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1. Introduction

Let F be a field. Let My, n (F) denote the vector space of allm x n matrices over F. Let p denote the rank
function. Two matrices A, B € M (F) are called adjacent if p(A — B) = 1. Hua [4] proved the following
fundamental theorem of the geometry of rectangular matrices. If ¢ is a bijective mapping on Mmn(F),
m,n 2 2, |F| > 2, such that ¢ preservers adjacency in both directions, then there exist R € Mmna(F), an
m x m jnvertible matrix P, an n x n invertible matrix Q, and an automorphism o of F such that one of
the following holds:

(i) ¢(A) = PA;Q + R, A € My n(F); or
(ii) m = n, ¢(A) = PALQ + R, A € Minn(F).
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Here A, is the matrix obtained from A by applying o entrywise, A, = (o (@;)).

By using Hua’s theorem, Havlicek and Semrl [2] characterized bijective mappings ¢ on My ,(F),
m,n 2> 2, |F| > 2, such that for every pair A, B € M4 (F), A — B is of full rank if and only if ¢(A) — ¢(B)
is of full rank. Motivated by their work, Lim and Tan [6] characterized surjective mappings T from
M (F) onto itself such that p(A — B) < k if and only if p(T(A) — T(B)) < k, where |IFI>2and k is a
fixed positive integer < min{m, n}.

Let Kn (F) denote the vector space of all n x n alternate matrices over F. Liu [7] proved the following
fundamental theorem of the geometry of alternate matrices. If ¢ : Kp(F) — Kn(F), n > 5, is a bijective
mapping such that

p(A—B) =2if and only if p(¢(A) — ¢(B)) = 2,

then there exist an n x n invertible matrix P, an n x n alternate matrix R, an automorphism o on F and
a nonzero scalar A such that

T(A) = APA,P' +R

for any A in K; (F).

In this note, we first extend Liu's fundamental theorem of the geometry of alternate matrices to the
second exterior power of an infinite dimensional vector space. We next use Liu’s theorem to charac-
terize surjective mappings ¢ from K; (F) onto itself such that for any pair A, B in Ky (F), p(A-B) < 2kif
and only if p(¢(A) — ¢(B)) < 2k where |F| > 3 and k is a fixed positive integer such that 2k + 2 < n.In
the last section, we use this characterization theorem and a result of Wan [12] to describe surjective
mappings ¢ from the space of all n x n symmetric matrices onto itself such that p(A—B) < 2kif and
only if p(¢(A) — ¢(B)) < 2k where k is a fixed positive integer such thatn > 2k+1>5and Fis a
perfect field of characteristic two with |F| > 3. g

2. Adjacency preserving mappings on second exterior powers

Throughout this paper, F is a field, U and W are vector spaces over F of dimension at least two. Let

A2U be the second exterior power of U. Let k be a positive integer. An element A of A2U is said to
have length k if k is the smallest positive integer such that A is the sum of k nonzero decomposable

elements. It is an elementary fact that A € A%U is of length k if and only if

k
A=) i Ay
i=1
for some linearly independent vectors uy, ..., uy in U. In this case, we write I(A) = k. As usual, the zero
element in AU is said to have length zero.

Let A and B be two elements in A2U. We call I(A — B) the arithmetic distance between A and B, and
we say that A, B are adjacentif (A —B) = 1.
IfAe A%Uis of lengthn > 0 and

n n
A=) X1 AXyi= Uyt AUy
i=1 i=1

for some x;,u; € U,j = 1,...,2n, then it is known that
(X1,...0X2n) = (Uq,...,U2p),

where (xq,...,X,) is the linear span of the vectors X1,...,X2n and we shall use [A] to denote this
uniquely determined subspace (x1,...,Xa,).

Let f be a semilinear mapping from U to W associated with an automorphism o on F. Let Azf denote
the second induced power of f from A%U to AW where

A2y Auz) = Fur) Afup)
forany uq,u; in U.
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Let f be a o-semilinear mapping from U to W and g be a r-semilinear mapping from U to W. If
Azf = dAzg for some scalar d in F and the rank of f is at least three, then it can be shown that ¢ = ¢
and f = Ag for some nonzero scalar A in F such that A2 = d. This fact will be used several times in our
proof of the following theorem.

