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Abstract

Background: Centratherum anthelminticum (L.) seeds (CA) is a well known medicinal herb in Indian sub-continent. We
recently reported anti-oxidant property of chloroform fraction of Centratherum anthelminticum (L.) seeds (CACF) by
inhibiting tumor necrosis factor-a (TNF-a)-induced growth of human breast cancer cells. However, the active compounds in
CACF have not been investigated previously.

Methodology/Principal Findings: In this study, we showed that CACF inhibited growth of MCF-7 human breast cancer cells.
CACF induced apoptosis in MCF-7 cells as marked by cell size shrinkage, deformed cytoskeletal structure and DNA
fragmentation. To identify the cytotoxic compound, CACF was subjected to bioassay-guided fractionation which yielded 6
fractions. CACF fraction A and B (CACF-A, -B) demonstrated highest activity among all the fractions. Further HPLC isolation,
NMR and LC-MS analysis of CACF-A led to identification of vernodalin as the cytotoxic agent in CACF-A, and -B. 12,13-
dihydroxyoleic acid, another major compound in CACF-C fraction was isolated for the first time from Centratherum
anthelminticum (L.) seeds but showed no cytotoxic effect against MCF-7 cells. Vernodalin inhibited cell growth of human
breast cancer cells MCF-7 and MDA-MB-231 by induction of cell cycle arrest and apoptosis. Increased of reactive oxygen
species (ROS) production, coupled with downregulation of anti-apoptotic molecules (Bcl-2, Bcl-xL) led to reduction of
mitochondrial membrane potential (MMP) and release of cytochrome c in both human breast cancer cells treated with
vernodalin. Release of cytochrome c from mitochondria to cytosol triggered activation of caspase cascade, PARP cleavage,
DNA damage and eventually cell death.

Conclusions/Significance: To the best of our knowledge, this is the first comprehensive study on cytotoxic and apoptotic
mechanism of vernodalin isolated from the Centratherum anthelminticum (L.) seeds in human breast cancer cells. Overall,
our data suggest a potential therapeutic value of vernodalin to be further developed as new anti-cancer drug.
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Introduction

Breast cancer is one of the most common malignancies in

women. Global breast cancer incidence has increased at an annual

rate of 3.1% over the last three decades to more than 1.6 million

cases in year 2010 [1]. In Malaysia, breast cancer is the most

common cancer among females. There were 3,242 female breast

cancer cases diagnosed in 2007, accounted for 18.1% of all cancer

cases reported and 32.1% of all female cases (National Cancer

Registry Report 2007). Different subtypes of breast cancers arise

from different gene mutations occurring in luminal or basal

progenitor cell population, causing difficulty in breast cancer

diagnosis and treatment [2]. Being both genetically and histo-

pathologically heterogeneous, the mechanisms underlying breast

cancer development remains uncertain [3]. Owing to this,

conventional chemotherapy, surgery or radiation shows very

limited effects. On the other hand, specific natural or synthetic

chemical compounds have been widely applied for cancer

chemoprevention to inhibit or revert carcinogenesis and to

suppress the malignancy of cancer [4].
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Medicinal plants have been used for centuries to treat a variety

of diseases and maintain health before the advent of modern

medicine [5,6]. The accumulation and developing knowledge of

the medicinal properties of plants by personal experimentation,

local custom, anecdote, and folk tradition leads to the formation of

numerous traditional medical systems and therapies, including

traditional Chinese medicine (TCM), Ayurvedic medicine, in-

digenous medicine, naturopathy and aromatherapy [7,8,9]. In

modern medicine, plants have been a source for new anti-cancer

drugs. For example, vinblastine was traditionally obtained from

Catharanthus roseus, taxol was isolated from the bark of the Pacific

yew tree Taxus brevifolia, camptothecin was isolated from the bark

and stem of Camptotheca acuminata [10,11,12]. The advancement of

technology such as gas chromatography-mass spectrometry (GC-

MS) and liquid chromatography-mass spectrometry (LC-MS) have

speed up the process of drug screening and discovery [13]. LC-MS

is a highly sensitivity and selectivity method used in drug

development at many different stages including profiling of

secondary metabolites in plants, impurities detection, metabolic

stability or degradant analysis [14,15].

Centratherum anthelminticum (L.) Kuntze, commonly known as

kalajiri, somraj, black cumin or bitter cumin, is a robust leafy plant

belongs to Asteraceae family of the flowering plants (Figure 1).

Scientific synonyms for this plant include Vernonia anthelmintica and

Conyza anthelmintica. This plant can be found in India, Himalaya

mountain, Khasi mountain, Sri Lanka, Afghanistan, and is widely

used as a traditional herb against fever, cough and diarrhea in the

region. Recent experimental analyses have proven that extracts

from seeds of C. anthelminticum possess various pharmacological

properties. The methanolic extract from the C. anthelminticum seeds

demonstrates antiviral properties [16] whereas acetone and ethyl

acetate extracts demonstrate antifilarial activity against Setaria cervi

[17]. Besides, petroleum ether and alcohol extracts show analgesic,

antipyretic and anti-inflammatory effect in rat model [18,19].

Different extracts from C. anthelminticum seeds also show antimi-

crobial and antifungal properties when screened on various

pathogens in vitro [20]. A recent report also suggests C.

anthelminticum seeds phenols inhibit liposomal peroxidation and

protect oxidative damage to genomic DNA of Bacillus, therefore

can function as an anti-oxidant agent [21].

In 2004, Lambertini et al. reported the in vitro anti-proliferative

effect of extracts from C. anthelminticum on human breast cancer

cells [22]. We recently reported that the chloroform, but not

hexane or methanol fractions from C. anthelminticum (L.) seeds

(CACF) exhibited anti-oxidant property by inhibiting tumor

necrosis factor-a (TNF-a)-induced human cancer cell growth by

interrupting the activation of nuclear factor-kappa B (NF-kB) [23].
However, the active compounds in CACF were not examined in

the previous reports. In this study, we showed that CACF inhibited

MCF-7 breast cancer cell growth. Administration of CACF caused

morphological changes, disrupted cytoskeletal structures and DNA

fragmentation. Bioassay-guided fractionation led us to the

identification of vernodalin as the cytotoxic agent in CACF. To

the best of our knowledge, this is the first report on the cytotoxic

and the apoptotic mechanism of vernodalin isolated from C.

anthelminticum seeds in human breast cancer cells.

Materials and Methods

Plant Material
The seeds of C. anthelminticum were purchased from the

medicinal plant cultivation zone of Amritum Bio-Botanica Herbs

Research Laboratory Pvt. Ltd, Betul Madhya Pradesh India. The

seeds were identified by the quality control department of the

company itself. Voucher specimen (CA-9) was deposited at the

Pharmacology Department of University Malaya, Malaysia.

