(8)

01764515

On Characterizations of Real Hypersurfaces in a Complex Space Form with n-Parallel Shape Operator

By: **S.H. Kon and Loo Tee How**

(Paper presented at the *9th Pacific Rim Geometry Conference* held on 10-14 December 2008 in Taipei, Taiwan)

On characterizations of real hypersurfaces in a complex space form with η -parallel shape operator

S. H. KON and Tee-How LOO
Institute of Mathematical Sciences, University of Malaya
50603 Kuala Lumpur, Malaysia.
shkon@um.edu.my, looth@um.edu.my

Abstract

In this paper, we study real hypersurfaces in a non-flat complex space form with η -parallel shape operator. Several partial characterizations of these real hypersurfaces are obtained.

2000 Mathematics Subject Classification. Primary 53C40; Secondary 53C15. Key words and phrases. Complex space form, Hopf hypersurfaces, ruled real hypersurfaces, η -parallel shape operator

1 Introduction

Let $M_n(c)$ be an n-dimensional complete and simply connected non-flat complex space form with constant holomorphic sectional curvature 4c, i.e., it is either a complex projective space $\mathbb{C}P^n$ or a complex hyperbolic space $\mathbb{C}H^n$ (according to as the holomorphic sectional curvature 4c is positive or negative). Suppose M is a connected real hypersurface in $M_n(c)$ and N is a unit normal vector field of M. Then the complex structure J of $M_n(c)$ induces an almost contact metric structure $(\phi, \xi, \eta, \langle, \rangle)$ on M, i.e.,

$$JX = \phi X + \eta(X)N, \quad JN = -\xi, \quad \eta(X) = \langle \xi, X \rangle.$$

We denote by $\Gamma(\mathcal{V})$ the module of all differentiable sections on the vector bundle \mathcal{V} over M. Typical examples of real hypersurfaces are the homogeneous real hypersurfaces M. In 1973, Takagi [17] classified these homogeneous real hypersurfaces in $\mathbb{C}P^n$ into six types, so-called real hypersurfaces of type A_1 , A_2 , B, C, D and E. A Hopf hypersurface M in $M_n(c)$ is characterized by the condition that the structure vector field ξ is principal, i.e., $A\xi = \alpha \xi$, and it can be shown that this principal curvature α is a constant.

By looking at Takagi's classification, one may verify that the homogeneous real hypersurfaces are Hopf and with constant principal curvatures. In 1986, Kimura [7] showed that the converse is also true, i.e., Hopf hypersurfaces with constant principal

curvatures in $\mathbb{C}P^n$ are in fact those real hypersurfaces of type A_1 , A_2 , etc. Also, Berndt [2] showed a $\mathbb{C}H^n$'s version for Kimura's result, i.e., Hopf hypersurfaces with constant principal curvatures could be divided into four types, nowadays known as type A_0 , A_1 , A_2 and B. In what follows, by real hypersurfaces of type A, we mean of type A_1 , A_2 (resp. of type A_0 , A_1 , A_2) for c > 0 (resp. for c < 0). Other than these Hopf hypersurfaces, another example of real hypersurfaces in $M_n(c)$ are the class of ruled real hypersurfaces. Ruled real hypersurfaces in $M_n(c)$ are characterized by having a one-codimensional foliation whose leaves are complex totally geodesic hyperplanes in $M_n(c)$. The geometry of ruled real hypersurfaces in $M_n(c)$ was studied in [10].

One of the first result in the theory of real hypersurfaces M in $M_n(c)$ is the shape operator A of M in $M_n(c)$ cannot be parallel, i.e., $\nabla A \neq 0$, where ∇ is the Levi-Civita connection of M. The non-existence of real hypersurfaces in $M_n(c)$ with parallel shape operator motivates the study of the weaker notion of η -parallelism, which was first introduced by Kimura and Maeda [8]. The shape operator A is said to be η -parallel if it satisfies the following condition:

$$\langle (\nabla_X A)Y, Z \rangle = 0$$

for any X, Y and $Z \in \Gamma(\mathcal{D})$, where $\mathcal{D} := \operatorname{span}\{\xi\}^{\perp}$, called the holomorphic distribution on M. The complete classification of real hypersurfaces with η -parallel shape operator in $M_n(c)$ remain open up to this point, nevertheless, many partial characterizations have been obtained either by imposing an additional condition or by considering a condition that is slightly stronger than the η -parallelism (for instance, cf.[1, 4, 5, 8, 15, 16], etc). It is worthy to note that real hypersurfaces that appeared in the list of these characterizations are those of type A, B and ruled real hypersurfaces.

In this paper, we shall continue the study of real hypersurfaces in $M_n(c)$ with η -parallel shape operator. In particular, several partial characterizations of real hypersurfaces in $M_n(c)$ with η -parallel shape operator are obtained.

This paper is organized as follows. Section 2 recalls some basic formulas and briefly reviews certain known results on real hypersurfaces in $M_n(c)$ with η -parallel shape operator. Some auxiliary lemmas are derived in Section 3. In Section 4 we focus on contact real hypersurfaces in $M_n(c)$ and give a characterization for ruled real hypersurfaces and contact real hypersurfaces. In Section 5 we characterize real hypersurfaces in $M_n(c)$ with η -parallel shape operator under the commutativity assumption on $\phi A \phi$ and $\phi^2 A \phi^2$. In the last section we characterize real hypersurfaces in $M_n(c)$ with prescribed covariant derivative of the shape operator.