Theorem 2.1. Let U and W be vector spaces over F where U is infinite dimensional. Let T : AU — A*W be
a surjective mapping that preserves adjacency in both directions. Then there exist an invertible semilinear
mapping ¢ : U — W, an element R in A>W and a nonzero scalar x in F such that

T(A) = M(A%p)(A) + R
forany Ain A%U.

Proof. We first show that T s injective. Suppose that T(A) = T(B) and C:=B — A is a nonzero element.
Define a mapping ¢ : AU > A2w by ¢(X) = T(X +A) — T(A). Then ¢(0) = ¢(C) = 0 and ¢ preserves
adjacency in both directions. Since U is infinite dimensional, one can choose a nonzero decomposable
element D in AU such that [C1N[D] = {0}. Clearly C and D are not adjacent. However ¢(C) and ¢ (D)
are adjacent, a contradiction. Hence C = 0 and T s injective.

Let S : 42U — A?W be the mapping defined by S(X) = T(X) — T(0). Then S is a bijective mapping
preserving adjacency in both directions and S(0) = 0. Let G and H be two elements in A2U such that
I(G—-H) =5 > 0 and I[(S(G) — S(H)) = t. Since there exists a chain Go =G,Gyq,...,Gs = H of elements
in A%U such that I(Giy1 - G)=1,i=0,1,...,s—1 and S preserves adjacency, it follows that t <s.
Similarly by considering S—1, we have s < t. Hence I(S(G) — S(H)) = I(G — H).

Let X be any 2m-dimensional subspace of U spanned by 1, ..., X5, where m > 2. Let

S@2i_1 AXgi) =Y2i_1 AYaiy i=1,...,m.

We shall show that S(42X) = A%Y where Y = U1+-..,Y2m). Let k be the largest integer < m such
that yq,...,y are linearly independent and let J = Zﬁ;, X2i—1 A Xp;. Then for each 1 < i< k,S() -
Y2i—1 A Yyi has length k — 1. Hence

SO = Yai1 AYai +i

for some J; of length k — 1. Since I(S(J)) = k, it follows that
SDO) = Gai-1.y20) + Ui

and hence
G2i—1.y2i) SISDL i=1,... k.

This shows that [S()] = (y1,...,Y2). Suppose that k < m. Then the length of S(J) — S(Xak11 A Xgpy2) iS
less thank + 1. However, ] — Xy, 1 A X34, is of length k + 1, a contradiction. Hence k = m. This implies
that [S(H] =Y.

Let u A v be a nonzero decomposable vector in A%X and SwuAv)=u Av.Then

luav-J)<m.
This implies that
W' Av =S() <m.

Hence (t/,v') N'Y # {0}. We shall show that (v/,v') C Y. Suppose the contrary. Then dim((v/,v') + Y) =
2m + 1. We may assume that v’ ¢ Y.Choosew € W such thatw,v',y,..., Yam are linearly independent.
Then

IwaAvV =S =m+1
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and hence

ST wAV)—])=m+1. (1)
Note that u’ A v/, w A V' are adjacent and hence

uAv, ST1(w A V) are adjacent.

Hence [S-'w AV)INX # {0}, a contradiction to(1). Hence (&, v') < Y. This shows that S(u A v) € A%y,
Now let E be an element of length ¢ in A%X with ¢ > 2.Then

t
E=) U1 AUy

i=1
for some linearly independent vectors uy, ..., us; in X. Let
S(Upi_1 AU) =Vai_1 AV, i=1,...,t
Then (vyi_1, V) € Y. In view of the argument in paragraph 3, we have
[SE) = (v1,...,Vae).
Hence S(E) € A%Y. This proves that S(A4%X) ¢ A%Y. Using S~1 and applying the previous arguments,
we have S-1(A4Y) ¢ A?X. Thus S(A2X) = A%Y.