Figure 1. Photo of Centratherum anthelminticum (L.) seeds.
doi:10.1371/journal.pone.0056643.g001
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Cell Culture
The human breast cancer cell line, MCF-7 was purchased from

Cell Lines Service (300273; Eppelheim, Germany) and MDA-MB-

231 cell line was obtained from American Type Culture Collection

(HTB-26; ATCC, Manassas, VA). Human mammary epithelial

cells were purchased from ScienCell (7610; Carlsbad, CA) and

maintained in mammary epithelial cell medium (ScienCell). MCF-

7 and MDA-MB-231 cells were grown in Dulbecco’s Modified

Eagle Medium (DMEM, Life Technologies, Inc, Rockville, MD)

supplemented with 10% heat-inactivated fetal bovine serum

(Sigma-Aldrich, St. Louis, MO), 2 mM glutamine, 1% penicillin

and streptomycin. Cells were cultured in tissue culture flasks

(Corning, USA) and were kept in CO2 incubator at 37uC in

a humidified atmosphere with 5% CO2. For experimental

purposes, cells in exponential growth phase (approximately 70–

80% confluency) were used.

Extraction and Isolation
The powdered seeds of C. anthelminticum (100 g) were extracted

successively with hexane (36250 ml) (Merck, Darmstadt, Ger-

many), chloroform (CHCl3) (36250 ml) (Merck, Darmstadt,

Germany) and methanol (MeOH) (36250 ml) (Merck, Darmstadt,

Germany), in a Soxhlet apparatus for 24 hours. The resultant

extracts were filtered using Whatman No. 1 filter paper (What-

man, England) and dried under vacuum to yield 20.1, 7.7, 11.6 g,

respectively of the extracts. Then the dried fractions were kept at

220uC until further use. In our previous paper, the chloroform

extract (CACF) showed highest activity on MTT assay, therefore

CACF was chosen for this study [23].

Bioassay Guided Isolation
The chloroform extract was fractionated using reversed phase

C18 (Merck, Germany) flash column chromatography. The

column was preconditioned with water, then the extract was

added to the column and eluted using a step gradient of water and

methanol as follows: MeOH:H2O (1:1, 36100 ml); MeOH:H2O

(6:4, 36100 ml); MeOH:H2O (7:3, 36100 ml); MeOH:H2O (8:2,

36100 ml); MeOH:H2O (9:1, 36100 ml) and MeOH (10:0,

56100 ml). The fractions were dried using a rotary evaporator.

Similar fractions were pooled according to their liquid chroma-

tography mass spectrometry (LC-MS) profile using Shimadzu

UFLC-IT-TOFMS, into six fractions (CACF-A, CACF-B, CACF-

C,……CACF-F). Each fraction was tested for their cytotoxic

activity using MTT assay on MCF-7 cell line.

The cytotoxic active fractions CACF-A, CACF-B and CACF-C

were then further purified using either preparative high perfor-

mance liquid chromatography (HPLC) (Gilson GX-281/322

system) using a Waters Novapak C18 column (256100 mm,

6 mm) or by recrystallisation. The major active compound of the

fractions CACF-A and CACF-B were obtained by preparative

Figure 2. CACF inhibits MCF-7 cells proliferation in a time- and dose-dependent manner. (A) MCF-7 cells were treated with control DMSO,
various concentrations (0.195, 0.39, 0.78, 1.56, 3.125, 6.25, 12.5, 25, 50 mg/ml) of CACF or anti-cancer drug doxorubicin for 24 hours. Cell viability was
determined by MTT assays. (B) Real-time cell proliferation was measured using xCELLigence Real-Time Cellular Analysis (RTCA) system. MCF-7 cells
were treated with DMSO (control), indicated concentration of CACF or doxorubicin (DOX) and normalized cell index for 3 consecutive treatment days
was shown. Data were mean 6 SD. Arrow showing time-point of CACF administration.
doi:10.1371/journal.pone.0056643.g002
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Figure 3. Morphological assessment of CACF-treated MCF-7 cells. (A) Representative figures of MCF-7 cells were treated with CACF for 12
hours. Cells were stained with apoptosis marker annexin V (green) and nucleus marker Hoechst 33258 (blue). Histogram shows mean fluorescence
intensities of annexin V in MCF-7 cells treated with various concentration of CACF. Data were mean 6 SD, *P,0.05. (B) Representative figures of
cytoskeletal F-actin formation in control or CACF-treated MCF-7 cells. Cells were fixed, stained with DY544-phalloidin (red) and Hoechst 33258 (blue)
after treated with 6.25 mg/ml CACF or solvent DMSO for 12 hours. Histogram shows mean fluorescence intensities of phalloidin in MCF-7 cells treated
with various concentration of CACF. Data were mean 6 SD, *P,0.05. (C). Representative figures of MCF-7 cells treated with DMSO (control), 6.25 or
12.5 mg/ml of CACF for 24 hours. Cells were also treated with a standard drug doxorubixin (DOX) as positive control of apoptosis induction. Cells were
stained with Hoechst 33258 dye (blue). All images were visualized and captured using Cellomic HCS array scan reader (objective 206).
doi:10.1371/journal.pone.0056643.g003
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HPLC. The fractions were eluted at a flow rate of 12 ml per min

over 75 min. The gradient started at 10% solvent (A) (acetonitrile

with 0.1% formic acid) and 90% solvent B (water with 0.1%

formic acid) for 5 min. The gradient then changed from 10% to

60% (A) over 5 minutes, followed by 60–100% (A) for 50 minutes

and finally an isocratic elution of 100% (A) from 60 to 75 min.

The fractions yielded 10 mg of compound (1) (colorless oil) eluted
at about 30 min. Fraction CACF-C was purified by recrystalliza-

Figure 4. Isolation of active compound from CACF. A. Flow chart of bioassay guided isolation of Centratherum anthelminticum. B. HPLC
chromatogram of the fraction of CACF-A of the chloroform extract of C. anthelminticum.
doi:10.1371/journal.pone.0056643.g004
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tion from ethyl acetate (EtOAC) (Merck, Darmstadt, Germany)/

diethyl ether (Merck, Darmstadt, Germany) to give a white

powder of compound (2) (183.5 mg).

Identification of Compounds
The 1H and 13C Nuclear Magnetic Resonance (NMR)

spectroscopy were carried out on a JOEL NMR 400 and

100 MHz with TMS as internal standard. HR-ESI-MS was

measured on a LCMS-IT-TOF mass spectrometer (Shimadzu IT-

TOF). MS was recorded on Shimadzu GC-MS model QP2010

Plus spectrophotometer.

Spectral Data
Vernodalin (1) was obtained as colorless oil. The 1H and 13C

NMR spectral data obtained for CDCl3 solution of the compound

were in agreement to those previously identified as vernodalin

[24]. The positive ion HR-ESI-MS spectrum showed a molecular

ion peak at m/z 361 [M+H]+ consistent to molecular formula

C19H21O7.
1H NMR (CDCl3, 400 MHz): d 6.74 (1H, s, H-15a),

6.29 (1H, s, H-49a), 6.20 (1H, d, H-13a), 5.96 (2H, s, H-49b, H-15

b), 5.71(1H, dd, J=11, 17.4, H-1), 5.64 (1H, d, J=3.2,H-13 b),
5.32 (2H, dd, J=6.84,11, H-2), 5.13 (1H, td, J = 4.56, 10.52,H-8),

