'(D).
Proof. For any Y, Z,W € I'(D), by diﬁereptiating the following equation covariantly
(VyA)Z,W) =0
in the direction of X € I'(D), we obtain
(VxVyA)Z + (VyyyA)Z + (VyA)Vx Z, W)+ ((VyA)Z,VxW) = 0.

From the 7-parallellism condition and (2), the above equation reduces to

(VxVyA)Z,W) = (Y, pAX) (Ve A)Z, W) + (Z, bAX)((Vy A)E, W)
+(W, 9AX){((VyA)Z,§).
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Furthermore, by using the Codazzi equation, the above equation becomes

(VxVyA)Z,W) = (Y, pAX)(FZ, W) + (Z,pAX){(FY, W) — c(¢Y, W)}
+W,0AX)N{(FY, Z) — c(¢Y, Z)}.

Finally, by the Ricci identity (R(X,Y)A)Z = (VxVyA)Z—(VyVxA)Z and the above
equation, we obtain the lemma. O

Lemma 3.2. Let M be a real hypersurface in My (c) with n-parallel shape operator A.
Then

—(AgV,Y)(9V, X) + (AdV, X)(¢V,Y) = (-;-(¢A +A9)X + (FoA+ APF)X,Y)

for any X,Y € I'(D), where T := — trace pF¢.

Proof. Let Ey, Es,--- , Eap—2 be alocal field of orthonormal frames in I'(D). By putting
Z =W =E;, for j =1,2,--- ,2n — 2, in Lemma 3.1 and then summing up these
equations, we get
- 2n-2
2(pA%Y, pAX) — 2(pA’X,$AY) = > (FEj, E;)(pAX + ApX,Y)
=1
+2(FY,¢pAX) — 2(F X, pAY).

Next, by applying (1) in the left hand side of this equation, we obtain the lemma. O

Lemma 3.3. Let M be a real hypersurface in My(c), n > 3, with n-parallel shape
operator A. Suppose that B is nowhere zero on M. If there exist two functions v and
U such that

AV =vV and A@V =iV — %

then ¢Ap and $p2A¢? can be diagonalized simultaneously.

Proof. Let x be an arbitrary point in M. From the hypothesis, the subspace
H := span{V, ¢V, ¢}

and its orthogonal complement H~ in T, M are both invariant by A and hence by both
#A¢p and $2Ap? as well. Furthermore, each eigenvector E € HL of ¢p2A¢? is a principal
vector as well. If @E is principal, for each principal vector E € H~L then the statement
is clearly true. Hence, we suppose that there is a unit principal vector E’ € H~L but
¢FE' is not principal.

Firstly, by letting X,Y € H+, Z =V and W = ¢V in Lemma 3.1, we obtain

~2c%(v — D) {(¢X,Y) = (FV, V)((#A + A$)X,Y). 3)

Since ¢E’ is not principal, we can see that (F¢V,V) = 0 = v — 7, (for otherwise, by
putting X = E’ in the above equation, yields ApE’ = A¢E’ and a contradiction).



Next, by putting X = ¢V, Y =V in Lemma 3.1 and making use of the fact that
v="r, ,
2e6°((9A — AG)Z,W) — vB*{(V, Z)($V, W) + ($V, Z)(V, W)}
= - wBXFZ,W) —v{{V, Z)(FV,W) + (V,W)(FV, Z)
+(@V, Z)(FoV, W) + (¢V, W)(F¢V, Z)}. (4)

If we put Z, W € H* in (4), then
C((¢A - A¢)Za W) = _V(FZ’ W) (5)

From the hypothesis $E’ is not principal, the right hand side of (5) is not identically
zero, so we may assume that v # 0. On the other hand, by putting Z = V and
W = ¢V in (4), and taking account of (FV,¢V) = v — 7 = 0, we obtain —v3% = 0.
This contradicts the facts v # 0 and 8 # 0. The proof is completed. O

4 Characterizations on contact real hypersur-
faces

An almost contact manifold (M2"~1, ¢, &, 7) is said to be a contact manifold if
nA ()" #0

on M. If there is a Riemannian metric (,) which is compatible with this contact
structure then (¢,&,n, (,)) becomes a contact metric structure and M is said to be a
contact metric manifold.