Let A, B be two elements in A%U. Let Q be a 2s-dimensional subspace of U containing [A] U [B]

where s > 2. Then S (AZQ) = A?K for some subspace K of W with dim Q = dim K. Then by the funda-
mental theorem of geometry of alternate matrices, we obtain that S| 20 is additive. This shows that

S(A+ B) = S(A) + S(B) and hence S is additive.
We now fix a 6-dimensional subspace Z of U. Then by Liu’s theorem, we have
Sl 2, = AA%f

for some invertible o -semilinear mapping f from Z onto f(Z) and some nonzero scalar A in F.
Let N be a basis of a complementary subspace of Z in U. For any e e N, choose ¢ € U such that
(e.¢)NZ ={0}andletM = Z + (e,e’). Let L = A~'S. Then by Liu’s theorem,

for some invertible r-semilinear mapping g from M to g(M) and some nonzero scalar 1. Since Azf =
nAzg on A%Z, we have o = 1 and f = dg on Z for some d ¢ F such that 5 = d2. Hence Ll j2py = Az(dg).
Extend f to a o-semilinear mapping f, on Z + (e) by defining f.(e) = dg(e). Then we have

2
L'AZ(Z+<e)) = AF.

Let eq, e; be two distinct elements from N. Then

2
L|A2(z+(e1 e 8A°h

for some invertible o-semilinear mapping h from Z + (eq, ) to its image and some nonzero scalar §.
Since L| ;2 @+Hey = Azfe,. fori=1,2, it follows that there exist scalars d;,d such that d,? =8 and
Je,(2) =d1h(z) foreveryzeZ+ (eq)
and
fe,(2) =dyh(z) foreveryzeZ+ (ey).
Hence dy = d,. For any u € F, we have

L(uey Ane3) =édh(uer) Ah(ey)
= drh(ueq) Adyh(ey)
= fe, (neq) A fe, (€2).

AB\WYET 228
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Let ¢ be the additive mapping from U to W such that @lz+) =fe for every e e N. Then ¢ is an
invertible o-semilinear mapping from AU to A2W. Since L is additive, we have L| R Zrieren) = A?o.

Since ey, e are arbitrarily chosen from N, it follows that L — A2<p. This completes the proof. [J

Remark 2.2. In [8], Hua's fundamental theorem of the geometry of rectangular matrices was extended
to the algebra of bounded linear operators of finite rank on an infinite dimensional Banach space, while
in [1], Hua's fundamental theorem of the geometry of complex symmetric matrices [3] was extended
to the spaces of all bounded symmetric operators of finite rank on an infinite dimensional complex
Hilbert space. We remark that Hua’s fundamental theorem of the geometry of rectangular matrices
holds true under a weaker assumption of preserving the adjacency in one direction only (see [5,9]).

3. Preservers of pairs of bivectors with bounded distance

Throughout this section, F is a field with at least three elements and k is a fixed positive integer
such that 6 < 2 + 2k < dim U. For any nonempty subset S of A%U, let

St =(Be A2U:I(B-A) < kVAeS).

For characterizing surjective mappings from A%U to A2W that preserve pairs of bivectors with
bounded distance k in both directions, we need the following three lemmas.

Lemma 3.1. Let A € A%U be a nonzero element of length < k. If C € {0,A}*+Lk and C + 0, then [C] = [A].
Proof. Let [(A) = s. Then

S
A=) X1 A%y
i=1
for some linearly independent vectors x;, ... X5 inU. Let [(C) = t.
Case 1: s > t. Clearly there exist linearly independent vectors Xj11 Xy .o X, Wherem = 2(s — t) and
1< ji <ja <+ <jm < 2ssuch that

(Xj1 1 Xjyr -0 Xj) N[C] = (O}
Let E be a tensor of length k + 1 — s in 42U such that
[E1N (X, Xjy0 - . -1 X,,) + [C]) = {O).
Let us choose two of the indices jy,ja, . . . ,jm, Say j1, 2. If {j1.ja) = {2F — 1,2r}forsome 1 < r < s, let

s—t
D=E+ ijZi—l A Xy
i=1
ThenI(D) =k —t+1and (D -A) < k. Hence D € {0,A}*. However I(C — D) = k + 1, a contradiction.
If (j1.j2} # {2r — 1,2r)forany 1 < r < s, we may assume without loss of generality thatj; = 1,j, =
3. Note that there exists a scalar A e F such that

AX3 + X3 ¢ [Cl+ (X1, X5, .., X;,,).

LetD = X1 A (AX3 4+ X3) + Z§;§ Xj,_, NXjy + E.Thenl(D — A) < kand (D) < kand hence D e {0, A}«.
However I(D — C) = k + 1, a contradiction.

Case 2:s < t. Let D € AU be of length k — t + 1 such that [D] N [C] = (0}. Since I(D — A) < (k — t +
1) +5 < k, it follows that D € {0, A}, However, I(D — C) = k + 1, a contradiction.