4.48 (1H, d, J=12.36, H-14 a), 4.35 (1H, s, H-39), 4.28 (1H, dd,

J=1.36, 12.36, H-14b), 4.06 (1H, t, J=11, H-6), 3.03 (2H, m, H-

Figure 5. Mass spectra of CACF isolated fractions. (A, B) LC-MS chromatograms of fraction CACF-A and CACF-C. (A) Single peak detected in the
fraction CACF-A was identified as vernodalin (1). (B) Major peak detected in fraction CACF-C was identified as 12,13-dihydroxyoleic acid (2) while
vernodalin (1) constituted a small part in the fraction. (C) HR-ESI-MS spectrum (positive mode) of vernodalin (1). (D) HR-ESI-MS spectrum (negative
mode) of 12,13-dihydroxyoleic acid (2).
doi:10.1371/journal.pone.0056643.g005
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5, H-7), 2.24 (1H, dd, J=4.6, 14.2, H-9), 2.11 (1H, br s, OH), 1.71

(1H, dd, J=10.52, 14.2, H-9). 13C NMR (CDCl3, 100 MHz):

d 168.4 (C-12), 165.1 (C-19), 163.2 (C-3), 139.6 (C-29), 138.8 (C-1),
136.0 (C-15), 135.6 (C-11), 129.9 (C-4), 127.2 (C-49), 121.7 (C-13),

117.2 (C-2). 78.1 (C-6), 70.6 (C-14), 68.8 (C-8), 62 (C-39), 50.5 (C-

7), 46.7 (C-5), 41.1 (C-10), 39.0 (C-9).

12,13-dihydroxyoleic acid (2), was obtained as white powder.

The LCMS-IT-TOF spectra showed molecular ion peaks, [M-H]-

at m/z 313 consistent to molecular formula C18H34O4.
1H NMR

(CDCl3, 400 MHz): d 5.6 (1H, m, H-10), 5.4 (1H, m, H-9), 3.49

(2H, q, J=2.4, 4.8, H-11, H-12), 2.36 (4H, m, H-8, H-11), 2.07

(2H, q, J= 6.4, 14.0, H-2), 1.65 (2H, m, H-3), 1.51-1.32 (16H, m,

(CH2)8), 0.91 (3H, t, J=6.8, H-18). 13C NMR (CDCl3, 100 MHz):

d 178 (C-1), 133.6 (C-9), 124.7 (C-10), 73.9 (C-12), 73.8 (C-13),

d 14.0–33.7 (CH2)12, 14.0 (C-18).

MTT Cell Viability Assay
16104 cells per well were seeded into 96-well plate overnight.

Cells were treated with various concentrations of compound or

extract (dissolved in dimethyl sulfoxide, DMSO) for 24 hours. As

negative control, cells were treated with vehicle (DMSO) only.

Next, cells were incubated with 50 ml of 4,5-dimethylthiazol-2-yl-

2,5-diphenyltetrazolium bromide (MTT) (2 mg/ml) at 37uC for 2

hours. After dissolving the formazan crystals in DMSO, plates

were read in ChameleonTM multitechnology microplate reader

(Hidex, Turku, Finland) at 570 nm against 620 nm. This

experiment was performed in triplicates and repeated for 3 times.

Mean values 6 SD for each concentration was determined.

Calculation of cell viability was described previously with slight

modification [25]. Cell viability (in percentages, %) was showed as

ratio of absorbance (A570 nm) in treated cells relative to absorbance

in control cells (DMSO) (A570 nm). The IC50 was defined as the

concentration of sample needed to reduce 50% of absorbance

relative to the vehicle (DMSO)-treated control.

Cell viability (%) ~
A570nm(Sample)

A570nm (Control DMSO)
| 100

Real Time Cell Growth Assay
Cell proliferation was measured using xCELLigence Real-Time

Cellular Analysis (RTCA) system (Roche, Germany), which allows

us to monitor the cell viability and cell growth continuously at

multiple time point. Briefly, background measurements were taken

after adding 50 ml of the culture medium to the wells. Next, cells

were seeded at density 16104 on a specialized 16-well plate with

electrodes for 18 hours to allow cells grow to the log phase. Cells

Figure 6. Chemical structure of vernodalin (1) and 12,13-dihydroxyoleic acid (2).
doi:10.1371/journal.pone.0056643.g006
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were treated with 100 ml of CACF or vernodalin in various

concentrations (mg/ml) dissolved in cell culture media and

continuously monitored for up to 72 hours. Cell sensor impedance

was expressed as an arbitrary unit called the Cell Index. Cell index

were recorded every 5–10 minutes by RTCA analyzer. To

eliminate variation between wells, cell index values were

normalized to the value at the beginning of treatment time-point.

Real Time Cell Invasion Assay
The kinetics of cell invasion was assayed using the xCELLigence

Real-Time Cell Analyzer (RTCA DP; Roche). CIM-plates

(Roche) were pre-coated with 30 ml of matrigel (BD Biosciences)

diluted 1:10 in DMEM for 1 h at 37uC. The upper chambers

contained pre-warmed serum-free DMEM, whereas the lower

chambers contained either DMEM with 10% FCS or DMEM

medium only (negative control). Indicated concentrations of

vernodalin were added into the medium of upper and lower

chambers. 16104 MDA-MB-231 cells were seeded into each well

of the upper chambers. Cells were allowed to settle for 30 min at

room temperature before being placed back to the RTCA DP in

a humidified incubator at 37uC with 5% CO2. Readings were

Figure 7. Vernodalin inhibits proliferation of MCF-7 and MDA-MB-231 human breast cancer cell lines. (A) MCF-7, MDA-MB-231 and
primary mammary epithelial cells were treated with vehicle (DMSO) or various concentrations (0.195, 0.39, 0.78, 1.56, 3.125, 6.25, 12.5, 25, 50 mg/ml)
of vernodalin for 24 hours. Cell viability was determined by MTT assays. (B) Real-time cell growth was determined using RTCA analyzer. MCF-7 and
MDA-MB-231 cells were treated with DMSO (control) or indicated concentrations of vernodalin. Normalized cell index for 3 consecutive treatment
days was shown for each sample. Data were mean 6 SD. Arrow showing time-point of vernodalin administration.
doi:10.1371/journal.pone.0056643.g007
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Figure 8. Vernodalin inhibits invasion of MDA-MB-231 human breast cancer cell line. Real-time cell invasive assay. MDA-MB-231 cells were
seeded into upper chamber of CIM plates coated with matrigel. Lower chamber were filled with medium with FCS or medium only. Cells were treated
with DMSO (control) or indicated concentrations of vernodalin and continuously monitored for 16 hours. Increased cell migration to lower chamber
resulted in higher normalized cell index. Data were mean 6 SD from two independent experiments.
doi:10.1371/journal.pone.0056643.g008

Figure 9. Vernodalin induces apoptosis in human breast cancer cells. (A) Flow cytometry analysis of MCF-7 and MDA-MB-231 cells treated
with 3.125, 6.25 and 12.5 mg/ml verdonalin for 24 hours. Representative figures showing population of viable (annexin V- PI-), early apoptotic
(annexin V+ PI-), late apoptotic (annexin V+ PI+) and necrotic (annexin V- PI+) cells. (B) Bar chart showing increased proportion of early and late
apoptotic cells after vernodalin administration. Data were mean 6 SD of two independent experiments. (*P,0.05).
doi:10.1371/journal.pone.0056643.g009
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taken every 10 min for 16 h and plotted curves represent the

averages from two independent wells per measurement.