A real hypersurface in a Kaehler manifold is said to be contact if its induced almost
contact structure is contact. Okumura proved a necessary and sufficient condition for
real hypersurfaces in a Kaehler manifold to be contact.

Theorem 4.1 ([13]). Let M be a real hypersurface in a Kaehler manifold. Then
the induced almost contact structure (¢,&,n) is contact if and only if there is a non-
vanishing function k on M such that

A+ Ap — k¢ =0. (6)

It can be shown that k is constant. Kon proved the following characterization while
the ambient space is CP". '

Theorem 4.2 ([9]). Let M be a complete real hypersurface in CP", n > 3. If M
satisfies

pA+Ap—ep=0

for some nonzero constant €, then M is congruent to one of real hypersurface of type
A1 and B.



On the other hand, Vernon gave a characterization of contact real hypersurfaces in

CH™.
Theorem 4.3 ([18]). Let M be a complete contact real hypersurface in CH™, n > 3.
Then M is congruent to one of real hypersurface of type Ay, A1 and B.

In this section, we study real hypersurfaces in M, (c) under a weaker version of (6),

ie.,

$(PA+ Ad — k)¢ =0, (7)

for some function k on M. We shall first derive some identities from the condition (7).
Note that (7) is equivalent to

($A+Ap—k$)Y,2) =0, Y,Z cT(D).
Differentiating this equation covariantly in the direction of X € I'(D) we get

(PAY, VX Z) + (Vx9)AY + ¢(VxA)Y + AV xY, Z)
+(AQY, VxZ) + (Vx A)$Y + A(Vx @)Y + AV Y, Z)
—(XEk)(PY, Z) — k(¢Y, VX Z) — K((Vx @)Y + ¢V xY, Z)=0.

By using (2) and (7), this equation can be reformed as

~(Z,VNGAX,Y) + (Y, V)($AX, Z) - (VX A)Y, $Z) + (Vx A)Z, ¢Y)
+1(AY)(AX, Z) — n(AZ)(AX,Y) — (Xk)($Y, Z) = 0.

Now by replacing X,Y and Z cyclically in the above equation and then summing these
equations, with the help of the Codazzi equation and (7), we obtain

S(k(X,V) + Xk)(¢Y,Z) = 0

where & denotes the cyclic sum over X Y and Z. Let X be an arbitrary vector
field in T'(D). If we choose Y L X, ¢X and Z = ¢Y in the above equation then
kKX, V)+Xk=0.

We summarize the above observations in the following lemma.

Lemma 4.4. Let M be a real hypersurface in My (c), n > 3. Suppose M satisfies
H(PA+ Ap—kd)p =0
for some function k on M. Then for any X,Y and Z € T'(D),

~(ZV)OAX,Y) + (Y, V)($AX, Z) - (Vx A)Y, $Z) + (Vx A)Z, $Y)
+n(AY)(AX, Z) - n(AZ)(AX,Y) - (Xk)(¢Y,Z) =0,  (8)

k(X,V)+ Xk =0. )




We first look at the case where k is a nonzero constant. In this case, the equation
(9) implies that V' =0, i.e., ¢ is principal and so (¢4 + A¢ — k¢)¢ = 0. Consequently,
we have ¢A + Ap — k¢ = 0, for some nonzero constant k, and hence it follows from
Theorem 4.2 and Theorem 4.3 that we obtain

Theorem 4.5. Let M be a real hypersurface in My(c), n > 3. If M satisfies
P(PA+ Ap - cp)$ =0

for some constant € # 0, then M is locally congruent to one of real hypersurface of
type Ao, A1 and B.

On the other hand, by adding the n-parallelism condition on the shape operator,
we have the following characterization.

Theorem 4.6. Let M be a real hypersurface in My(c), n > 3. Suppose M satisfies
the following two conditions:

(i) ¢(pA+ Ap — k)¢ = 0, for some function k on M;

(ii) the shape operator A is n-parallel.

Then M is locally congruent to a ruled real hypersurface or one of real hypersurface of
type Ag, A1 and B.