From Case 1 and Case 2, we see that s = t. Suppose that [C] # [A]. Then there exists Xj € [A] such
that x; ¢ [C]. Extend x; to 2(k — t) + 2 linearly independent vectors Xj,V0,V1,. .., Vo_z¢ Such that

(Xj, V0, V1, ..., Vag_2¢) NC] = {0).

ZERPUSTAKAAN UNIVERSITI MALAYA
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Let] = Xj AVo+V1 AVa + -+ Vor_2t_1 A Vog_zt. Then] € {0, A}+. But I(C — J) = k + 1, a contradic-

tion. Hence [C] = [A]. O

Lemma 3.2. Let A, B be an adjacent pair in A%U. Then |{A, B}*«tk| = |F|.

Proof. Without loss of generality, we may assume that B = 0 and A is a nonzero decomposable tensor.
Let D € {0,A}*+k. Then by Lemma 3.1, D = AA for some scalar A. Now for any C € {0,A}**, we have

1(C) < k and hence dim[C] < 2k. Since I(A — C) < k, it follows that
dim([A] +[C]) < 2k + 1.
Hence I(uA — C) < k for any u € F. This shows that 4A € {0,A})x+« and hence
{0.A e = (A).

This completes the proof. O
Lemma 3.3. Let A, B € A%U such that 2 < I(A — B) < k. Then {A, B}k« = (A, B).

Proof. Without loss of generality, we may assume that A = 0 and

n
B=7 X1 AX

i=1

for some linearly independent vectors Xy, ...,X2;. Then 2 < n < k. Choose vectors Xap.1,. .., X242 iN

U such that xq,...,Xap,...,Xak,2 are linearly independent.
Let C € {0, B}k and C # 0. By Lemma 3.1, [C] = [B] and thus

C= Z QjjXj N\ Xj
1<i<j<n
for some a;; € F such that a; = —aj;.
Let1 < s <t << nForeachA(t) = (A1,....h¢ ... Ax) € FK1, let

k
Fst(\(t)) = Z ArXar—1 A Xar +Xa5-1 A Xas + Xat—1 A Xat
1=r#s,t

+AsX2s—1 A Xok1 +X2t—1 A Xoky2.

Then Fst (A(t)) € {0, B)}** and hence I(C — Fs(A(t))) < k. This implies that

0 as—12s—1 Q25121 Azs_1.2t -xs 0

1—aps 1,25 0 a52t-1 g5t 0 0
—Os_12t-1  —0252t-1 0 G-12e=1 0 11
—02s-1,2t —last 1—ax_12 0 0o o i

As 0 0 0 0 0

0 0 1 0 0 0

Since the above determinant equals a3_,,A2, it follows that as¢ = 0.
Replacing Asxps_1 A Xpk41 + Xat—1 A Xpkq2 bY

(i) AsXas A Xaki1 +X2e-1 A Xaks2s
(1) AsXas_1 A Xpp41 +Xot A Xpp42; and
(i) AsXas A Xoy1 + Xt A Xoky2

(2)
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in (2) respectively, we get (i) A2s-1,2¢ = 0; (ii) azs 2t—1 = 0; and (iii) azs-1,2t—1 = O respectively. Hence

n
C = Gi_12i%2i_1 A Xaj.
i=1

Foreach1<s <t<mletAs,t) = Ay, A5, 3r,. .. Ay ) € FE-1 and

k+1
GAMS )Y = D" ArXor_1 AXar +Xa5_1 A Xps.
I=r#st

Then G(A(s, t)) € {0, B}** and hence
IC-Gas, ) <k

and we get (ays_1 25 — 1)2a§t_]'2t = 0. Since /(C) = n, we have azt-1,2t # 0 and hence ays_; 55 = 1. This
proves that C = B and hence {0, B)-Lk1x = {0, B). This completes the proof. [

Theorem 3.4. Let k be a fixed positive integer such that 2 + 2k < dimU and k > 2. Let T be a surjec-
tive mapping from AU to AW such that for any pair A,B € A*U, we have (A - B) <k if and only if
I(T(A) — T(B)) < k. Then there exist an invertible semilinear mapping f : U — W, an element R in A°W
and a nonzero scalar c in F such that

T(A) = c(A*)A) +R
forany Ain A%U.
Proof. Since T preserves bivectors with bounded distance k in both directions, it follows that diim W >
2k + 2. Using an argument similar to that of the first paragraph of the proof of Theorem 2.1, we can
show that T is injective. Suppose that U is finite dimensional. Then from the third paragraph of the

proof of Theorem 2.1, we see that dim U = dim W. Hence by Lemma 3.2, Lemma 3.3, Liu’s theorem and
Theorem 2.1, we obtain the result. [J

When U is finite dimensional, Theorem 3.4 can be stated in matrix language as follows:
Corollary 3.5. Let m,n and k be positive integers such that m > 2k +2 and k > 2. Let T be a surjective
mapping from Ki (F) to Kn(F) such that
p(A— B) < 2kif and only if p(T(A) — T(B)) < 2k.

