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ABSTRACT 

The present numerical study is conducted to investigate 

MHD mixed convection flow and heat transfer 

characteristics in a double-lid driven cavity with a heat-

generating solid square block. The cavity horizontal walls 

are adiabatic while both the vertical lids are maintained at 

a uniform temperature Tc and velocity V0. The present 

study simulates a reasonable system such as air-cooled 

electronic equipment with a heat component or an oven 

with heater. Emphasis is sited on the influences of the 

block size and position of the block in the cavity. The 

transport governing equations are solved employing the 

finite element formulation based on the Galerkin method 

of weighted residuals. The validity of the current 

numerical code used is ascertained by comparing our 

results with previously published results. The computation 

is carried out for a wide range of relevant parameters such 

as block diameter, location of the block and Richardson 

number. Results are presented for the effect of aforesaid 

parameters on the contours of streamline and isotherm. 

Besides, the heat transfer rate in terms of the average 

Nusselt number and temperature of the fluid and block 

center are offered for the mentioned parametric values. 

The obtained results demonstrate that the flow and thermal 

field are strongly influenced by the abovementioned 

parameters.  

Keywords: Double-lid driven enclosure, solid square 

block, mixed convection and finite element simulation. 

1.  INTRODUCTION 

Mixed convection in lid-driven cavities are complex 

problems due to shear flow caused by the movement of 

moving wall and buoyancy induced flow. The problem is 

studied earlier for different thermal and flow boundary 

conditions such as two-sided lid driven cavities, one sided 

lid-driven cavities from top, bottom or vertical walls, 

oscillating walls, fully, partially or non-isothermally 

heated walls etc. (Al-Amiri et al. 2007; Hsu and How, 

1999; Omri and Nasrallah, 1999; Manca et al. 2003; 

Shokouhmand and Sayehvand, 2004, Hasanuzzaman et al. 

2009). Obstacle or a partition is used to enhance heat 

transfer in cavities. There are many studies on natural  

 

convection in an obstructed cavity in the literatures as 

(House et al. 1990; Dong and Li, 2004; Braga and Lemos, 

2005; Hasanuzzaman et al. 2007; Tasnim and Collins, 

2005). Laskowski et al. (2007) examined both 

experimentally and numerically heat transfer to and from a 

circular cylinder in a cross-flow of water at low Reynolds 

number. The results explained that, when the lower surface 

was unheated, the temperatures of the lower surface and 

water upstream of the cylinder were maintained 

approximately equal and the flow was laminar. Shih et al. 

(2009) conducted the periodic laminar flow and heat 

transfer due to an insulated or various isothermal rotating 

objects (circle, square, and equilateral triangle) placed in 

the center of the square cavity. Gau and Sharif (2004) 

conducted mixed convection in rectangular cavities at 

various aspect ratios with moving isothermal side walls 

and constant flux heat source on the bottom wall. Gurcan 

et al. (2003) analyzed eddy genesis and transformation of 

Stokes flow in a double-lid driven cavity. Tsay et al. 

(2003) rigorously investigated the thermal and 

hydrodynamic interactions among the surface-mounted 

heated blocks and baffles in a duct flow mixed convection. 

Bhoite et al. (2005) studied numerically the problem of 

mixed convection flow and heat transfer in a shallow 

enclosure with a series of block-like heat generating 

component for a range of Reynolds and Grashof numbers 

and block-to-fluid thermal conductivity ratios. Gau et al. 

(2000) performed experiments on mixed convection in a 

horizontal rectangular channel with side heating. Zhou et 

al. (2003) investigated DSC solution for flow in a 

staggered double-lid driven cavity. Recently, Costa and 

Raimundo (20100 analyzed the problem of mixed 

convection in a square enclosure with a rotating cylinder 

centered within. 