Proof. In this case, the equation (8) can be reduced as

—(2,V){¢AX,Y) + (Y, V)($AX, Z)
+n(AY)(AX, Z) — n(AZ)(AX,Y) — (Xk)(¢Y, Z) = 0.

If we choose Y L V,¢V and Z = @Y then Xk = 0, for all X € I'(D) and together
with (9), we obtain k(V,V) = 0 on M. Since we are studying local geometry, we may
assume that either k¥ = 0 on M or k is nowhere zero on M. If k is identically zero
then M is ruled by Theorem 2.3. If k is nowhere zero on M, ¢ is principal and so
(A + Ap — k¢)€ = 0. Consequently, we have A+ A¢ — k¢ = 0, and hence our result
follows from Theorem 4.2 and Theorem 4.3. O

5 Real hypersurfaces with a commutative con-
dition

Observe that the Condition 1 in Theorem 2.3, Theorem 2.5 and Theorem 4.6 imply
that ¢2A¢? and ¢pA¢ are commutative. Hence, it is natural to ask if the Condition 1

in these theorems is replaceable by this condition. The main purpose of this section is
to give an affirmative answer to this question. We first prove the following lemma.

Lemma 5.1. Let M be a real hypersurfabe in My(c), n > 3, with n-parallel shape
operator A. If A¢ and $2A¢P? commute then either

(i) B(6A — Ag)$ =0, or

(ii) ¢(pA + Ap — kp)p = 0 for some function k on M.
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Proof. As pA¢ and ¢?A¢? are commutative, they can be diagonalized simultaneously
and hence there is a local field of orthonormal frames E;, ¢E; (1 < j < n—1) on I'(D)
such that
AEj =e;é + A\ Ej
AQE; =&;¢ + )\;$E;.

By making the following substitutions for the vectors X,Y, Z and W in Lemma, 3.1:

() Y=Z=E, W=X =¢E,, (i # j);

(b) Y=Z=E;, W=X=Ej (i#j)

(c) Y=Z=E;,W=X=¢E;

(d) X =E;, Y = ¢E;, Z = ¢E;, W = E;, (i # ),

we obtain the following equations

MAF = (O —c+ @i+ (e —9)Xy =0 (10)

MM = (X2 —c+eh)i+ (e —c)rj =0 (11)

i — M) (N + 5¢) + e — \é? + 2(FE;, E)(\i + X)) =0 (12)
2¢(\i — Xi) + (\j + X)(FE;i, E;) = 0. (13)

If \; = X; for all i then ¢(¢A — A¢)¢ = 0 and we obtain Statement (i). Hence, we
suppose )\; # \; for some 4, says A; # A;. From (13), we obtain (FEj,$E;) # 0 and

X —-M

R TRy

r#1. (14)

We consider two cases: (I) As # A, for some s #1; and (I) A, = A for all r# 1.
Case (I) \s # A, for some s # 1, says Mg # Ao
From (13), we obtain (FEs, ¢Es) # 0 and

~ :\2 — A2
=gt 74 ] 1
Bt Xg oAt s#2 (15)
By observing (14) and (15), we obtain
. A=A :
; s=QpS TR . 1
i+ N 2C(FE1,¢E1)’ for all ¢ (16)

Therefore, we obtain Statement (i) with k = 2¢(A\; — A\ )(F By, ¢ E;) 1
Case (I) A, = A, for all 7 # 1.
In this case, (14) reduces to
£ X =

Ar=/\r= m#O 'I"_;é]..
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On the other hand, taking j = 1 and 1 # 1, and then by taking the operation A; x
(10) — A; x (11), yields

(A1 = A)(MA +¢) + Me? — MEl =0.

From this equation and (12), we can see

. A=\
M+ AL =2
T T TFEy, $By)
Adding this case into (14), we also obtain (16) and Statement (ii). This completes the
proof. O

It follows from Theorem 2.5, Theorem 4.6 and Lemma 5.1 that we have

Theorem 5.2. Let M be a real hypersurface in My(c), n > 3, with n-parallel shape
operator A. If pA¢ and $?A¢? commute then M is locally congruent to a ruled real
hypersurface or one of real hypersurface of type A and B.