Then m = n and there exist an n x n invertible matrix P, an n x n alternate matrix R, an automorphism o
on F and a nonzero scalar A such that

T(A) = APAP* +R
forany Ain K, (F).

The following corollary is an immediate consequence of Corollary 3.5 and Liu’s theorem [7].

Corollary 3.6. Let n be a positive even integer > 4. Let v : F — F be a function such that only zero is
mapped to zero. Then T is a surjective mapping from Ky (F) onto itself such that

det(T(A) — T(B)) = r(det(A — B))
forany A, B in Ky (F) if and only if there exist an n x n invertible matrix P, an n x n alternate matrix R, an
automorphism o on F, and a nonzero scalar A such that either

(i) T(A) = APA, Pt +R; or
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0 (34 G4 ap3

. —034 0 a4 a3

)y n=4,TA) = \P

L tel —Oy4 —0y 0 (p)
=03 —-0;3 -a;; O

where in both cases t = (det(APPY))q.

Pt + R,A = (GU) € K4(F).

4. Automorphisms of graphs of symmetric matrices

Let Sp(F) be the vector space of all n x n symmetric matrices over F. For any two positive integers
n, s with n > s, let I's(Sp(F)) denote the graph of all n x n symmetric matrices over F such that two
distinct vertices A and B are joined by an edge if p(A — B) < s. Similarly, we use I',(Kq (F)) to denote
the graph of all n x n alternate matrices over F such that two distinct vertices A and B are joined by an
edge if p(A — B) < 2k, where k is a fixed positive integer such that 2k < n.

When (i)charF #2and 2 < k < n, or(ii)k = 1and |F| > 2, it is known [3,6,10,11] that every graph
automorphism of I'y(Sy(F)) is of the form A APA; P' + R where A is a nonzero scalar inF, Pisan
n x n invertible matrix, o is an automorphism on F, and R is a matrix in Sn(F). However, the situation
is different when char F = 2 and 2 < k. In fact, when Fis a perfect field of characteristic two, there are
other types of graph automorphisms of I, (Sn(F)) when n > 2k.

Note that K, (F) is the second exterior power of F" where a A b = a'b — bta, a, b € F". Every element
A in Ky (F) of positive rank 2k is of the form Zf-‘=1 Upi_1 A Up; for some linearly independent vectors
Uy, Uz, ..., Uy, in F* and we use [A] to denote the uniquely determined subspace (uq,u,, ..., Upg).

The following lemma was proved in [12, Theorem 5.62], for the case p(A) = 2. Our proof for this
case is different and shorter.

Lemma 4.1. Let charF = 2. Leta,b e F* and K Ky (F). Let A = ((afb)t o ") and B =K + ata + btb,
Then p(A) = p(B) or p(A) = p(B) + 1.

Proof. If a = b or K = 0, the result is clear. Suppose now that a +# b and K # 0. Let J=K+anb.Then
B =]+ (a+b)t(a+ b). Let p(A) = 2s. Then we have either p(K)=25—-2or pK) = 2s.

Case 1: p(K) = 25 — 2. We have a + b ¢ [K] and hence either (@) p(J) = 25 — 2, 0r (b) p(J) = 2s. Sup-
pose that (a) holds. Let P € My (F) such that (@+b)P =0and uP = ufor everyu e [K].Then Pt(a A b)P =
0and thus P'KP = PYJP = K.Hencea + b ¢ [J], otherwise p(PYP) < 2s — 2, a contradiction. This implies
that p(B) =25 — 1. Suppose that (b) holds. Then Ul=I[Kl® (a,b).Hencea+b ¢ [J1and this shows that
p(B)=2sor2s—1.