2 Preliminaries

Consider a connected real hypersurface M in $M_n(c)$, the induced almost contact metric structure $(\phi, \xi, \eta, \langle, \rangle)$ on M has the following properties

$$\phi^2 X = -X + \eta(X)\xi, \quad \phi\xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1$$
 (1)

$$(\nabla_X \phi) Y = \eta(Y) A X - \langle AX, Y \rangle \xi, \quad \nabla_X \xi = \phi A X \tag{2}$$

for any $X, Y \in \Gamma(TM)$. Let R be the curvature tensor of M. Then the equations of Gauss and Codazzi are given respectively by

$$R(X,Y)Z = c\{\langle Y,Z\rangle X - \langle X,Z\rangle Y + \langle \phi Y,Z\rangle \phi X - \langle \phi X,Z\rangle \phi Y - 2\langle \phi X,Y\rangle \phi Z\} + \langle AY,Z\rangle AX - \langle AX,Z\rangle AY$$

$$(\nabla_X A)Y - (\nabla_Y A)X = c\{\eta(X)\phi Y - \eta(Y)\phi X - 2\langle \phi X, Y \rangle \xi\}.$$

The second order covariant derivative $\nabla_X \nabla_Y A$ on the shape operator A is defined by

$$(\nabla_X \nabla_Y A)Z = \nabla_X \{(\nabla_Y A)Z\} - (\nabla_{\nabla_X Y} A)Z - (\nabla_Y A)\nabla_X Z.$$

Next, we state two necessary and sufficient conditions for real hypersurfaces in $M_n(c)$ to be of type A.

Theorem 2.1 ([3, 11, 12, 14]). Let M be a real hypersurface in $M_n(c)$, $n \geq 3$. Then the following are equivalent:

- 1. M is locally congruent to one of real hypersurfaces of type A;
- 2. $\phi A = A \phi$;
- 3. $(\nabla_X A)Y = -c\{\langle \phi X, Y \rangle \xi + \eta(Y)\phi X\}$, for any $X, Y \in \Gamma(TM)$.

The following theorem, proved by Kimura and Maeda, and Suh respectively for c > 0 and c < 0, completely classified Hopf hypersurfaces with η -parallel shape operator in $M_n(c)$.

Theorem 2.2 ([8, 16]). Let M be a Hopf hypersurface in $M_n(c)$, $n \geq 3$, with η -parallel shape operator. Then M is locally congruent to one of real hypersurfaces of type A and B.

The above theorem is not true if the condition that M being Hopf is removed.

Theorem 2.3 ([1, 8]). Let M be a real hypersurface in $M_n(c)$, $n \geq 3$. Suppose M satisfies the following two conditions:

- 1. $\phi(\phi A + A\phi)\phi = 0$, i.e., the holomorphic distribution \mathcal{D} is integrable;
- 2. the shape operator A is η -parallel.

Then M is locally congruent to a ruled real hypersurface.

On the other hand, Ki and Suh studied real hypersurfaces M with η -parallel shape operator without assuming it is Hopf. By restricting Condition 2 and Condition 3 in Theorem 2.1 to the holomorphic distribution \mathcal{D} , they obtained the following result.

Theorem 2.4 ([4]). Let M be a real hypersurface in $M_n(c)$, $n \geq 3$. Suppose M satisfies the following two conditions:

- 1. $\phi(\phi A A\phi)\phi = 0$,
- 2. $(\nabla_X A)Y = -c\langle \phi X, Y \rangle \xi$, for any $X, Y \in \Gamma(\mathcal{D})$.

Then M is locally congruent to one of real hypersurfaces of type A.

Observe that Condition 2 in this theorem is a special form for the shape operator A to be η -parallel. Ahn, Lee and Suh weaken it to the η -parallelism condition on A and proved the following.

Theorem 2.5 ([1]). Let M be a real hypersurface in $M_n(c)$, $n \geq 3$. Suppose M satisfies the following two conditions:

- 1. $\phi(\phi A A\phi)\phi = 0$,
- 2. the shape operator A is η -parallel.

Then M is locally congruent to a ruled real hypersurface or one of real hypersurfaces of type A and B.

The above theorem gave a significant improvement of Theorem 2.4 as it allows all the standard examples of real hypersurfaces with η -parallel shape operator to be included in the list of characterization.

Before we end this section, we shall state the expression of ∇A on these standard examples of real hypersurfaces with η -parallel shape operator.

Theorem 2.6. Let M be real hypersurface in $M_n(c), n \geq 3$, and $X, Y \in \Gamma(\mathcal{D})$.

1. If M is of type A then

$$(\nabla_X A)Y = -c\langle \phi X, Y \rangle \xi.$$

2. If M is of type B then

$$(\nabla_X A)Y = \{-c\langle \phi X, Y \rangle + \frac{\alpha}{2}\langle (\phi A - A\phi)X, Y \rangle \}\xi.$$

3. If M is ruled and $V = \phi A \xi$ then

$$(\nabla_X A)Y = \{-c\langle \phi X, Y \rangle + \eta(AY)\langle X, V \rangle + \eta(AX)\langle Y, V \rangle\}\xi.$$

Statement 1 above is an immediate consequence of Statement 3 in Theorem 2.1 while Statement 3 above was derived in [15]. In order to verify Statement 2, we need to recall a lemma.

