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Abstract

Consider the simple linear models with non-normal errors. A method based on rank statistics has
been proposed in our earlier work for constructing confidence interval for the slope parameter.
When the skewness of the distributions of the errors is large, and the values of the explanatory
variable are in equal steps, the method based on rank statistics has been shown to produce
confidence interval of which the expected length is shorter than those of the bootstrap confidence
interval, and the classical confidence interval which is derived by assuming that the errors are
normally distributed. An important step in the method based on rank statistics is the
determination of the acceptance region for testing the null hypothesis that the slope parameter is
zero. Presently we show that the acceptance region depends basically on the skewness and
kurtosis of the values of the explanatory variable. This finding suggests that when the values of
the explanatory variable are given, we may construct a confidence interval for the slope
parameter by using an acceptance region which has been determined for other set of values of the
explanatory variable having the same measures of skewness and kurtosis. Thus in implementing
the method in practice, we may use pre-determined acceptance regions. We also investigate the
performance of the confidence interval based on rank statistics when the values of the
explanatory variable are not in equal steps. Our simulation studies show that the method based

on rank statistics continues to give better performance.

Keyword: Rank Statistics;; Confidence intervals; Linear Model; Quadratic-normal distribution;

Bootstrap.
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1. Introduction

Consider the linear model which can be represented in the form

Y =BoXo + BiXy -+ BpX(poyy + B,X, +E (1)
where y=(y; yp - yn)T is the vector of observations, X =[x, x; - X pl is the
matrix of explanatory variables, B=(8y, B - S p)T is the parameter vector,
e=(gy & - 8n)T is the vector of random errors, and &,&,,++,&, are independent and

having the common cumulative distribution function(c.d.f) G(.).

When ¢; has a normal distribution with mean 0 and variance o2 , the usual 100 (1 - ) %

classical confidence interval for the individual parameter S; in Equation (1) is given by

{B;: B; ~la2n-(p+1)Sp <hi < Bi Tla/2,n-(p+1)Sj } ¥

where ,3,- is the least squares estimate of j5;, tojrnea 18 the (1-a/2)100% point of the ¢ -

11 |1/2
distribution with (n—(p+1)) degrees of freedom(df), S j = {a’“"”} ¢ is the standard

i+1,i+1

error  of [31' s B is the (@(+Li+1) entry of X'X)! , and

62 = yT - X(XTX)"1 x7 ly /(n—(p+1)) is the residual mean square.

Apart from the classical confidence interval, there are many other confidence intervals
which have been proposed in the literature for the individual parameter in the linear model with
non-normal errors. A well-known method based on transformation of the response variables is

given in [1]. An alternative way of constructing confidence interval is by means of bootstrap



(see for example, [2],[3],[4],[5] and [6]). In performing the bootstrap for finding confidence
interval, usually a large number N of estimates of the parameter f; are calculated based on the
N samples obtained through resampling. The estimates for f; required in the bootstrap method

may either be the ordinary least squares estimates or other types of estimates like the linear plus

quadratic (LPQ) estimates (see [7] and [8]) and the estimates based on EM algorithm ([9]).

Another alternative way of constructing confidence interval is by collecting the values
151.(0) of the parameter f; for which the null hypothesis Hy : 3; = /),i(O) is accepted. A way to

test the null hypothesis that a particular parameter in B is equal to a fixed constant is by using

the statistics based on the ranks of residuals (see for example [10]).

In the previous simulation study (see [11]), we consider the case when p =1 and the x,

are in equal steps. The simulated results show that in the case of normal errors, the confidence
interval based on hypothesis testing using rank statistics is comparable to the classical
confidence interval and bootstrap confidence interval in terms of both coverage probability and
expected length. When the errors have a skewed distribution, the coverage probabilities for the
above three types of confidence intervals are all fairly close to the target value, but the expected
length for the confidence interval based on rank statistics is much shorter than those of the
classical confidence interval and bootstrap confidence interval.

Presently, we show that when p =1, the acceptance region of the test based on rank
statistics for the slope parameter basically depends on the measures of skewness and kurtosis of
the values of the explanatory variable. This finding implies that when the values of

(x5 3, (%55 75)5 5 (x,,¥,) are given, we may first determine the measures of skewness and

kurtosis of the values x,.x,,---,x, and use an acceptance region which has been previously
3



determined for another set of values of the explanatory variable having the same measures of
gkewness and kurtosis. The use of pre-determined acceptance regions would reduce significantly

the computing time required for implementing the method for finding confidence interval.