Case 2: p(K) = 2s. We have a + b e [K] and hence either (@)p()) =25 -2, or (b) p(J) = 2. Suppose
that(a) holds. Then [K] = [J] & (a, b) and hencea + b ¢ [J]. This implies that p(B) = 25 — 1. Suppose that
(b) holds. We shall show that a+ b e Ul. Suppose the contrary. Let Q € My(F) such that @+bQ =0
and uQ = u for every u e [J]. Then QYQ =] = Q'KQ. Since a + b € [K], it follows that p(QKQ) < 2s.
However p(J) = 2s, a contradiction. Hence a + b < U1 and this implies that p(B) = 2sor2s — 1. [J

The following theorem shows that the graphs I'y(Kn. 1 (F)) and Iy, (Sn(F)) are isomorphic when F
is a perfect field of characteristic two and n is an integer > 2k + 1. The case for k = 1 was proved in
[12, Theorem 5.62].

Theorem 4.2. Let F be a perfect field of characteristic two. Let n and k be two positive integers such that
n 2> 2k + 1. Then the mapping ¢ : Kny1(F) — Sq(F) defined by

(2t Ia<) ~ K +d'a,

whereaisan 1 x nmatrixand K isann x n alternate matrix, is a graph isomorphism between I kKni1(F))
and Iy (Sn(F)).
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Proof. Since F is a perfect field of characteristic two, every matrix in Sy (F) can be uniquely expressed
as the sum of an alternate matrix and a symmetric matrix of rank < 1. This shows that the mapping
6 is bijective. Let A; = ((?t ,?]> and A; = (I?‘ sz) be two matrices in Ky, 1 (F) where K; and K are
n x n alternate matrices. Then

e 0 a+b
Ay —Az = ((a+b)‘ Kq +K2)

and

(A1) — 6(Az) = (K1 + K3) +a*a + btb.
ByLemma4.1, we have p(A; — Ay) < 2kifand onlyif p(9 (A1) — #(A2)) < 2k.Hence# is anisomorphism
from I'y(Ky11(F)) to Iy (Sn(F)). O

Corollary 4.3. Let F be a perfect field of characteristic two with at least four elements. Let n and k be two
positive integers such thatn > 2k + 1 > 5. Let T : Sp(F) — S(F) be a surjective mapping such that for any
A, Bin Sy(F),

p(A— B) < 2kif and only if p(T(A) — T(B)) < 2k.
Then there exist an automorphism o on F, a matrix R in Sy(F) and an (n+1) x (n+ 1) invertible matrix

(‘C, :) where P is an n x n matrix, such that

T(A) = Pagv* + va, P* + PK, P' + w'w +R, 3)
where A=K + ata and w = uat v* + (ca, + uK,)Pt.
Proof. Let ¢ be the isomorphism from I'y (K1 (F)) to I'5;(Sn(F)) as mentioned in Theorem 4.2. Let
¢ = 6~1. We may assume that T(0) = 0. Then L : K, .1 (F) — Ky (F) defined by

LipA) = o(T(A)), A € Sun(F),
is a surjective mapping such that for any C, D in K1 (F),

p(C —D) < 2kif and only if p(L(C) — L(D)) < 2k.

By Corollary 3.5, there exist an automorphism o on Fand an (n + 1) x (n + 1) invertible matrix (f, ,‘;)
where P is an n x n matrix, such that

(0 ay_(c u\(0 a) (c
a k)~ \v PJ\a k) \ut P
_(0 w
—\w'  Palvt+va,Pt 4+ PK,Pt)’
where w = ual vt + (ca, + uK,)Pt. Hence
T(K + a‘a) = Pa v* + va, P* + PK, P' + w'w.
This completes the proof. [J

Remark 4.4. The mapping (3) in Corollary 4.3 preserves matrix pairs with bounded distance 2k in
both directions.

Remark 4.5. Suppose that we impose as an additional condition to Corollary 4.3 that T(A) — T(B) is
alternate if A — B is a rank 2 alternate matrix. Then we see that for any n x n alternate matrix K,

T(K) = PK,P* + P(K, utuK, )Pt +R.
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If u #0, then it is easily seen that there exists a rank two alternate matrix J such that J,ut 0
and hence T(J) — T(0) is not alternate, a contradiction. Hence u = 0 and ¢ # 0. This implies that P is
invertible and

T(K +a‘a) = Pagv* + va, P* + PK, P* + c®Pat a, P' + R.
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