Apoptosis Assay
For in vitro fluorescent staining, 16104 cells per well were seeded

in 96 well-plate overnight. Cells were then treated with CACF at

various concentrations for 12 hours. Live cells were stained with

FITC-annexin V (BD Biosciences, San Jose, CA) for 15 minutes

before fixed with 4% paraformaldehyde. Cells were washed 3

times with PBS and the fluorescent images were acquired using

Cellomics ArrayScan high content screening (HCS) reader

(Thermo Scientific, Pittsburgh, PA). Compartmental analysis

bioapplication module was used to quantify the fluorescence

intensity of FITC-annexin V.

For apoptosis assay by flow cytometry, cells were seeded at

16105 per ml on 25 cm2 flask overnight before treated with

vernodalin at various concentrations for 24 hours. Determination

of apoptotic cells by fluorescent staining was done as described

previously [25]. Briefly, cells were incubated with FITC-annexin

V and propidium iodide (PI) (BD Biosciences) in binding buffer for

15 minutes in dark. Stained cells were immediately subjected to

flow cytometry analyses using FACS Canto II flow cytometer (BD

Biosciences).

Cytoskeletal Rearrangement Analysis
16104 MCF-7 cells per well seeded overnight in 96-well plate

were exposed to DMSO (negative control) or CACF at various

concentrations for 12 hours. Cells were fixed, washed with wash

buffer before probed using phalloidin conjugated with DyLightTM

554 and Hoechst 33258 according to the manufacturer’s in-

struction. Cells were visualized and images were acquired using

Cellomics ArrayScan HCS reader (Thermo Scientific). Morphol-

ogy bioapplication module was used to quantify the fluorescence

intensity of phalloidin.

Cell Cycle Analysis
16105 cells per ml seeded overnight in 25 cm2 flask were

treated with vernodalin for 24 hours. Cells were then fixed with

70% ethanol overnight. Cells were washed twice with PBS and

stained with CycleTESTTM PLUS DNA Reagent Kit (BD

Biosciences) according to manufacturer’s instructions. Cell cycle

distribution of nuclear DNA was determined by flow cytometry

(BD Biosciences) by analyzing at least 20,000 cells per sample. The

percentage of cells in G1, S and G2 phases were analyzed by Diva

software (BD Biosciences).

Reactive Oxygen Species (ROS) Analysis
16104 cells per well were seeded onto 96-well plate. Cells were

treated with vernodalin or DMSO (negative control) at indicated

concentrations for 12 hours. Dihydroethidium (DHE) dye

contained in Cellomics ROS kit was added into live culture for

30 minutes. Cells were fixed and washed with wash buffer as

described by the manufacturer’s instruction. Stained cells were

visualized and acquired using Cellomics ArrayScan HCS reader

(Thermo Scientific). Target activation bioapplication module was

used to quantify the fluorescence intensities of DHE dye in the

nucleus.

Figure 10. Vernodalin induces cell cycle arrest at G0/G1 stage. MCF-7 and MDA-MB-231 cells were treated with indicated dosages of
verdonalin for 24 hours. Cells were ethanol-permeabilized and stained with propidium iodide before subjected to flow cytometry analysis.
Representative figures of cell cyle distribution (G0/G1, S, and G2/M) showing accumulation of vernodalin-treated cells in G0–G1 stage. Data were
mean 6 SD of two independent experiments.
doi:10.1371/journal.pone.0056643.g010
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Nuclear Morphology, Membrane Permeability,
Mitochondrial Membrane Potential Dym (MMP) and
Cytochrome C Release Analysis
Cellomics Multiparameter Cytotoxicity 3 Kit (Thermo Scien-

tific) was used. Cells were plated at 16104 cells per well on 96-well

plate overnight. DMSO (solvent) or vernodalin was added at

various concentrations and further incubated for 24 hours. MMP

dye (Excitation 552/Emission 576) and the cell permeability dye

(Excitation 491/Emission 509) were added to live cells and

incubated for 1 hour. Cells were fixed with 4% formaldehyde for

15 minutes. Fixed cells were permeabilized with 0.1% Triton X-

100 in phosphate buffer saline (PBS). Samples were blocked with

3% bovine serum albumin and incubated with cytochrome c

primary mouse antibody for 1 hour. Samples were washed three

times with wash buffer I (16PBS) before addition of goat anti-

mouse secondary antibodies conjugated with DyLightTM 649.

Cells were rinsed three times with wash buffer II (16PBS with 1%

Tween-20). Nucleus was stained with Hoechst 33258. Stained cells

were visualized and images were captured using Cellomics

ArrayScan HCS reader (Thermo Scientific). Cell health profiling

bioapplication module was used to quantify the fluorescence

intensities of each dye.

Western Blot Analysis
SDS-PAGE and Western blot analyses were done as described

with slight modifications [26]. Briefly, 24 hours post treatment,

cells were lysed in RIPA buffer (1% NP-40, 0.5% sodium

deoxycholate, 0.1% SDS) supplemented with freshly added

10 mM b-glycerophosphate, 1 mM sodium orthovanadate,

10 mM NaF, 1 mM phenylmethylsulfonyl fluoride and Protease

Inhibitor Cocktail (Santa Cruz, CA) and loaded onto 10%

polyacrylamide gel. Proteins were then transferred to microporous

polyvinylidene difluoride (PVDF) membrane (Milipore). Mem-

branes were incubated in 5% BSA (Sigma) blocking buffer for 1 h

at room temperature. Incubations with primary antibody were

carried out overnight at 4uC. Immunoblotting was performed with

the following antibodies: rabbit anti-cleaved caspase-3, anti-

cleaved caspase-7, anti-cleaved caspase-9, anti-cleaved PARP,

anti-Bcl-2, anti-Bcl-xL (1:200) (Cell Signaling Technology, Dan-

vers, MA), and mouse anti-b-actin (1:500) (Sigma) antibodies.

Membranes were washed 3 times (10 min each) in Tween buffer

before incubating with HRP-conjugated goat anti-mouse or rabbit

secondary antibodies. To remove excess antibodies, membranes

were washed 4 times before HRP activities were detected using

ECL Plus Chemiluminescence Reagent (Amersham, Chalfont,

UK) according to the protocol supplied with the kit.

Bioluminescent Assays for Caspase-3/7,-8 and -9
Activities
A time-dependent study of caspase-3/7, -8 and -9 activities was

performed in triplicates using assay kits Caspase-GloH 3/7, 8 and 9

(Promega, Madison, WI) on a white 96-well microplate. A total of

16104 cells was seeded per well and incubated with 100 ml of
vernodalin (final concentration 6.25 mg/ml) for 1, 3, 6, 12, 18, 24

and 30 hours. Caspase activities were investigated according to the

manufacture protocol. Briefly, 100 ml caspase-Glo reagent was

added and incubated at room temperature for 30 minutes.

Presences of active caspases from apoptotic cells cleaved the

aminoluciferin-labeled synthetic tetrapeptide thus release substrate

for the luciferase enzyme. The caspase activities were measured

using a Tecan InfiniteH200 Pro (Tecan, Männedorf, Switzerland)

microplate reader.

Statistical Analysis
Experimental values were expressed as the means 6 standard

deviation (SD) of the number of experiments indicated in the

legends. Analysis of variance (ANOVA) was performed using

GraphPad Prism 5 software. Statistical significance was defined

when P,0.05.

Results

CACF Inhibits Survival of Human Breast Cancer MCF-7
Cells
We first determined the cytotoxic effect of CACF on cell

survival using a well-characterized human breast cancer cell line,

MCF-7. MTT assay was used to determine cell viability. The

survival of MCF-7 decreased significantly in a concentration

dependent manner with IC50 value at 6.861.2 mg/ml (Figure 2A).