We also perform more simulation studies for the case when the values of the explanatory
variable are not in equal steps. Our simulation results show that when the distribution of the

errors is skewed, rank test continues to yield shorter confidence intervals for the slope parameter.

3. Confidence Interval when Errors are Non-normally Distributed

In this section, we give an outline of the method (see[11]) based on ranks for finding a

confidence interval for the slope parameter S, in the simple linear model.

Let B© be a constant and consider the problem of testing the null hypothesis

H,:p = B against the alternative hypothesis H, : f, # B,

The simple linear model
yi=ﬂ0+ﬂ1x,‘+gi s i=1,29"'9n (3)
may first be written as

y,-(m) =y, _ﬂl(O)xi =ﬂo +(ﬂl —ﬁl(O))xi +&, i=1,2,...,n (4)

> ™ . When H, is true,

Let E, =y§"') —l
niq

1



ix,.Ei

f= i=1

n

2
2]

i=1

will tend to be near zero.

Let

n

Zx,.R,.

T= i=1

>
i=l
where R; is the rank of E;, when the values E,,E,, -, E, are arranged in an ascending order.

When H, is true, we would expect that 7 will also tend to be near zero.

Let ON(0,)) be the quadratic-normal distribution with parameters 0 and A (see [12])
and m, together with 7, be respectively the measures of skewness and kurtosis of the

quadratic-normal distribution.

Let the constants L(A) and U(A) be such that

P{LAM<T<UMN) |\ =1-«
Next let L' and U’ be respectively the average values of L(A) and U(A) over the values of
Awhich are feasible. Then, a confidence interval for B, is given by

S(Y)={BP:L <T<U"}
ind the coverage probability of the confidence interval is

P(M)=P(Beb(y)|h)

e e
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The values of L and U can be found by using simulation. When » =30 or 35, Table I
gives the values of L and U " fora variety of values for the measures of skewness (7.")and

gurtosis (m,) of the explanatory variable. When 7 =30 or 35 but the values of m and m

computed from the data are not in Table I, interpolation may be used.

3. Numerical Results

To estimate the coverage probability P(A) of the confidence interval in Section 2, we first
generate N values of y. For each generated value of y, we find the confidence intervals using
the classical method, bootstrap, and the procedure in Section 2. We next compute the proportion

pofy (out of N values of y) of which the corresponding confidence interval covers the true

value of f3,. The value of p is then an estimate of the corresponding coverage probability.

Tables II to IV show the results of the coverage probabilities and expected lengths of

confidence intervals for B when the values of the explanatory are negatively skewed,

symmetrical or positively skewed.

Tables II to IV show that irrespective of the sizes of the skewness and kurtosis of the
values of the explanatory variables and the distribution of the errors, the coverage probabilities
for the three types of confidence intervals are all fairly close to the target value 0.95. But, when
the skewness of the distribution of the errors is large, the expected length of the confidence
interval based on rank statistics is much shorter than those of the classical confidence interval

and bootstrap confidence interval.



4. Concluding remarks

Suppose x =x is given and we are interested in finding a prediction interval for the
future observation when x =x". The method based on ranks may first be applied to find a
confidence interval for the parameter 7 = 3, + B.x". A prediction interval may then be obtained
by enlarging the confidence interval for 7. It would then be interesting to investigate the

performance of the resulting prediction interval. Future research may also be carried out to

investigate the possibility of using rank statistics to construct simultaneous confidence intervals.



References

1.

10.

11

Box, G.E.P, Cox, D.R.(1964). An analysis of transformations. Journal of Royal
Statistical Society Series B, 26:211-252.

Beran,R.(1987). Prepivoting to reduce level error of confidence sets. Biometrika, 74:457-

468.

. Beran,R.(1988). Balanced simultaneous confidence sets. Journal of the American

Statistical Association, 83:679-686.
Efron,B.(1982). The Jacknife, the bootstrap and other resampling plans. SIAM,

Philadelphia.

. Efron, B.(1987). Better bootstrap confidence intervals (with discussion). Journal of the

American Statistical Association, 82:171-200.