Lemma 2.7 ([6]). Let M be a real hypersurfaces in $M_n(c)$. If $A\xi = \alpha\xi$ then α is a constant and $(\nabla_{\xi}A) = (\alpha/2)(\phi A - A\phi)$.

Since the shape operator of real hypersurfaces of type B is η -parallel, for $X,Y \in \Gamma(\mathcal{D})$ Statement 2 in the above theorem can be derived as follows:

$$\begin{split} (\nabla_X A)Y &= \langle (\nabla_X A)Y, \xi \rangle \xi \\ &= \{ -\langle \phi X, Y \rangle + \langle (\nabla_\xi A)X, Y \rangle \} \xi \quad \text{(by the Codazzi equation)} \\ &= \{ -c\langle \phi X, Y \rangle + \frac{\alpha}{2} \langle (\phi A - A\phi)X, Y \rangle \} \xi \quad \text{(by Lemma 2.7)}. \end{split}$$

3 Real hypersurfaces with non-principal structure vector field

Hopf hypersurfaces with η -parallel shape operator A have already been completely characterized in Theorem 2.2. In this section, we focus on real hypersurfaces M on which the structure vector field ξ is not principal, or equivalently, with the restriction $\beta := ||\phi A \xi|| \neq 0$. Certain auxiliary lemmas that are needed in the following sections are also derived here.

We shall first fix some notations as follows: $V := \nabla_{\xi} \xi = \phi A \xi$, $\alpha := \eta(A \xi)$ and $F := \nabla_{\xi} A$. Then it is clear that the shape operator A of a real hypersurface M is η -parallel if and only if

$$(\nabla_X A)Y = \{-c\langle \phi X, Y \rangle + \langle FX, Y \rangle \} \xi, \quad X, Y \in \Gamma(\mathcal{D}).$$

The next lemma plays an important role in the rest of the paper.

Lemma 3.1. Let M be a real hypersurface in $M_n(c)$ with η -parallel shape operator A. Then

$$c\{\langle Y,AZ\rangle\langle X,W\rangle - \langle X,AZ\rangle\langle Y,W\rangle \\ + \langle \phi Y,AZ\rangle\langle \phi X,W\rangle - \langle \phi X,AZ\rangle\langle \phi Y,W\rangle - 2\langle \phi X,Y,\rangle\langle \phi AZ,W\rangle \\ - \langle Y,Z\rangle\langle X,AW\rangle + \langle X,Z\rangle\langle Y,AW\rangle \\ - \langle \phi Y,Z\rangle\langle \phi X,AW\rangle + \langle \phi X,Z\rangle\langle \phi Y,AW\rangle + 2\langle \phi X,Y,\rangle\langle \phi Z,AW\rangle \} \\ + \langle AY,AZ\rangle\langle AX,W\rangle - \langle AX,AZ\rangle\langle AY,W\rangle \\ - \langle AY,Z\rangle\langle AX,AW\rangle + \langle AX,Z\rangle\langle AY,AW\rangle \\ =c\{\langle Z,\phi AY\rangle\langle \phi X,W\rangle + \langle W,\phi AY\rangle\langle \phi X,Z\rangle \\ - \langle Z,\phi AX\rangle\langle \phi Y,W\rangle - \langle W,\phi AX\rangle\langle \phi Y,Z\rangle \} \\ + \langle Y,\phi AX\rangle\langle FZ,W\rangle + \langle Z,\phi AX\rangle\langle FY,W\rangle + \langle W,\phi AY\rangle\langle FZ,Y\rangle \\ - \langle X,\phi AY\rangle\langle FZ,W\rangle - \langle Z,\phi AY\rangle\langle FX,W\rangle - \langle W,\phi AY\rangle\langle FZ,X\rangle$$

for any $X, Y, Z, W \in \Gamma(\mathcal{D})$.

Proof. For any $Y, Z, W \in \Gamma(\mathcal{D})$, by differentiating the following equation covariantly

$$\langle (\nabla_Y A)Z, W \rangle = 0$$

in the direction of $X \in \Gamma(\mathcal{D})$, we obtain

$$\langle (\nabla_X \nabla_Y A) Z + (\nabla_{\nabla_X Y} A) Z + (\nabla_Y A) \nabla_X Z, W \rangle + \langle (\nabla_Y A) Z, \nabla_X W \rangle = 0.$$

From the η -parallellism condition and (2), the above equation reduces to

$$\langle (\nabla_X \nabla_Y A) Z, W \rangle = \langle Y, \phi A X \rangle \langle (\nabla_\xi A) Z, W \rangle + \langle Z, \phi A X \rangle \langle (\nabla_Y A) \xi, W \rangle + \langle W, \phi A X \rangle \langle (\nabla_Y A) Z, \xi \rangle.$$

5

Furthermore, by using the Codazzi equation, the above equation becomes

$$\langle (\nabla_X \nabla_Y A) Z, W \rangle = \langle Y, \phi A X \rangle \langle F Z, W \rangle + \langle Z, \phi A X \rangle \{ \langle F Y, W \rangle - c \langle \phi Y, W \rangle \} + \langle W, \phi A X \rangle \{ \langle F Y, Z \rangle - c \langle \phi Y, Z \rangle \}.$$

Finally, by the Ricci identity $(R(X,Y)A)Z = (\nabla_X \nabla_Y A)Z - (\nabla_Y \nabla_X A)Z$ and the above equation, we obtain the lemma.