The study of MHD mixed convection in lid-driven 

enclosures has received a continuous attention, due to the 

interest of the phenomenon in many technological 

processes. These include design of solar collectors, 

thermal design of buildings, air conditioning and, recently 

the cooling of electronic circuit boards. Number of studies 

on effects of MHD mixed convection in lid-driven cavities 

is very limited. Chamkha (2003) made a numerical work 
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on hydromagnetic combined convection flow in a lid-

driven cavity with internal heat generation using finite 

volume approach. The presence of the internal heat 

generation effects was found to decrease the average 

Nusselt number significantly for aiding flow and to 

increase it for opposing flow. Rahman et al. (2009) 

investigated the effect of a heat conducting horizontal 

circular cylinder on MHD mixed convection in a lid-driven 

cavity along with joule heating. MHD mixed convection 

flow in a vertical lid-driven square enclosure, including a 

heat conducting horizontal circular cylinder with Joule 

heating was analyzed by Rahman and Alim (2010). The 

numerical results indicated that the Hartmann number, 

Reynolds number and Richardson number had strong 

influence on the streamlines, isotherms, average Nusselt 

number at the hot wall and average temperature of the 

fluid in the enclosure. Recently, Rahman et al. (2010a) 

conducted a numerical study on the conjugate effect of 

joule heating and magnato-hydrodynamics mixed 

convection in an obstructed lid-driven square cavity, where 

the developed mathematical model was solved by 

employing Galerkin weighted residual method of finite 

element formulation. Rahman et al. (2010b) investigated 

the effect of Reynolds and Prandtl numbers effects on 

MHD mixed convection in a lid-driven cavity along with 

joule heating and a centered heat conducting circular 

block. They showed Buoyancy-induced vortex in the 

streamlines increased and thermal layer near the cold 

surface become thin and concentrated with increasing Re. 

The influence of Prandtl number on the streamlines in the 

cavity is found insignificant for all the values of Ri, 

whereas the influence of Pr on the isotherms is remarkable 

for different values of Ri. Very recently, Sivasnakaran et 

al. (2011) numerically studied the mixed convection in a 

square cavity of sinusoidal boundary temperatures at the 

sidewalls in the presence of magnetic field. In their case, 

the horizontal walls of the cavity are adiabatic. They 

indicated that the flow behavior and heat transfer rate 

inside the cavity are strongly affected by the presence of 

the magnetic field. 

To the best knowledge of the authors, no attention has 

been paid to the problem of MHD mixed convection in a 

double-lid-driven square cavity with a square heat 

generating block. The present work focuses on conducting 

a comprehensive study on the effect of various flow and 

thermal configurations on MHD mixed convection for a 

wide range of pertinent controlling parameters in a double-

lid-driven square cavity. These parameters include 

diameter size of the heat-generating block, location of the 

block in the cavity and Richardson number Ri.  

 

2.  PHYSICAL MODEL 

The considered two-dimensional model is illustrated in 

Fig. 1 with boundary conditions and coordinates .The 

system consists of a double-lid-driven square enclosure 

with sides of length L. A heat generating solid square 

block is placed inside the cavity. In addition, the enclosure 

is saturated with electrically conducting fluid. The solid 

block has a thermal conductivity of ks and generates 

uniform heat flux (q) per unit area. Moreover, the vertical 

walls of the cavity are mechanically lid-driven and 

considered to be at a constant temperature Tc and uniform 

velocity V0 in the same direction (upward). Besides, the 

top and bottom surface of the enclosure is kept adiabatic. 

A transverse magnetic field of strength B0 is imposed in 

the normal direction of the double-lids. 

 

Fig.1. Schematic of the problem 

 

3.  MATHEMATICAL MODEL 

3.1 Governing Equations 

The system is considered to be a two-dimensional, steady-

state, laminar, incompressible, hydromagnetic mixed 

convection flow inside the enclosure. Newtonian and 

Boussinesq approximation is applied for fluid with 

constant physical properties. It is assumed that the 

radiation and joule heating effect are taken as negligible. 

The gravitational acceleration acts in the negative y-

direction. The working fluid is assumed to be air (Pr = 

0.71). Taking into account the above mentioned 

assumptions thedimensionless governing equations can be 

obtained via introducing dimensionless variables as 

follows:  
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Where X and Y are the coordinates varying along 

horizontal and vertical directions respectively, U and V are 

the velocity components in the X and Y directions 

respectively, θ is the dimensionless temperature and P is 

the dimensionless pressure. 