Loh,W-Y.(1987). Calibrating confidence coefficients. Journal of the American Statistical
Association, 82:155-162.

Knautz, H.(1993). Nichtlineare Schatzung des Parametervektors im linearen
Regressionsmodell. Mathematical Systems in Economics, 33, Anton Hain, Frankfurt a.M.
Knautz, H.(1999). Nonlinear unbiased estimation in the linear regression model with
nonnormal disturbances. Journal of Statistical Planning and Inference, 81:293-309.
Bartolucci, F. and Scaccia, L.(2005). The use of mixtures for dealing with non-normal
regression errors. Computational Statistics & Data Analysis, 48:821-834.

Adichie, J.N.(1978). Rank tests of sub-hypotheses in the general linear regression. The

Annals of Statistics, 6:1015-1025.

. K.H.Ng, M.H.Lim and A.H.Pooi (2008) Confidence Intervals based on Rank Statistics in

Linear Models. Proceeding The 9" Islamic Countries Coference on Statistical Sciences

2007 (ICCS-IX), 1646-1660.



12. Pooi, A.H.(2003). Effects of non-normality on confidence intervals in linear models.

Technical Report No. 6/2003. Institute of Mathematical Sciences, University of Malaya.



Table I: The values of I’ and U" when » =30 or n=35

=30 n=35
;" 7 E U I U

-3.5 21.3 -6.3277 -1.1420 -6.7501 -0.0346
-3.1 18.6 -6.9907 -1.9008 -7.0246 -1.0189
2.8 17.2 -7.4557 -2.4250 -7.6517 -1.6869
2.5 14 -7.0963 -1.9805 -6.9646 -0.9410
2.3 13.6 -7.5328 -2.4701 -7.5870 -1.5938
2.1 12.8 -7.7380 -2.6901 -7.8449 -1.8581
2.0 12.6 -7.8895 -2.8567 -8.0563 -2.0784
-1.9 10.4 -7.3115 -2.1695 -7.0674 -1.0217
-1.8 14 -8.5872 -3.6674 -9.1633 -3.2713
-1.6 10.8 -8.1158 -3.0729 -8.2680 -2.2718
-1.5 13.4 -8.8767 -3.9772 -9.5450 -3.6690
-1.2 114 -8.8582 -3.9062 -9.3769 -3.4445
-1 5.2 -7.1944 -1.8195 -6.4420 -0.2097
-0.9 7 -8.0794 -2.9133 -7.8850 -1.7868
-0.8 8 -8.5514 -3.4597 -8.6454 -2.5893
-0.7 8 -8.6840 -3.6003 -8.8250 -2.7706
-0.6 7.6 -8.7009 -3.5993 -8.8004 -2.7294
-0.5 6.8 -8.5904 -3.4424 -8.5532 -2.4436
-04 4.4 -7.7509 -2.4147 -7.0822 -0.8689
-0.34817 4.33657 -7.7999 -2.4583 -7.1327 -0.9128
-0.3 10.4 -9.6455 -4.7149 -10.3509 -4.4162
-0.2 4.8 -8.2401 -2.9404 -7.7787 -1.5643
-0.15999 | 3.659049 -7.6839 -2.2668 -6.8326 -0.5684
-0.1 6.8 -9.0499 -3.9089 -9.1370 -3.0102
-0.07277 | 2.602047 -6.8889 -1.3095 -5.5354 0.7674
-0.02312 | 2.947682 -7.3358 -1.8096 -6.1899 0.1213
0 6.6 -9.0970 -3.9381 -9.1564 -3.0132
0.025628 3.408262 -7.7682 -2.3034 -6.8507 -0.5469
0.1 2.6 -7.1356 -1.5245 -5.8009 0.5473
0.10437 | 3.064088 -7.6017 -2.0735 -6.5261 -0.1912
0.2 3.6 -8.0897 -2.6231 -7.2582 -0.9273
0.3 3.6 -8.1820 -2.6933 -7.3398 -0.9856
04 4 -8.4968 -3.0405 -7.8028 -1.4491
0.5 4.6 -8.8662 -3.4634 -8.3731 -2.0382
0.6 5.2 -9.1839 -3.8271 -8.8684 -2.5516
0.7 5.6 -9.3984 -4.0611 -9.1813 -2.8699
0.8 6.2 -9.6625 -4.3644 -9.5935 3.3015
0.9 7.4 -10.0590 -4.8551 -10.2802 -4.5056
1 8.2 -10.0313 -5.1588 -10.6967 -4.5096
1.1 94 -10.6226 -5.5481 -11.2373 -5.1195
1.2 11.2 -10.9931 -6.0361 -11.9191 -5.9161
1.3 13.4 -11.3656 -6.5349 -12.6144 -6.7522
1.5 7.8 -10.5359 -5.1524 -10.5658 -4.1477
1.6 11.2 -11.2856 -6.2405 -12.1131 -6.0090
1.7 14 -11.7340 -6.8812 -13.0083 -7.1120
1.9 10.8 -11.4391 -6.2341 -12.0175 -5.7389
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Continued from Table I