No significant cell inhibitory effect was observed in DMSO

(solvent)-treated samples. As a positive control, we treated MCF-7

cells with doxorubicin, a cancer chemotherapy drug, which

showed IC50 value at 2.060.8 mg/ml. To verify MTT results,

we repeated the experiments using Alamar blue staining for cell

viability. We found comparable results between MTT and Alamar

blue staining assays (Figure S1A).

MTT assays are end point assays which only detect cell viability

at certain time-point. Next, we observed the subtle changes or the

pattern of cell growth after CACF-treatment for 3 consecutive

days using real-time cell proliferation assay (RTCA). In control

wells (vehicle, DMSO only), we observed an exponential increased

of cell growth as reflected by increased in normalized cell index

(nCI) values. Whereas MCF-7 treated with doxorubicin at

concentration 6.25 mg/ml resulted in cell growth inhibition

(Figure 2B). A dose-dependent attenuation of cell proliferation

was observed in CACF-treated MCF-7 (Figure 2B). As shown in

Figure 2B, we observed a sudden decrease in nCI values about 1–2

hours after treated with 25 or 12.5 mg/ml of CACF, indicating

acute toxicity at high dosages. Together, our results showed that

CACF inhibited cell growth of MCF-7 breast cancer cells in dose-

and time-dependent manners.

Morphological Assessment of CACF-treated MCF-7 Cells
Next, we examined if CACF treatment resulted in cell death

through apoptotic pathway. We treated MCF-7 cells with control

(DMSO solvent) or CACF for 12 hours before staining live cells

with apoptosis marker annexin V conjugated to FITC. Exposure

of 6.25 and 12.5 mg/ml of CACF led to higher annexin V staining

compared to control, suggesting apoptotic activities (Figure 3A).

Under light miscroscope, we observed that MCF-7 cells exposed

to CACF resulted in reduction of cell size and cell-cell contact

areas (Figure 3B). To further investigate this, we examined

cytoskeletal F-actin structure by staining the cells with phalloidin

Figure 11. Vernodalin mediates ROS production. (A) MCF-7 or MDA-MB-231 cells were treated with DMSO (control) or indicated concentration
of vernodalin for 12 hours. Live cells were stained with DHE dye (green) before cells were fixed and stained with Hoechst 33258 (blue). Images were
acquired using Cellomic HCS array scan reader (objective 206). Representative figures (control or 6.25 mg/ml vernodalin-treated) were shown. (B) Bar
chart showing average fluorescence intensities of DHE dye in the nucleus. Data were mean 6 SD of fluorescence intensity readings representative of
three independent experiments. (*P,0.05).
doi:10.1371/journal.pone.0056643.g011

Vernodalin Induces Apoptosis in Breast Tumor Cells

PLOS ONE | www.plosone.org 12 February 2013 | Volume 8 | Issue 2 | e56643



Vernodalin Induces Apoptosis in Breast Tumor Cells

PLOS ONE | www.plosone.org 13 February 2013 | Volume 8 | Issue 2 | e56643



conjugated to DyLightTM 554, which detect polymerized actin (F-

actin). Control cells demonstrated well-organized actin filament

bundles or stress fibers in the cytoplasm (Figure 3B). On the

contrary, CACF treatment (6.25 and 12.5 mg/ml) on MCF-7 cells

caused a drastic reduction in phalloidin stain (Figure 3B) and loss

of stress fibers in the cytoplasm. Furthermore, F-actin was no

longer distributed evenly at the cell periphery, but appeared as

punctuate stain at the plasma membrane. This result suggests that

CACF treatment led to the disruption of cytoskeletal structure in

MCF-7 cells.

Because apoptotic activity is usually associated with DNA

cleavage, we examined the effect of CACF on nuclear morphology

of MCF-7 cells using Hoechst 33258. After CACF treatment for

24 hours, a population of condensed and fragmented nuclei was

observed (Figure 3C). The number of cells with fragmented nuclei

increased with higher dosages of CACF administrated while no

detectable DNA damage was detected in control cells. Together,

these data indicated that CACF treatment triggered apoptotic

pathway as evidenced by higher annexin V staining, cell

shrinkage, disrupted cytoskeleton and DNA damage in MCF-7

cells.

Cytotoxic Activities of CACF Fractions
To identify the active compound in CACF extracts which

possesses cytotoxicity activity against human breast cancer cells,

we performed HPLC analysis. The cytotoxic extract CACF was

fractionated into six fractions using preparative HPLC (Figure 4A

and 4B). Among these fractions, CACF-A and CACF-B showed

highest activity on MCF-7 cells with IC50 values of 5.860.6 mg/ml

and 5.560.3 mg/ml, respectively. However, CACF-C showed

moderate activity on MCF-7 cells with IC50 value of

38.261.6 mg/ml while the other fractions (CACF- D to F)

exhibited low cytotoxic activity (IC50.100 mg/ml). Compounds

in fractions CACF-A, -B and -C were further isolated as described

in Materials and Methods.

Major compounds in the CACF-A, -B and -C fractions were

subjected to LC-MS analysis. LC-MS analysis showed that

vernodalin (1) (10 mg), eluted at 3.0 min, was the major

compound of CACF-A and CACF-B fractions (Figure 5A and

5C). In addition, 12,13-dihydroxyoleic acid (2), eluted at

4.75 min, (183.5 mg) was largely detected in CACF-C fraction

while vernodalin was minor (1 mg) (Figure 5B and 5D). Chemical

structures of vernodalin (1) and dihydroxyoleic acid (2) were

depicted in Figure 6A and 6B.

Vernodalin Inhibits Cell Growth of MCF-7 and MDA-MB-
231 Cells
To examine the in vitro anti-cancer efficacy of vernodalin, we

included a highly invasive and metastatic variant of human breast

cancer cell-line, MDA-MB-231, apart from MCF-7 (non-meta-

static). Both MCF-7 and MDA-MB-231 cells were exposed to

various concentrations of vernodalin for 24 hours. Cell viability

was determined by MTT assays. The IC50 values for vernodalin

treated MCF-7 and MDA-MB-231 were 2.560.3 mg/ml and

3.460.6 mg/ml, respectively (Figure 7A). On the other hand, the

IC50 of normal mammary epithelial cells was 12.760.5 mg/ml,

relatively more resistant to cell killing by vernodalin. We further

verified the results using Alamar blue proliferation assay (Figure

S1B). Meanwhile, 12,13-dihydroxyoleic acid, another compound

isolated showed no cytotoxicity effect on both breast cancer cell

lines, IC50.100 mg/ml (data not shown).

Next, we monitored real-time vernodalin-mediated cell growth

inhibition for 3 consecutive days by RTCA. As shown in Figure 7B

and 7C, a dose-dependent cell-growth inhibition was observed in

vernodalin-treated MCF-7 and MDA-MB-231 cells. Reduced nCI

was observed at concentration 3.125 mg/ml, whereas no signifi-

cant increment in nCI at 6.25 mg/ml or higher after vernodalin

treatment compared to control (Figure 7B and 7C). These results

showed that vernodalin inhibited cell growth of breast cancer cells,

MCF-7 and MDA-MB-231 in a dose- and time-dependent

manner.