Based on the dimensionless variables above mentioned 

governing equations (Mass conservation, Momentum and 

Energy balance equations) can be written as: 
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For solid block the energy equation is 

2 2

2 2
0s sK

Q
RePr X Y

   
   

                                     

(5) 

where 0V L
Re


 , 

α
Pr


 , and 

2

0

g T L
Ri

V

 
  are 

Reynolds number, Prandtl number and Richardson 

number, respectively and 

2

s

q L
Q

k T



 is the heat 

generating parameter in the solid block  

( b c pT T T and k C     are the temperature 

difference and thermal diffusivity respectively). Here Ha is 

Hartmann number which is defined as
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3.2 Boundary conditions 

The physical boundary conditions are illustrated in the 

physical model (Fig. 1). The boundary conditions for the 

present problem are specified as follows: 

At sliding double- lids: U = 0, V = 1, θ = 0 

At horizontal top and bottom wall: 

0, 0U V
N


  


 

At square block boundaries: 0, bU V      

At fluid-solid interface:
s

fluid solid

K
N N

    
   

    
 

Where N is the non-dimensional distances either X or Y 

direction acting normal to the surface and K is the ratio of 

solid fluid thermal conductivity  /sk k . 

3.3 Heat Transfer Calculation 

The average Nusselt number Nu along a surface S of the 

block may be calculated as follows:

0

1 sL

av

s

Nu dS
L n


 

  

where Ls is the length of heated surface of the block and n 

represents the unit normal vector on the surface of the 

solid block. 

The average temperature of the fluid is defined as: 

/av dV V    

where n represents the unit normal vector on the surface of 

the solid body and V is the cavity volume. 

4.  NUMERICAL SCHEME  

To solve the governing equations along with the boundary 

conditions, the Galerkin weighted residual finite element 

techniques are used. The formulation of this method and 

computational procedure are discussed in the following 

two sections: 

4.1 Finite element formulation and computational 

process 

Galerkin finite element method is discussed to solve the 

non-dimensional governing equations along with boundary 

conditions for the present problem. The equation of 

continuity (Eq. (1)) is used as a constraint due to mass 

conservation and this restriction can be used to compute 

the pressure distribution. To solve equations (2) - (5), the 

Penalty finite element method (More detailed in (Roy and 

Basak, 2005; Saha, 2010) is performed where the pressure 

P is eliminated by a penalty constraint γ and the 

incompressibility criteria given by Eq. (1) consequences in  
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The continuity equation is automatically fulfilled for large 

values of γ. Using Eq. (6) the momentum equations (2 - 3) 

become: 
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(8) 

Expanding the velocity components (U, V) and temperature (θ) using basis set  N

kk 1
  as  

       ,
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Then the Galerkin finite element method yields the 

following nonlinear residual equations for the Eqs. (4), (5), 

(7), and (8) respectively at nodes of internal domain A: 

(1)
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Three points Gaussian quadrature is used to evaluate the 

integrals in the residual equations. The non-linear residual 

equations (10 – 13) are solved using Newton–Raphson 

method to determine the coefficients of the expansions in 

Eq. (9). 

To solve the sets of the global nonlinear algebraic 

equations in the form of a matrix, the Newton-Raphson 

iteration technique has been adapted. The convergence of 

solutions is assumed when the relative error for each 

variable between consecutive iterations is recorded below 

the convergence criterion ε such that
1 410n n    , 

n is number of iteration and  is a function of U, V, θ and 

θs. 

4.2 Grid refinement check and Code Validation  

In order to obtain grid independent solution, a grid 

sensitivity test is performed for a square lid-driven cavity 

to choose the proper grid for the numerical simulation. In 

the present study, the solution domain is divided into a set 

of non-overlapping regions called elements. Non-uniform 

triangular element grid system is employed here. Five 

different non-uniform grid systems with the following 

number of elements within the resolution field: 4032, 

4794, 6116, 6220 and 7744 are examined in this study. In 

addition, the numerical scheme is employed for highly 

precise key in the average Nusselt Nu number for the 

aforesaid elements to develop an understanding of the grid 

fineness as shown in Fig. 2. The scale of average Nusselt 

number for 6220 elements shows a very little difference 

with the results obtained for the other elements. Hence 

considering the non-uniform grid system of 6220 elements 

is preferred for the computation of all cases. The validity 

of the code is available in Rahman et al. (2010a) and is not 

repeated here.  

 
Fig. 2. Effect of grid refinement test on average Nusselt 

number Nu, while Q = 1.0 Ri = 10.0 and Ha = 10.0. 