n=30 n=35
m | m r U L U
2.2 13.2 -12.0326 -6.9501 -12.9642 -6.8007
24 134 -12.2417 -7.0517 -13.0515 -6.7697
2.6 13.8 -12.5173 -7.7834 -13.1839 -6.7375
2.7 18 -12.9775 -8.1452 -14.5062 -8.6176
i 3 18 -13.3415 -8.3116 -14.6459 -8.5228
34 20.2776 -14.1895 -9.0059 -15.5075 -9.2155
3.8 24.5 -14.9789 -10.0354 -17.1199 -10.9746
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Table II Coverage probabilities and expected lengths of confidence intervals for 51 when
n=30;m" =-3.5,m> =21.3;8y =2, =3,0 =1 and @ = 0.05.
(N =1000, standard error of coverage probability ~0.0069)

No | 3 M4 | CP.RK | CP.Bt CP.CL EL.RK EL.Bt EL.CL
1| -38| 244 0.958 | 0.936 0.939 0.272 0.673 0.632

21 -1.0 9.0 0.961 0.952 0.949 0.566 0.667 0.661
3| -01 2.8 0.962 | 0.960 0.967 0.721 0.651 0.675
4 0.0 3.0| 0962 | 0.958 0.968 0.714 0.652 0.675
5 1.0 9.0 0.961 0.949 0.956 0.567 0.665 0.659

6 38| 245| 0962 | 0.949 0.945 0.278 0.668 0.626

Table III: Coverage probabilities and expected lengths of confidence intervals for S when
n=30; 7" =0,m> =3.0;8) =2, =3,0=1and & =0.05 .
(N =1000, standard error of coverage probability ~ 0.0069)

No | 3 M4 | CP.RK | CP.Bt CP.CL EL.RK EL.Bt EL.CL
1| -3.8| 244 0.952 | 0.945 0.953 0.248 0.732 0.688

2| -1.0 9.0| 0.960| 0.951 0.962 0.580 0.720 0.719
3| -0.1 2.8 0.960 | 0.956 0.956 0.760 0.708 0.734
4 0.0 3.0| 0.960| 0.955 0.956 0.752 0.709 0.733
5 1.0 9.0 0.960 | 0.954 0.959 0.577 0.718 0.717

6 38| 245| 0958 | 0.945 0.957 0.256 0.728 0.680
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Table IV: Coverage probabilities and expected lengths of confidence intervals for S when
n=30;m" =3,m” =20.0,8,=2,6; =3,0 =1 and a =0.05.
(N =1000, standard error of coverage probability ~0.0069)

No | 73 my CP.RK | CP.Bt CP.CL EL.RK EL.Bt EL.CL
1] -3.8| 244 0.954 0.948 0.954 0.396 1.007 0.948
2| 1.0 9.0 0.956 0.958 0.959 0.829 0.995 0.991
3] -0.1 2.8 0.956 0.955 0.961 1.067 | 0.976 1.011
4 0.0 3.0 0.956 0.956 0.961 1.048 0.976 1.010
5 1.0 9.0 0.956 0.955 0.958 0.828 0.993 0.988
6 38| 245 0.956 0.943 0.953 0.408 1.005 0.938
In Tables IT to IV,

CP.RK = Coverage probability of confidence interval based on rank statistics;
CP.Bt = Coverage probability of bootstrap confidence interval;
CP.CL = Coverage probability of classical confidence interval;
EL.RK = Expected length of confidence interval based on rank statistics;
EL.Bt = Expected length of bootstrap confidence interval;
EL.CL = Expected length of classical confidence interval.
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