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ABSTRACT

In the field of fatigue failure, the classical Paris-
Erdogan model is widely applicable and accepted
in fracture mechanics. The model relate da /dN,
the crack growth per cycle of applied load, to the
parameters of stress-range As and the crack
length a. The stress range is one of the important
parameters in the model which determines the
behaviours of damage of any structure. It can be
treated as deterministic or random (stochastic)
process. In this paper, we study the effect of
applying stress sequence in the form of discrete
values of ascending and descending order of the
same range. The stress used in the model to
simulate crack growth is formulated as a function
of days and the model is linearised by choosing M
= 2 as the power value in the model.

1. INTRODUCTION

Fatigue failure due to crack propagation in
structures is very important in the field of
material engineering. As early as 1930’s a
large amount of research has been carried out
so that reliable models to represent crack
propagation could be produced. One of the
earliest fatigue crack growth studies was
carried out by DeForest [1]. In his paper,
DeForest investigated the stress and the
number of stress cycles required to start a
fatigue crack. Later Langer [2] presented a
method for estimating the effects of load
cycles of different stresses. He first suggested
incorporating models  concerning  crack
propagation into cumulative damage rules.

Other works that contributed towards the early
development of the cumulative damage
approach to fatigue failure include the studies
by Thum and Bautz [3], Thum et al. [4] and
Miner [5].

2. PARIS-ERDOGAN MODEL OF
CRACK GROWTH

One of the empirical models which is widely
used under conditions of linear-elastic fracture
is that proposed by Paris and Erdogan [6].
Although Forman et al., [7] indicated the
limitations of Paris’s model, we have chosen it
as a starting point to develop a simulation
model for structural damage or crack growth
because of its simplicity. Furthermore, it has
been accepted for decades as a basic and
widely applicable framework in fracture
mechanics [8]. The model relates the
increment of crack growth per cycle, da/dn,
to the parameters of stress-range As and
instantaneous crack length a. Paris and
Erdogan [6] derived the model based on large
range of data and arrived at the expression of
the form

L C(AK)M

dN
Here C > 0, is an empirical crack-growth
constant determined by material properties
(i.e. elasticity, yield stress and fracture
strength). A non-negative material constant,
M is a coefficient of model influence, usually
cited to lie within the range of 2<M <4 [9]
and AK is the fluctuation range of the crack
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tip stress-intensity factor K
(AK =K, —K_,,) which depends upon the
size and type of the crack [10]. A simple
model for K is given by

K=B\ras 2

where s is the stress at the crack tip and B is
the geometry correction factor which depends
on the crack shape, crack length a and the
shape of the component. Based on (2) we can
have

AK = B,/maAs 3)

where As is the stress range per load cycle.
The value B is taken to be independent of a
and often considered as a constant, typically
1.1 [11]. By substituting (3) in (1), the
expression has the form

5—;=C(l.1w/7ra As)M 4)
Taking A = C(1.1W7)" , equation (4) becomes
= afa a5y )

A simulation model to predict crack growth
based on equation (5) using a backward
difference approximation has been formulated
[9]. Hence

Ayg — Ay = ﬂa;\/n/z(Asw )M (6)

in which crack growth (damage) accumulates
relatively slowly and continuously with the
load cycles N [9]. Since M can take any value
between 2 and 4, if M =2 1is chosen, (6)
becomes

@, =a,+Aa,(bs,)} %)

n+l

If M =3 is chosen, then (6) becomes
Byy =ay +Aay*(Asy )’ (®)

Since most load-bearing structural elements
have relatively small initial cracks or fine
notches, the initial crack length a, must begin
with a very small number. Different types of
model for the stress range can be used to
investigate their effects on crack growth. For each
model, an appropriate constant A need to be chosen

so as to get readable' results. What is meant by
readable’ is that the results obtained should be
meaningful and reasonable, that is, the damages
obtained should increase relatively slowly and
continuously. The rates of crack growth do not
grow too rapidly or abruptly, ept after failure
occurs.  Conventionally, failg?ef is assumed to
occur when the damage reaches some critical
value. With suitable normalization this value can
be taken to be 1.

3. MODELLING THE STRESS
RANGE
(€)

The stress range As is one of the important
parameters in the model which determines the
behaviours of damage of any structure. It can
be treated as deterministic or random
(stochastic) process. The stress sequence used
in this model to simulate crack growth is in the
form of discrete values of asgﬁ ding order and
descending order of the same range where the
stress is formulated as a function of days. By
doing this, we can compare the damage and
lifetimes  of structures or mechanical
components experiencing d{fferent orders of
stress. We are interested in studying the effect
of having low or high stress at the initial crack
propagation phase to the final damage as well
as the lifetime. Since we are going to generate
the stress in ascending and descending order
of the same range, it can be presented as

s, =i+c— @) )
and
t

s, =l-c = (10)
Equation (9) is for ascending order where the
stress starts at initial value i and ends at final value
I and equation (10) is of descdiding order where
the stress starts at initial value / and terminates at
final value i, t =0,1,2,...N and N is the total
number of days the model is to fg run. As a result
of the above conditions we have i+c¢ =1[. In this
simulation we decide to take the range from 5 to
10 for s, and 10 to 5 for s,. Therefore we have

i=5, 1=10 and c¢=5 so that equation (9)
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t
becomes s, =5+5 (N) and equation (10)

t
becomes s, =10 — S(E)