Lemma 3.2. Let M be a real hypersurface in $M_n(c)$ with η -parallel shape operator A. Then

$$-\langle A\phi V,Y\rangle \langle \phi V,X\rangle + \langle A\phi V,X\rangle \langle \phi V,Y\rangle = \langle \frac{\tau}{2}(\phi A + A\phi)X + (F\phi A + A\phi F)X,Y\rangle$$

for any $X, Y \in \Gamma(\mathcal{D})$, where $\tau := -\operatorname{trace} \phi F \phi$.

Proof. Let $E_1, E_2, \dots, E_{2n-2}$ be a local field of orthonormal frames in $\Gamma(\mathcal{D})$. By putting $Z = W = E_j$, for $j = 1, 2, \dots, 2n-2$, in Lemma 3.1 and then summing up these equations, we get

$$2\langle \phi A^2 Y, \phi A X \rangle - 2\langle \phi A^2 X, \phi A Y \rangle = \sum_{j=1}^{2n-2} \langle F E_j, E_j \rangle \langle \phi A X + A \phi X, Y \rangle + 2\langle F Y, \phi A X \rangle - 2\langle F X, \phi A Y \rangle.$$

Next, by applying (1) in the left hand side of this equation, we obtain the lemma. \Box

Lemma 3.3. Let M be a real hypersurface in $M_n(c)$, $n \geq 3$, with η -parallel shape operator A. Suppose that β is nowhere zero on M. If there exist two functions ν and $\tilde{\nu}$ such that

$$AV = \nu V$$
 and $A\phi V = \tilde{\nu}\phi V - \beta^2 \xi$

then $\phi A \phi$ and $\phi^2 A \phi^2$ can be diagonalized simultaneously.

Proof. Let x be an arbitrary point in M. From the hypothesis, the subspace

$$\mathcal{H} := \operatorname{span}\{V, \phi V, \xi\}$$

and its orthogonal complement \mathcal{H}^{\perp} in T_xM are both invariant by A and hence by both $\phi A \phi$ and $\phi^2 A \phi^2$ as well. Furthermore, each eigenvector $E \in \mathcal{H}^{\perp}$ of $\phi^2 A \phi^2$ is a principal vector as well. If ϕE is principal, for each principal vector $E \in \mathcal{H}^{\perp}$ then the statement is clearly true. Hence, we suppose that there is a unit principal vector $E' \in \mathcal{H}^{\perp}$ but $\phi E'$ is not principal.

Firstly, by letting $X, Y \in \mathcal{H}^{\perp}$, Z = V and $W = \phi V$ in Lemma 3.1, we obtain

$$-2c\beta^{2}(\nu - \tilde{\nu})\langle\phi X, Y\rangle = \langle F\phi V, V\rangle\langle(\phi A + A\phi)X, Y\rangle. \tag{3}$$

Since $\phi E'$ is not principal, we can see that $\langle F\phi V, V\rangle = 0 = \nu - \tilde{\nu}$, (for otherwise, by putting X = E' in the above equation, yields $A\phi E' = \tilde{\lambda}\tilde{\phi}E'$ and a contradiction).

Next, by putting $X=\phi V, \ Y=V$ in Lemma 3.1 and making use of the fact that $\nu=\tilde{\nu},$

$$2c\beta^{2}\langle(\phi A - A\phi)Z, W\rangle - \nu\beta^{2}\{\langle V, Z\rangle\langle\phi V, W\rangle + \langle\phi V, Z\rangle\langle V, W\rangle\}$$

$$= -2\nu\beta^{2}\langle FZ, W\rangle - \nu\{\langle V, Z\rangle\langle FV, W\rangle + \langle V, W\rangle\langle FV, Z\rangle$$

$$+ \langle\phi V, Z\rangle\langle F\phi V, W\rangle + \langle\phi V, W\rangle\langle F\phi V, Z\rangle\}. \tag{4}$$

If we put $Z, W \in \mathcal{H}^{\perp}$ in (4), then

$$c\langle (\phi A - A\phi)Z, W \rangle = -\nu \langle FZ, W \rangle. \tag{5}$$

From the hypothesis $\phi E'$ is not principal, the right hand side of (5) is not identically zero, so we may assume that $\nu \neq 0$. On the other hand, by putting Z = V and $W = \phi V$ in (4), and taking account of $\langle FV, \phi V \rangle = \nu - \tilde{\nu} = 0$, we obtain $-\nu \beta^6 = 0$. This contradicts the facts $\nu \neq 0$ and $\beta \neq 0$. The proof is completed.

4 Characterizations on contact real hypersurfaces

An almost contact manifold $(M^{2n-1}, \phi, \xi, \eta)$ is said to be a contact manifold if

$$\eta \wedge (d\eta)^{n-1} \neq 0$$

on M. If there is a Riemannian metric \langle,\rangle which is compatible with this contact structure then $(\phi, \xi, \eta, \langle,\rangle)$ becomes a *contact metric structure* and M is said to be a *contact metric manifold*.