Vernodalin Inhibits Invasive Potential of Metastatic Breast
Cancer Cells
Next, we examined whether vernodalin has an influence on the

invasive potential of metastatic breast cancer cells MDA-MB-231

by using modified Boyden chamber (CIM plates, Roche) with

matrigel as a substrate. The presence of chemoattractant FCS

strongly induced non-treated MDA-MB-231 cell migration to the

lower chamber. In contrast, no signal or cell invasion was detected

in lower chamber without addition of FCS. On the other hand,

dose-dependent inhibition of cell invasion was observed upon

vernodalin treatment (Figure 8). Of note, we previously showed

that CACF treatment resulted in reduced phalloidin staining

(Figure 3B), implying that vernodalin-mediated cell invasion

inhibition was probably mediated through disruption of actin

polymerization.

Vernodalin causes Apoptosis and Cell Cycle Arrest
To examine whether cells undergo apoptosis, untreated or

vernodalin-treated MCF-7 and MDA-MB-231 breast cancer cells

were stained with annexin V and PI. Flow cytometry analysis of

stained cells can distinguish cells into four groups, namely viable

(annexin V- PI-), early apoptosis (annexin V+ PI-), late apoptosis

(annexin V+ PI+) and necrotic (annexin V- PI+) cells. As shown in

Figure 9A and 9B, vernodalin exposure at different concentrations

(3.125, 6.25 and 12.5 mg/ml) resulted in higher population of early

apoptotic population (30.0619.7% to 48610.8% in MCF-7 cells;

26.168.5% to 28.366.8% in MDA-MB-231 cells) compared to

control (,1%). There were dose-dependent increments of late

apoptotic population (10.567.7%, 25.169.8%, 57.4616.0% in

MCF-7 cells; and 9.166.8%, 14.7610.2%, 25.968.5% in MDA-

MB-231 cells) when treated with 3.125, 6.25 or 12.5 mg/ml of

vernodalin. Less than 10% of population showed necrotic signs

when treated with high dosage (12.5 mg/ml) of vernodalin.

Next we examined the cell cycle distribution by staining

vernodalin treated breast cancer cells with propidium iodide and

analyzed the percentages of G0/G1, S, G2/M cell population

using flow cytometry. MCF-7 cells treated with 6.125 or 12.5 mg/
ml vernodalin showed higher G0/G1 population (72.5611.7%

and 71.664.9%, respectively) compared with 64.862.6% in the

control (Figure 10). MDA-MB-231 cells treated with 6.125 or

Figure 12. Effect of vernodalin on nuclear morphology, membrane permeabilization, MMP (Dym) and cytochrome c release. MCF-7
or MDA-MB-231 cells were plated in 96-well plates and treated with either vehicle (DMSO) or indicated dosages of vernodalin for 24 hours. Cells were
fixed and stained according to the manual. Images were acquired using Cellomic HCS array scan reader (objective 206). (A) Representative figures
showing changes in DNA content (blue), cell permeability (green), MMP (red) and cytochrome c (cyan). Arrows showed condensed or fragmented
DNA. (B) Bar chart showing dose-dependent increased in cell permeability, reduced MMP and increased cytochrome c release in vernodalin-treated
samples. Data were mean 6 SD of fluorescence intensity readings of three independent experiments. (*P,0.05).
doi:10.1371/journal.pone.0056643.g012
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12.5 mg/ml vernodalin also showed higher G0/G1 population

(61.061.1% and 64.763.3%) compared to 55.460.6% in control

cells. In addition, vernodalin treatment caused a concomitant

decrease in the proportion of cells in G2/M phase of the cell cycle

from control (18.063.5%) to treated MCF-7 cells (9.966.8% or

11.763.4%), and from control (20.761.4%) to treated MDA-MB-

Figure 13. Vernodalin induces apoptosis through intrinsic caspase pathway. (A, B) Caspase-3/7, -8 and -9 activities in the vernodalin
(6.25 mg/ml)-treated (A) MCF-7 or (B) MDA-MB-231 cells were determined as fold increase in luminescence against vehicle (DMSO)-treated cells at
various time intervals. Initial activation of caspase-9 was followed by gradual increment activity of caspase-3/7 after vernodalin treatment. Data were
mean6 SD. (C) Western blot showing the expression levels of cleaved caspase-3, -7, -9 and cleaved PARP in MCF-7 or MDA-MB-231 cells treated with
DMSO (control) or various concentration (3.125, 6.25 and 12.5 mg/ml) of vernodalin. b-actin served as a loading control. Data were representative of at
least two similar experiments.
doi:10.1371/journal.pone.0056643.g013
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231 cells (16.961.2% or 18.760.4%). Therefore, our data suggest

that vernodalin induced cell cycle arrest at the G0/G1 phase

(Figure 10).

Vernodalin Induces ROS Generation
ROS is produced especially when cells undergo chemical or

environmental stress and could be one of the causative factors

leading to cell cycle arrest or apoptosis. Next, we examined the

ROS level in control or vernodalin-treated breast cancer cells by

staining with DHE dye. ROS convert non-fluorescent DHE to

fluorescent ethidium, which then intercalates into DNA. Hoechst

33258, a DNA binding dye is used to identify the nuclei of

individual cells then the DHE fluorescence is quantified using the

Cellomic HCS machine to evaluate the oxidative stress level. As

shown in Figure 11A and 11B, ROS production was at the basal

level in control DMSO-treated MCF-7 or MDA-MB-231 cells. In

contrast, treatment with vernodalin (12 hours) resulted in dose-

dependent increased of ROS production as shown by increased

DHE staining in the nucleus (Figure 11A and 11B).

Effect of Vernodalin on Nuclear Morphology, Membrane
Permeabilization, MMP (Dym) and Cytochrome c Release
Since high ROS production could lead to plasma membrane,

DNA, mitochondrial damage, we further examined the nuclear

morphology, membrane permeability, mitochondrial membrane

potential (MMP, Dym) and cytochrome c release and localization.

As shown in Figure 12A and 12B, 24 hours of exposure to

vernodalin revealed a concentration-dependent increment of

membrane permeability, attenuation of MMP and increased

cytochrome c in the cytosol compared to control. In some

vernodalin-treated cells, cytochrome c was localized in the nucleus

and we could observe nuclear condensation and fragmentation in

these cells (Figure 12A).Whereas in control samples, nucleus

remained rounded and uniform in size. Moreover, plasma

membrane was intact as shown by the weak staining of

permeability dye (green, Figure 12A). Cytochrome c (cyan) was

distributed homogenously in the cytosol, which colocalized with

MMP dye (red), indicating that cytochrome c was not released

from the mitochondria in control cells (Figure 12A).