6 Real hypersurfaces with prescribed covariant
derivative of the shape operator

In the previous sections, we characterized real hypersurfaces M with n-parallel shape
operator A under certain additional conditions on M. In this section we study these
real hypersurfaces from another aspect, i.e., by looking at a condition that is slightly
stronger than the n-parallelism on A.

In Theorem 2.6 we see that these “standard examples” of real hypersurfaces with
n-parallel shape operator have a nice form for the covariant derivative of the shape
operator on the holomorphic distribution D. Motivated by these identities, it is natural
to ask if the converse of the identities in Theorem 2.1 are true. In 1995, Suh proved
the following

Theorem 6.1 ([15]). Let M be a real hypersurface in My(c), n > 3. If M satisfies
(VxA)Y = {-c(¢X,Y) + n(AY (X, V) + n(AX)(Y, V) }¢

for any X,Y € T'(D), then M is locally congruent to a ruled real hypersurface or a real
hypersurface of type A.

It follows from the above theorem that, since V = 0 is necessary and sufficient for £
to be principal, we can easily obtain the following characterization for real hypersurfaces
of type A.

Corollary 6.2. Let M be a real hypersurface in My(c), n > 3. Suppose M satisfies
(VxA)Y = —c(¢X,Y)¢

for any X,Y € T'(D). Then M is locally congruent to a real hypersurface of type A.
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The condition in Theorem 6.1 is too strong to be used to characterize all the stan-
dard examples of real hypersurfaces with 7-parallel shape operator. It shall be replaced
by a weaker condition in order to broaden the list of characterization. In this sense,
we have the following.

Theorem 6.3. Let M be a real hypersurface in My(c), n > 3. Suppose M satisfies
(VxA)Y = {-c(¢X,Y) +n(AY)(X,V) + n(AX)(Y, V)
+e((pA - Ad)X,Y)}E (17)

for any X,Y € T'(D), where € is a constant. Then M is locally congruent to a ruled
real hypersurface or one of real hypersurfaces of type A and B.

Proof. The condition (17) implies that A is n-parallel. If { is principal then by virtue
of Theorem 2.1 and Theorem 2.2, we conclude that M is of type A or B. Hence, we
may suppose that (3 is nowhere zero on M. On the other hand, with the condition
(17), the tensor field F takes the form

(FX,Y) =n(AY (X, V) + n(AX)(Y, V) + (64 - A$)X,Y) (18)

for any X,Y € I'(D). It follows from this equation that 7 = —trace ¢F'¢ = 0. More-
over, the identity in Lemma 3.2 can be reduced to

—(AX,V)(Y,V) + (AY, V)(X, V) = &((ApA¢ — $A$A) X, Y). (19)

First, by putting X = V and Y = ¢V in (19), we obtain (AV,¢V) = 0. Next, if we
put Y =@V in (19) then

e((AdA + $APAP)V, X) =0 (20)
for any X € I'(D). Finally, when we put Y =V in (19), we get ‘
BAHAX,V) — (AV,V)(X,V) = (X, (ApA + pAPA)V)
=0 (from (20)).

This equation tells us that AV = vV. Next, we wish to prove that ApV = 0pV — B2€.
For this purpose, we put Y = ¢V and Z = W =V in Lemma 3.1, then

0= {848V, X) - (V. 9v) (v, 30} + L2V gy v, x)

—(AgV, ¢V )(FV, X) + (FV, ¢V )(AgV, X).
On the other hand, by putting Y =V and Z = W = ¢V in Lemma 3.1, we get

(8447, 0) — (49, gv )1V, X0} = L9 gy 1 agv x)

+v{B*(F$V,X) — (FV,6V)(V, X)}.
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By using (18), the above two equations becomes

(82 — ev — ){B*(A9V, X) — (AgV, ¢V )(pV, X)} =0
(ev + ) {B*(AgV, 6 X) — (ADV, ¢V )(¢V, $X)} = 0

for any X € I'(D). From these two equations and the fact that 8 # 0,
(AgV, X) = 5%(ApV, ¢V )(#V, X), X € T(D)

and hence we have A¢V = vV — B2%¢, where 7 = B~2(A¢V,¢V). According to
Lemma 3.3 and Theorem 5.2, we conclude that M is ruled and this completes the
proof. O
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