A real hypersurface in a Kaehler manifold is said to be *contact* if its induced almost contact structure is contact. Okumura proved a necessary and sufficient condition for real hypersurfaces in a Kaehler manifold to be contact.

Theorem 4.1 ([13]). Let M be a real hypersurface in a Kaehler manifold. Then the induced almost contact structure (ϕ, ξ, η) is contact if and only if there is a non-vanishing function k on M such that

$$\phi A + A\phi - k\phi = 0. \tag{6}$$

It can be shown that k is constant. Kon proved the following characterization while the ambient space is $\mathbb{C}P^n$.

Theorem 4.2 ([9]). Let M be a complete real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. If M satisfies

$$\phi A + A\phi - \varepsilon \phi = 0$$

for some nonzero constant ε , then M is congruent to one of real hypersurface of type A_1 and B.

On the other hand, Vernon gave a characterization of contact real hypersurfaces in $\mathbb{C}H^n$.

Theorem 4.3 ([18]). Let M be a complete contact real hypersurface in $\mathbb{C}H^n$, $n \geq 3$. Then M is congruent to one of real hypersurface of type A_0 , A_1 and B.

In this section, we study real hypersurfaces in $M_n(c)$ under a weaker version of (6), i.e.,

$$\phi(\phi A + A\phi - k\phi)\phi = 0, (7)$$

for some function k on M. We shall first derive some identities from the condition (7). Note that (7) is equivalent to

$$\langle (\phi A + A\phi - k\phi)Y, Z \rangle = 0, \quad Y, Z \in \Gamma(\mathcal{D}).$$

Differentiating this equation covariantly in the direction of $X \in \Gamma(\mathcal{D})$ we get

$$\begin{split} \langle \phi AY, \nabla_X Z \rangle + \langle (\nabla_X \phi) AY + \phi(\nabla_X A)Y + \phi A\nabla_X Y, Z \rangle \\ + \langle A\phi Y, \nabla_X Z \rangle + \langle (\nabla_X A)\phi Y + A(\nabla_X \phi)Y + A\phi\nabla_X Y, Z \rangle \\ - \langle Xk \rangle \langle \phi Y, Z \rangle - k \langle \phi Y, \nabla_X Z \rangle - k \langle (\nabla_X \phi)Y + \phi\nabla_X Y, Z \rangle = 0. \end{split}$$

By using (2) and (7), this equation can be reformed as

$$-\langle Z, V \rangle \langle \phi AX, Y \rangle + \langle Y, V \rangle \langle \phi AX, Z \rangle - \langle (\nabla_X A)Y, \phi Z \rangle + \langle (\nabla_X A)Z, \phi Y \rangle + \eta(AY)\langle AX, Z \rangle - \eta(AZ)\langle AX, Y \rangle - (Xk)\langle \phi Y, Z \rangle = 0.$$

Now by replacing X, Y and Z cyclically in the above equation and then summing these equations, with the help of the Codazzi equation and (7), we obtain

$$\mathfrak{S}(k\langle X, V \rangle + Xk)\langle \phi Y, Z \rangle = 0$$

where $\mathfrak S$ denotes the cyclic sum over X,Y and Z. Let X be an arbitrary vector field in $\Gamma(\mathcal D)$. If we choose $Y\perp X,\phi X$ and $Z=\phi Y$ in the above equation then $k\langle X,V\rangle+Xk=0$.

We summarize the above observations in the following lemma.

Lemma 4.4. Let M be a real hypersurface in $M_n(c)$, $n \geq 3$. Suppose M satisfies

$$\phi(\phi A + A\phi - k\phi)\phi = 0$$

for some function k on M. Then for any X, Y and $Z \in \Gamma(\mathcal{D})$,

$$-\langle Z, V \rangle \langle \phi AX, Y \rangle + \langle Y, V \rangle \langle \phi AX, Z \rangle - \langle (\nabla_X A)Y, \phi Z \rangle + \langle (\nabla_X A)Z, \phi Y \rangle + \eta(AY)\langle AX, Z \rangle - \eta(AZ)\langle AX, Y \rangle - (Xk)\langle \phi Y, Z \rangle = 0,$$
 (8)

$$k\langle X, V \rangle + Xk = 0. (9)$$

We first look at the case where k is a nonzero constant. In this case, the equation (9) implies that V=0, i.e., ξ is principal and so $(\phi A + A\phi - k\phi)\xi = 0$. Consequently, we have $\phi A + A\phi - k\phi = 0$, for some nonzero constant k, and hence it follows from Theorem 4.2 and Theorem 4.3 that we obtain

Theorem 4.5. Let M be a real hypersurface in $M_n(c)$, $n \geq 3$. If M satisfies

$$\phi(\phi A + A\phi - \varepsilon\phi)\phi = 0$$

for some constant $\varepsilon \neq 0$, then M is locally congruent to one of real hypersurface of type A_0 , A_1 and B.

On the other hand, by adding the η -parallelism condition on the shape operator, we have the following characterization.

Theorem 4.6. Let M be a real hypersurface in $M_n(c)$, $n \geq 3$. Suppose M satisfies the following two conditions:

- (i) $\phi(\phi A + A\phi k\phi)\phi = 0$, for some function k on M;
- (ii) the shape operator A is η -parallel.