Effect of Vernodalin Treatment on Caspase-3/7, -8, -9
Apoptosis is a complex activity that mobilizes a number of

molecules and is classified into caspase-dependent or caspase-

independent mechanisms. Caspase-dependent pathway can be

further divided into extrinsic or intrinsic pathway, as determined

by involvement of caspase-8 or caspase-9, respectively. Both

intrinsic and extrinsic pathway involved activation of caspase-3/7

which is important for inducing downstream DNA cleavage

molecules. To examine the molecular mechanism underlying

apoptosis process, we stained cells with aminoluciferin-labeled

substrate of caspase and determined the caspase-3/7, -8, -9

activities by measuring the luminescence intensities every three

hours. As shown in Figure 13A, we observed a gradual increased

of caspase-9 and caspase-3/7 activity, which peaked at 18 hours in

both MCF-7 and MDA-MB-231 cells treated with 6.25 mg/ml of

vernodalin (Figure 13A and 13B). The activity of caspase-3/7

increased significantly from 6 to 12 hours, but remained high even

after 30 hours of treatment, indicating a more latent effect of

vernodalin in MDA-MB-231 cells (Figure 13B). In contrast, there

were no significant changes in the activity of caspase-8 for the time

span of 30 hours in vernodalin treated-MCF-7 or MDA-MB-231

cells. Our data suggested that vernodalin induced activation of

intrinsic caspase pathway in both breast cancer cell lines.

Figure 14. Vernodalin reduces expression of pro-survival molecules. MCF-7 and MDA-MB-231 cells were treated with control DMSO,
standard drug doxorubicin (12.5 mg/ml) or various concentrations of vernodalin (3.125, 6.25, 12.5 mg/ml). Western blot showing the expression levels
of the pro-survival molecules Bcl-2 and Bcl-xL in untreated and treated breast cancer cells. b-actin served as a loading control. Decreased Bcl-2 and
Bcl-xL protein levels were observed upon doxorubicin or vernodalin treatment. Data were representative of at least two similar experiments.
doi:10.1371/journal.pone.0056643.g014
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To examine whether caspases and the downstream PARP

molecule were involved in vernodalin-induced apoptosis, we

performed Western blot analysis using cell lysates of untreated/

vernodalin-treated MCF-7 or MDA-MB-231 cells. Results in-

dicated that vernodalin dose-dependently caused cleavage of

caspase-7 and -9 in MCF-7, whereas caspase-3, -7 and -9 were

activated in MDA-MB-231 cells (Figure 13C). On the other hand,

PARP cleavage was also detected in both cells, suggesting

involvement of caspase cascade and PARP inactivation in

vernodalin-mediated apoptosis (Figure 13C).

Vernodalin Downregulates Anti-apoptotic Molecules
Cell survival is maintained by pro-survival (anti-apoptotic)

molecules such as Bcl-2 and Bcl-xL. To examine if the vernodalin

initiated apoptosis by affecting the cellular level of these molecules,

we performed Western blot analysis using control or vernodalin-

treated breast cancer cells. Cells were also treated with a standard

drug doxorubicin as a positive control of apoptosis induction. Our

data showed that vernodalin dose-dependently reduced the

expression level of Bcl-2 and Bcl-xL (Figure 14).

Discussion

In this study, chloroform extract of the seed of C. anthelmintica

(CACF) was tested for its cytotoxicity effect on MCF-7 human

breast cancer cells. We showed that CACF effectively inhibited cell

growth of MCF-7. CACF-treated cells exhibited morphological

hallmarks of apoptosis including cell shrinkage, lost of cytoskeletal

F-actin structure, higher stain with apoptotic marker annexin V

and DNA damage. In fact, defects in apoptotic pathway are

thought to contribute to a number of human malignancies [27].

Thus, anti-cancer agents that induce apoptosis is one of the

efficient strategies in cancer chemotherapy [28].

Bioassay-guided isolation is a procedure whereby extract is

chromatographically fractionated until a pure and active com-

pound is isolated. Each fraction produce during the process is

evaluated in bioassay system (e.g. in vitro cell culture, in vivo rat or

zebrafish model etc) and the active fractions are chosen for further

purification [29,30,31]. In this study, bioassay guided isolation of

CACF extract led us to the identification of a potent compound

vernodalin. Vernodalin is a sesquiterpene lactone isolated from

various plant species including the seeds of C. anthelmintica [32].

Vernodalin exhibits anti-malarial and anti-bacterial activities and

is a constituent of Vernonia amygdalina (Compositae), a plant ingested

by wild chimpanzees sometimes suffering from parasite-related

diseases in the Mahale Mountains National Park, Tanzania

[33,34,35]. So far, only two studies have been done on anti-cancer

effect of vernodalin, which demonstrated cytotoxic activity on

melanoma and ovarian cancer cell lines [36] and human

carcinoma of the nasopharynx (KB) [37]. These two studies

mainly examined cell viability of vernodalin treated cancer cells by

MTT based assays and less information was available on anti-

cancer mechanism by vernodalin. To the best of our knowledge,

this is the first report on cytotoxicity and mechanism of vernodalin

on human breast cancer cells.

12,13-dihydroxyoleic acid (2), a compound isolated from

CACF-C (a moderate active fraction) did not show inhibitory

activity on breast cancer cells. The moderate activity of CACF-C

could be due to the presence of trace quantity of vernodalin

(Figure 5B). The structure of the compound was confirmed by

comparing its spectral data (MS, 1H NMR, 13C NMR) with those

reported for a synthetic 12,13-dihydroxyoleic acid [38]. The MS

spectrum (Figure S2A) showed ions at m/z 182 and 131

corresponding to the allylic cleavage and indicated the double

bond at C9 and C10 (Figure S2B). Fragmentation ions at m/z 213

and 157 corresponding to the alpha cleavage on the either side of

the OH groups which confirmed their positions at C12 and C13

[38,39]. A characteristic peak at m/z 85 (100%) as a result of ions

formed through C4 and C5 cleavage and losing two protons form

[C4H7O2
N]. This is the first time for the compound (2) to be

reported as secondary metabolite in plant. 12,13-dihydroxyoleic

acid (2) is normally synthesized by acetolysis of vernolic acid, an

epoxy fatty acid obtained from C. anthelmintica oil [40]. Hydroxy

fatty acids are important in industry for the production of

oleochemicals [38,39].

We showed that vernodalin induced cell cycle arrest in breast

cancer cells. Cell cycle progression is a hallmark for cell

proliferation. Deregulation of cell cycle has been linked with

cancer initiation and progression [41]. Thus, cell cycle has

emerged as one of the attractive therapeutic target in the

treatment of cancer. Nevertheless, siRNA or small molecule

inhibitors that target cell cycle have been developed, for example

flavopiridol is the first cell cycle inhibitor to be tested in clinical

trials [42,43]. To date, most of the chemotherapeutic agents

caused cell cycle arrest either at G0/G1 or the G2/M stage,

whereas cell cycle arrest at the S-phase is rare. For instance,

synthetically methoxylated analogue of resveratrol induces G1 cell

cycle arrest of human breast carcinoma MCF-7 cells [44] whereas

curcumin induced G2/M cell cycle arrest in cisplatin resistant

ovarian cancer cells [45]. The cell cycle is controlled by a group of

cyclin family proteins called cyclin-dependent kinase (CDKs)

enzymes [46]. The regulation of CDKs activities is achieved by

their association with cyclin partners and kinases, phosphatases

and specific inhibitors [46]. Future works are needed to examine

the detail mechanism of cell cycle arrest in vernodalin-treated

breast cancer cells.