The crack model is then simulated for values
of t from O to N and N can take any possible or
suitable number of days. Since the parameter
A and initial crack a, are arbitrary, suitable

values of these constants are chosen in order
to generate results that exhibit the
characteristic features of interest in crack
growth and have to be changed according to
the model of equation (7) or (8). For the
simulation where M = 2, the parameter values

were taken to be a,=10x10"" and

A=0.4x10"". For M = 3, they are chosen to
be a,=0.65x10" and A =05x10"". The
simulation is carried out for N = 1000. The
damages obtained are compared between the
two results produced by both stresses,
ascending and descending order and for both
power values, M = 2 and M = 3. The results
obtained are summarized in Table 1 for M =2
and Table 2 for M = 3 to show the difference
at the beginning and at the end of the
simulation Only significant days of the
simulation are shown in the tables. Each
result is then plotted on graphs of damage
against number of days respectively in Figure
1 and Figure 2 for M = 2, Figure 3 and Figure
4 for M =3.

4. RESULTS AND DISCUSSIONS

41 ForM=2

Table 1 shows results obtained for the linearised
model where M = 2. From the results it is found
that, the damage for s, (as;) is higher at the
earlier part of the structure's life (see Figure 1 and
2). It maintains such behaviour through out but
the propagation rate decreases towards the later
part of the simulation. As for s,, the damage
propagates very slowly until N is about 800. After
this point it increases more rapidly and the
propagation rate is at its peak at the end of the
simulation. Finally the two crack propagations

meet at the end of the simulation. This
indicates that the order of the stress is not
important for the linearised model. If we
examine equation (7), we can see that since
the model is linear in a and scalar
multiplication is commutative and associative,
it follows that the crack size a, is independent

of the ordering of the sequence of stress range.
That is the reason why we obtain such result.

Table 1 : Results of damage obtained for ascending
order (as, ) and descending order (as,) of stress

Number dam(asc) dam(desc)
of days (as,) (as,)
)
0 0.1000 0.1000
1 0.1001 0.1004
2 0.1002 0.1008
971 0.9173 0.9980
972 0.9209 0.9991
973 0.9244 1.0001
992 0.9960 1.0200
993 1.0000 1.0210
994 1.0039 1.0220
999 1.0241 1.0272
1000 1.0282 1.0282

T T
0 200 400 600 800 1000

number of cycles

Figure 1 : Graph of damage compared between
ascending and descending order of stress
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Table 2 : Results of damage obtained for ascending
047 order and descending order of stress
2234 Number dam(asc) | dam(desc)
o5l of days
4 )
g 0.257 e 0 0.006500 0.006500
A - 1 0.006503 0.006526
e 2 0.006507 0.006553
015 - 918 0.141590 0.987260
oz e , . 919 0.143930 | 0.995030
0 50 100 150 200 250 300 920 0.146350 1002900
rmter of vt 990 0.973760 | 1.778600
991 1.021100 1.793800
Figure 2 : Graph of damage compared between 992 1.072000 1.809300
ascending and descending. order .of stress at the early 099 1.566100 1.921600
part of simulation 1000 | 1.663900 | 1.938300
42 ForM=3

From Figure 3 and Table 2 it is found that even
though the stress is decreasing for s,, the damage
increases more rapidly because the present damage
depends on the previous ones which in turn are 15
raised to the power of 1.5. Therefore s, gives
higher damage and reached 1.0 faster than the >
damage produced by s, . (as,). Figure 4 shows the §
behaviour of the damage at the early part of the ®
simulation. We can see that the damage simulated

2.09

0.5
from s, (as,) propagates more rapidly. Figure 5
shows that when as, reaches 1.0 at N = 920, as,
is still catching up and reached 1.0 at N = 991, 70 T R
cycles later. From the results obtained we can number of days
conclude that bigger stress or loadings imposed on
the structure at the beginning of its life will result
in a bigger crack length or damage since initial Figure 3 : Graph of damage compared between
damage accumulates more rapidly. As a result, the acsending and descending order of stress

lifetime of the structures is shorter as compared to
the one which starts with the lower stress.

It is important to note that, the simulation work is
done to study the behaviour of cracks or damage in
such condition of stress and the results obtained
cannot be compared with the real situation since
the data for such behaviour are not available and
beyond the reach of the author.
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0.0 T T T T T 1
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number of days

Figure 4 : Graph of damage compared between
acsending and descending order of stress at the earlier
part of simulation

0.0

T T T T
900 920 940 960 980 1000
number of days

Figure 5 : Graph of damage compared between
acsending and descending order of stress at the end of
simulation
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