Then M is locally congruent to a ruled real hypersurface or one of real hypersurface of type A_0 , A_1 and B.

Proof. In this case, the equation (8) can be reduced as

$$-\langle Z, V \rangle \langle \phi AX, Y \rangle + \langle Y, V \rangle \langle \phi AX, Z \rangle + \eta(AY) \langle AX, Z \rangle - \eta(AZ) \langle AX, Y \rangle - (Xk) \langle \phi Y, Z \rangle = 0.$$

If we choose $Y \perp V, \phi V$ and $Z = \phi Y$ then Xk = 0, for all $X \in \Gamma(\mathcal{D})$ and together with (9), we obtain $k\langle V, V\rangle = 0$ on M. Since we are studying local geometry, we may assume that either k = 0 on M or k is nowhere zero on M. If k is identically zero then M is ruled by Theorem 2.3. If k is nowhere zero on M, ξ is principal and so $(\phi A + A\phi - k\phi)\xi = 0$. Consequently, we have $\phi A + A\phi - k\phi = 0$, and hence our result follows from Theorem 4.2 and Theorem 4.3.

5 Real hypersurfaces with a commutative condition

Observe that the Condition 1 in Theorem 2.3, Theorem 2.5 and Theorem 4.6 imply that $\phi^2 A \phi^2$ and $\phi A \phi$ are commutative. Hence, it is natural to ask if the Condition 1 in these theorems is replaceable by this condition. The main purpose of this section is to give an affirmative answer to this question. We first prove the following lemma.

Lemma 5.1. Let M be a real hypersurface in $M_n(c)$, $n \geq 3$, with η -parallel shape operator A. If $\phi A \phi$ and $\phi^2 A \phi^2$ commute then either

- (i) $\phi(\phi A A\phi)\phi = 0$, or
- (ii) $\phi(\phi A + A\phi k\phi)\phi = 0$ for some function k on M.

Proof. As $\phi A \phi$ and $\phi^2 A \phi^2$ are commutative, they can be diagonalized simultaneously and hence there is a local field of orthonormal frames E_j , ϕE_j $(1 \le j \le n-1)$ on $\Gamma(\mathcal{D})$ such that

$$AE_{j} = e_{j}\xi + \lambda_{j}E_{j}$$
$$A\phi E_{j} = \tilde{e}_{j}\xi + \tilde{\lambda}_{j}\phi E_{j}.$$

By making the following substitutions for the vectors X,Y,Z and W in Lemma 3.1:

(a)
$$Y = Z = E_i, W = X = \phi E_j, (i \neq j);$$

(b)
$$Y = Z = E_i$$
, $W = X = E_j$, $(i \neq j)$;

(c)
$$Y = Z = E_i, W = X = \phi E_i;$$

(d)
$$X = E_j$$
, $Y = \phi E_j$, $Z = \phi E_i$, $W = E_i$, $(i \neq j)$,

we obtain the following equations

$$\tilde{\lambda}_j \lambda_i^2 - (\tilde{\lambda}_j^2 - c + \tilde{e}_j^2) \lambda_i + (e_i^2 - c) \tilde{\lambda}_j = 0$$
 (10)

$$\lambda_i \lambda_i^2 - (\lambda_i^2 - c + e_i^2) \lambda_i + (e_i^2 - c) \lambda_j = 0 \tag{11}$$

$$(\lambda_i - \tilde{\lambda}_i)(\lambda_i \tilde{\lambda}_i + 5c) + \tilde{\lambda}_i e_i^2 - \lambda_i \tilde{e}_i^2 + 2\langle FE_i, \phi E_i \rangle (\lambda_i + \tilde{\lambda}_i) = 0$$
(12)

$$2c(\lambda_i - \tilde{\lambda}_i) + (\lambda_i + \tilde{\lambda}_i)\langle FE_i, \phi E_i \rangle = 0.$$
 (13)

If $\lambda_i = \tilde{\lambda}_i$ for all i then $\phi(\phi A - A\phi)\phi = 0$ and we obtain Statement (i). Hence, we suppose $\lambda_i \neq \tilde{\lambda}_i$ for some i, says $\lambda_1 \neq \tilde{\lambda}_1$. From (13), we obtain $\langle FE_1, \phi E_1 \rangle \neq 0$ and

$$\lambda_r + \tilde{\lambda}_r = 2c \frac{\tilde{\lambda}_1 - \lambda_1}{\langle FE_1, \phi E_1 \rangle}, \quad r \neq 1.$$
 (14)

We consider two cases: (I) $\lambda_s \neq \tilde{\lambda}_s$ for some $s \neq 1$; and (II) $\lambda_r = \tilde{\lambda}_r$ for all $r \neq 1$. Case (I) $\lambda_s \neq \tilde{\lambda}_s$ for some $s \neq 1$, says $\lambda_2 \neq \tilde{\lambda}_2$. From (13), we obtain $\langle FE_2, \phi E_2 \rangle \neq 0$ and

$$\lambda_s + \tilde{\lambda}_s = 2c \frac{\tilde{\lambda}_2 - \lambda_2}{\langle FE_2, \phi E_2 \rangle}, \quad s \neq 2.$$
 (15)

By observing (14) and (15), we obtain

$$\lambda_i + \tilde{\lambda}_i = 2c \frac{\tilde{\lambda}_1 - \lambda_1}{\langle FE_1, \phi E_1 \rangle}, \text{ for all } i.$$
 (16)

Therefore, we obtain Statement (ii) with $k = 2c(\tilde{\lambda}_1 - \lambda_1)\langle FE_1, \phi E_1 \rangle^{-1}$.