ROS are either free radicals or reactive anions containing

oxygen atoms, such as oxygen ions and peroxides. ROS could be

a by-product of aerobic respiration, tissue-specific enzyme or

microsomal cytochrome P450 metabolism of xenobiotic com-

pounds [47]. High level of ROS can destroy the integrity of

plasma membrane, affects dynamic of actin cytoskeleton and

causes DNA damage, cumulatively known as oxidative stress

[48,49,50]. Interestingly, we observed that ROS production in

vernodalin-treated human breast cancer cells were 2–4 fold higher

compared to control. Although harmful to cells, the anti-cancer

effect of several conventional treatments such as ionizing radiation,

etoposide or arsenates rely on their ability to stimulate ROS

production, which modulate cellular redox balance leading to

oxidative stress, destabilization of mitochondria and subsequently

induction of apoptosis [51]. For example, etoposide caused severe

ROS accumulation preferentially in the human glioblastoma-

astrocytoma cells and elevated ROS rendered these cells highly

sensitive to cell death [52].

Studies have shown that mitochondria played a key role in the

apoptotic process [53,54,55]. Changes in the MMP (Dym)

increase the release of apoptogenic factors such as cytochrome c

from the outer mitochondria membrane space into the cytosol.

Released cytochrome c then form apoptosome with pro-caspase-9,

apoptotic protease activating factor-1 (Apaf-1) and ATP, which in

turn activates downstream apoptotic signal such as caspase-3/7

[56,57]. However, malignant tumor cells predominantly produce

ATP through glycolysis rather than oxidation of pyruvate in

mitochondria like most normal cells, a phenomena known as

Warburg effect [53]. Hence, tumor mitochondria are less

susceptible to mitochondria membrane permeabilization render-

ing them more resistant to mitochondrial pathway of apoptosis

[53]. In this report, we showed that vernodalin induced
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attenuation of MMP (Dym) possibly through ROS production,

which promote mitochondria membrane permeabilization and

subsequent induction of apoptosis.

Caspases is a family of cysteine proteases that is divided into

executioner caspases such as caspase-3 or -7, and initiator

caspases, such as caspase-8 and -9 [57]. Initiator caspase-8 is

known to be activated through extrinsic pathway, whereas

caspase-9 is activated in the event of mitochondrial cytochrome

c leakage [57]. Both initiator caspases can activate caspase-3 or -7,

which commit cells to apoptosis [58]. Incubation with vernodalin

causes a time-dependent activation of caspase-9, while caspase-8

activities remained at basal level. The increase in caspase-9 activity

was concomitant with the increase in caspase-3/7 activity. These

results suggest that vernodalin induced apoptosis via mitochon-

drial-dependent intrinsic pathway. Of note, caspase-3/7 cleaves

several target proteins, one of which is DNA repair enzyme,

PARP. Interestingly, DNA fragmentation was detected in

vernodalin-treated MCF-7 and MDA-MB-231 cells. Since MCF-

7 is deficient in caspase-3 expression, it is possible that DNA

fragmentation could be mediated by activation of caspase-7 and

PARP cleavage, as shown previously by other studies [59,60].

Members of the Bcl-2 family are major regulators of cell death

or cell survival. Bcl-2 and Bcl-xL act as apoptosis inhibitors in the

cells. Our data showed that vernodalin treatment reduced

expression of pro-survival/anti-apoptotic proteins Bcl-2 and Bcl-

xL, implying the relevance of Bcl-2 family proteins for breast

cancer cell survival. Another study by Shimizu et al. highlighted

the importance of Bc1-2 and Bcl-xL in protecting mitochondria

against loss of function during apoptosis and some forms of

necrotic cell death [61]. Presence of Bcl-2 in mitochondria blocks

cell death by inhibiting apoptosis-associated release of cytochrome

c from the mitochondria [62], or by regulating ion flux [63].

Whereas Bcl-xL interacts with Apaf1 to prevent apoptosis by

inhibiting Apaf1 dependent activation of caspase 9 [64]. There-

fore, downregulation of Bcl-2 and Bcl-xL upon vernodalin

treatment could lead to loss of MMP which facilitated cytochrome

c release and activation of caspase cascade.

Estrogen stimulates proliferation of various breast cancer cells

via estrogen receptors (ER). Studies show that compounds such as

phytoestrogens, alkylphenols, organochlorine pesticides and

phthalates could bind to estrogen receptors and mediate estrogen

responses [65,66], whereas polycyclic aromatic hydrocarbons

(PAHs) or dioxin binds to aryl hydrocarbon receptor (AhR) which

forms complex with ER [67]. To investigate whether the anti-

proliferative effect by vernodalin was ER-dependent, we per-

formed TR-FRET assays to examine the binding ability of

vernodalin to ER-a and ER-b. However, we did not find any

significant reduction of TR-FRET signal by vernodalin even at the

highest concentration, 200 mg/ml (data not shown). In fact, MTT

or Alamar blue cell viability assays showed comparable IC50 values

between the two breast cancer cell-lines, MCF-7 (ER positive) and

MDA-MB-231 (ER negative) 24 h after treatment with vernodalin

(Figure 7 and S1B). Based on these findings, we propose that the

presence of ER has no significant effect on vernodalin-induced cell

growth inhibitory activity.

In conclusion, this report showed that CACF has profound

activity against MCF-7 human breast cancer cell line. Through

bioassay guided isolation, we identified vernodalin as the active

compound responsible for the anti-cancer property in CACF. Our

collective data suggest that vernodalin inhibits cell growth of

MCF-7 and MDA-MB-231 breast cancer cells through induction

of cell cycle arrest and apoptosis. Vernodalin induces apoptosis by

generating ROS and downregulating pro-survival molecules Bcl-2

and Bcl-xL. These processes subsequently lead to attenuation of

MMP and cytochrome c release. Release of cytochrome c activates

caspase cascade and PARP cleavage to execute apoptotic program

through fragmentation of chromatin DNA. The findings in this

report indicate potential therapeutic value of vernodalin and

further research in animal tumor models is necessary to confirm its

anti-cancer activity in vivo.

Supporting Information

Figure S1 Proliferation assay by Alamar blue assay. (A) MCF-7

cells were treated with vehicle (DMSO) or various concentrations

(0.195, 0.39, 0.78, 1.56, 3.125, 6.25, 12.5, 25, 50 mg/ml) of CACF

for 24 hours. After treatment, Alamar blue stain was added into

culture medium for 2 hours (10% of total volume). Cell viability

was determined by Alamar blue staining assay (AbD Serotec,

Oxford, UK). The fluorescent intensity was measured with Bio-

Tek Synergy H4 hybrid microplate reader (Bio-Tek, US) at

590 nm emission (560 nm excitation). Cell viability was calculated

according to manufacturer’s manual. IC50 value for CACF-treated

MCF-7 was 7.660.5 mg/ml, IC50 value for doxorubicin-treated

MCF-7 was 3.460.5 mg/ml. (B) MCF-7, MDA-MB-231 and

primary mammary epithelial cells were treated with various

concentrations of vernodalin for 24 hours. Cell viability was

determined as described above. MCF-7 (IC50 = 2.160.8 mg/ml),

MDA-MB-231 (IC50 = 3.860.4 mg/ml), and primary mammary

epithelial cells (IC50 = 14.261.3 mg/ml).

(TIF)

Figure S2 Mass spectra of 12,13-dihydroxyoleic acid. (A) MS

spectrum of 12,13-dihydroxyoleic acid (2). (B) MS fragmentation

pattern of 12,13-dihydroxyoleic acid (2). The MS spectrum

showed ions at m/z 182 and 131 corresponding to the allylic

cleavage and indicated the double bond at C9 and C10.

(TIF)
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