Case (II) $\lambda_r = \tilde{\lambda}_r$ for all $r \neq 1$.

In this case, (14) reduces to

$$\lambda_r = \tilde{\lambda}_r = c \frac{\tilde{\lambda}_1 - \lambda_1}{\langle FE_1, \phi E_1 \rangle} \neq 0, \quad r \neq 1.$$

On the other hand, taking j=1 and $i\neq 1$, and then by taking the operation $\lambda_j\times (10)-\tilde{\lambda}_j\times (11)$, yields

$$(\lambda_1 - \tilde{\lambda}_1)(\lambda_1 \tilde{\lambda}_1 + c) + \tilde{\lambda}_1 e_1^2 - \lambda_1 \tilde{e}_1^2 = 0.$$

From this equation and (12), we can see

$$\lambda_1 + \tilde{\lambda}_1 = 2c \frac{\tilde{\lambda}_1 - \lambda_1}{\langle FE_1, \phi E_1 \rangle}.$$

Adding this case into (14), we also obtain (16) and Statement (ii). This completes the proof. \Box

It follows from Theorem 2.5, Theorem 4.6 and Lemma 5.1 that we have

Theorem 5.2. Let M be a real hypersurface in $M_n(c)$, $n \geq 3$, with η -parallel shape operator A. If $\phi A \phi$ and $\phi^2 A \phi^2$ commute then M is locally congruent to a ruled real hypersurface or one of real hypersurface of type A and B.

6 Real hypersurfaces with prescribed covariant derivative of the shape operator

In the previous sections, we characterized real hypersurfaces M with η -parallel shape operator A under certain additional conditions on M. In this section we study these real hypersurfaces from another aspect, i.e., by looking at a condition that is slightly stronger than the η -parallelism on A.

In Theorem 2.6 we see that these "standard examples" of real hypersurfaces with η -parallel shape operator have a nice form for the covariant derivative of the shape operator on the holomorphic distribution \mathcal{D} . Motivated by these identities, it is natural to ask if the converse of the identities in Theorem 2.1 are true. In 1995, Suh proved the following

Theorem 6.1 ([15]). Let M be a real hypersurface in $M_n(c)$, $n \geq 3$. If M satisfies

$$(\nabla_X A)Y = \{-c\langle \phi X, Y \rangle + \eta(AY)\langle X, V \rangle + \eta(AX)\langle Y, V \rangle \} \xi$$

for any $X, Y \in \Gamma(\mathcal{D})$, then M is locally congruent to a ruled real hypersurface or a real hypersurface of type A.

It follows from the above theorem that, since V=0 is necessary and sufficient for ξ to be principal, we can easily obtain the following characterization for real hypersurfaces of type A.

Corollary 6.2. Let M be a real hypersurface in $M_n(c)$, $n \geq 3$. Suppose M satisfies

$$(\nabla_X A)Y = -c\langle \phi X, Y \rangle \xi$$

for any $X, Y \in \Gamma(\mathcal{D})$. Then M is locally congruent to a real hypersurface of type A.

The condition in Theorem 6.1 is too strong to be used to characterize all the standard examples of real hypersurfaces with η -parallel shape operator. It shall be replaced by a weaker condition in order to broaden the list of characterization. In this sense, we have the following.

Theorem 6.3. Let M be a real hypersurface in $M_n(c)$, $n \geq 3$. Suppose M satisfies

$$(\nabla_X A)Y = \{ -c\langle \phi X, Y \rangle + \eta(AY)\langle X, V \rangle + \eta(AX)\langle Y, V \rangle + \varepsilon \langle (\phi A - A\phi)X, Y \rangle \} \xi$$
(17)

for any $X,Y \in \Gamma(\mathcal{D})$, where ε is a constant. Then M is locally congruent to a ruled real hypersurface or one of real hypersurfaces of type A and B.

Proof. The condition (17) implies that A is η -parallel. If ξ is principal then by virtue of Theorem 2.1 and Theorem 2.2, we conclude that M is of type A or B. Hence, we may suppose that β is nowhere zero on M. On the other hand, with the condition (17), the tensor field F takes the form

$$\langle FX, Y \rangle = \eta(AY)\langle X, V \rangle + \eta(AX)\langle Y, V \rangle + \varepsilon \langle (\phi A - A\phi)X, Y \rangle \tag{18}$$

for any $X,Y\in\Gamma(\mathcal{D})$. It follows from this equation that $\tau=-\operatorname{trace}\phi F\phi=0$. Moreover, the identity in Lemma 3.2 can be reduced to

$$-\langle AX, V \rangle \langle Y, V \rangle + \langle AY, V \rangle \langle X, V \rangle = \varepsilon \langle (A\phi A\phi - \phi A\phi A)X, Y \rangle. \tag{19}$$

First, by putting X = V and $Y = \phi V$ in (19), we obtain $\langle AV, \phi V \rangle = 0$. Next, if we put $Y = \phi V$ in (19) then

$$\varepsilon \langle (A\phi A + \phi A\phi A\phi)V, X \rangle = 0 \tag{20}$$

for any $X \in \Gamma(\mathcal{D})$. Finally, when we put Y = V in (19), we get

$$\beta^{2}\langle AX, V \rangle - \langle AV, V \rangle \langle X, V \rangle = \varepsilon \langle \phi X, (A\phi A + \phi A\phi A\phi) V \rangle$$

= 0 (from (20)).

This equation tells us that $AV = \nu V$. Next, we wish to prove that $A\phi V = \tilde{\nu}\phi V - \beta^2 \xi$. For this purpose, we put $Y = \phi V$ and Z = W = V in Lemma 3.1, then

$$0 = c\{\beta^{2}\langle A\phi V, X\rangle - \langle A\phi V, \phi V\rangle\langle \phi V, X\rangle\} + \frac{\langle FV, V\rangle}{2}\langle \phi A\phi V - \nu V, X\rangle - \langle A\phi V, \phi V\rangle\langle FV, X\rangle + \langle FV, \phi V\rangle\langle A\phi V, X\rangle.$$

On the other hand, by putting Y = V and $Z = W = \phi V$ in Lemma 3.1, we get

$$c\{\beta^{2}\langle A\phi V, \phi X\rangle - \langle A\phi V, \phi V\rangle\langle V, X\rangle\} = \frac{\langle F\phi V, \phi V\rangle}{2} \langle \nu\phi V + A\phi V, X\rangle + \nu\{\beta^{2}\langle F\phi V, X\rangle - \langle FV, \phi V\rangle\langle V, X\rangle\}.$$

By using (18), the above two equations becomes

$$(\beta^2 - \varepsilon \nu - c) \{ \beta^2 \langle A\phi V, X \rangle - \langle A\phi V, \phi V \rangle \langle \phi V, X \rangle \} = 0$$
$$(\varepsilon \nu + c) \{ \beta^2 \langle A\phi V, \phi X \rangle - \langle A\phi V, \phi V \rangle \langle \phi V, \phi X \rangle \} = 0$$

for any $X \in \Gamma(\mathcal{D})$. From these two equations and the fact that $\beta \neq 0$,

$$\langle A\phi V, X \rangle = \beta^{-2} \langle A\phi V, \phi V \rangle \langle \phi V, X \rangle, \quad X \in \Gamma(\mathcal{D})$$

and hence we have $A\phi V = \tilde{\nu}\phi V - \beta^2 \xi$, where $\tilde{\nu} = \beta^{-2} \langle A\phi V, \phi V \rangle$. According to Lemma 3.3 and Theorem 5.2, we conclude that M is ruled and this completes the proof.

References

- [1] S.S Ahn, S. B. Lee and Y. J. Suh, On ruled real hypersurfaces in a complex space form. Tsukuba J. Math. 17 (1993), 311-322.
- [2] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space. J. Reine Angew Math. 395 (1989), 132-141.
- [3] Y. W. Choe, Characterization of certain real hypersurfaces of a complex space form. Nihonkai Math. J. 6 (1995), 97-114.
- [4] U. H. Ki and Y. J. Suh, On a characterization of real hypersurfaces of type A in a complex space form. Canad. Math. Bull. 37 (1994), 238-244.
- [5] I. B. Kim, K. H. Kim and W. H. Sohn, Characterizations of real hypersurfaces in a complex space form. Canad. Math. Bull. 50 (2007), 97-104.
- [6] H. S. Kim and Y. S. Pyo, On real hypersurfaces of type A in a complex space form (III). Balkan J. Geom. Appl. 3 (1998), 101110.
- [7] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space. Trans. Amer. Math. Soc. 296 (1986), 137–149.
- [8] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space. Math. Z. 202 (1989), 299-311.
- [9] M. Kon, Pseudo-Einstein real hypersurfaces in complex space forms. J. Diff. Geom. 14 (1979), 339–354.
- [10] M. Lohnherr and H. Reckziegel, On ruled real hypersurfaces in complex space forms. Geom. Dedicata. 74 (1999), 267–286.
- [11] Y. Maeda, On real hypersurfaces of a complex projective space. J. Math. Soc. Japan 37 (1976), 529–540.
- [12] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space. Geom. Dedicata. 20 (1986), 245–261.
- [13] M. Okumura, Contact hypersurfaces in certain Kaehlerian manifolds. Tohoku Math. J. 18 (1966), 74–102.

- [14] M. Okumura, On some real hypersurfaces of a complex projective space. Trans. Amer. Math. Soc. **212** (1975), 355–364.
- [15] Y. J. Suh, Characterizations of real hypersurfaces in complex space forms in terms of Weingarten map. Nihonkai Math. J. 6 (1995), 63-79.
- [16] Y. J. Suh, On real hypersurfaces of a complex space forms with η-parallel Ricci tensor. Tsukuba J. Math. 14 (1990), 27–37.
- [17] R. Takagi, On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math. 10 (1973), 495–506.
- [18] M. H. Vernon, Contact hypersurfaces of a complex hyperbolic space. Tohoku Math. J. 39 (1987), 215–222.