 

5.  RESULTS AND DISCUSSION 

MHD mixed convection inside a lid driven cavity having a 

heat-generating square block is governed by eight 

controlling parameters. These parameters are Hartmann 

number Ha, heat generation Q, solid fluid thermal 

conductivity ratio K, Reynolds number Re, Prandtl number 

Pr heat-generating block diameter D, location of the block 

in tha cavity and Richardson number Ri. Investigation of 

the present study is made for three parameters namely, 

heat-generating block diameter D, location of the block in 

tha cavity and Ri, which influence the flow fields and 

temperature distribution inside the cavity. The parameters 

D and Ri are varied in the ranges of 0.1-0.4, and 0.0-10.0, 

respectively, while the other parameters Re, Ha, K and Pr 
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are fixed at 100, 20, 5.0 and 0.71, in that order. The 

computation is performed for pure forced convection 

(Ri=0.0), pure mixed convection (Ri=1.0), and dominant 

natural convection (Ri=10.0). We presented the results of 

this current study in three sections.The first section will 

focus on flow structure, which contents streamlines for 

mentioned cases. The second section deals with the 

temperature field interms of isotherms. The final section 

will discuss heat transfer including variation of average 

Nusselt number Nu and the dimensionless average bulk 

temperature  av
 
the temperaturec at the block centre. 

 

5.1 Flow Structure 

The characteristics of the flow field in the lid driven cavity 

is examined by exploring the effects of Richardson 

numbers, block size as well as position of the block in the 

cavity. The effect of block size (placed at the center of the 

cavity) on the flow fields as streamlines in a square cavity 

operating at three different values of Ri, while the values 

of K, Re, Ha, Pr, and Q are keeping fixed at 5.0, 100, 10.0, 

0.71 and 1.0, respectively, are presented in the Fig. 3. 

From this figure, it is clearly seen that the forced 

convection plays a dominant role and the recirculation 

flow is mostly generated only by the moving lids at low Ri 

(= 0.0) and D (= 0.1). The recirculation flow rotates in the 

clockwise (CW) and counter clockwise (CCW) direction 

near the left and right vertical wall, respectively, which is 

expected since the lids are moving upwards. Further at low 

Ri (= 0.0) and for the higher values of D (= 0.2, 0.3 and 

0.4), the flow patterns inside the cavity remain unchanged 

except the shape and position of the core of the circulatory 

flow. As the value of D increases the core vortices expand 

vertically.  

It indicates the reduction of the flow strength of those 

vortices. Next at Ri = 1.0, a pair of counter rotating cells 

appear in the flow domain for the lower values of D (= 0.1, 

0.2 and 0.3), whereas the fluid flow is characterized by a 

clockwise and a counter clockwise rotating vortex 

generated by the movement of the vertical walls. But four 

small vortices are added between the CW and a CCW 

rotating cells inside the cavity for the highest value of D (= 

0.4). This behavior is very logical because the large 

cylinder reduces the available space for the buoyancy-

induced recirculation. Further at Ri = 10.0, which is a 

buoyancy dominated regime, two pair of vortices appear 

between the block and vertical lids for all D. It is clearly 

observed that the size and the shape of the core of the 

vortices near the block expand gradually with the 

increasing D-values as a result the size and the shape of 

the core of the vortices near the vertical lids reduces for the 

space constraint.  

The dependence of flow fields on the locations of the 

block can be observed in the plots of streamlines for the 

various values of the Richardson number from Fig. 4, 

while AR = 1.0, Re = 100, Ha = 10.0, Q = 1.0, D = 0.2, Pr 

= 0.71 and K = 5.0 are kept fixed. From the bottom row of 

this figure, it is seen that in the pure forced and mixed 

convection region (Ri = 0.0 and Ri = 1.0) the flow patterns 

inside the cavity remain unchanged at the same locations 

of the block, except the shape of the core of the circulatory 

flow which is expected. However, in the free convection 

dominated region (Ri = 10.0) it is seen from the right 

column that the number of recirculation cells increase 

comparing with the flow pattern of Ri = 1.0. When the 

inner block moves closer to the right vertical wall along 

the mid-horizontal plane a reversed result is observed as it 

compared to the previous position. Furthermore at Ri= 0.0 

and 1.0, when the heat generating block moves near the 

bottom insulated wall of the cavity along the mid vertical 

plane, then two pair of counter rotating vortices are formed 

in the cavity near the vertical lids. It is noticed that the 

tendency of the core of vortices expand to the upper part of 

the cavity along the vertical lids.But, while the inner block 

moves closer to the upper horizontal wall along the mid-

vertical plane an opposite result is found as it compared to 

the earlier location. It is also seen that the number of 

eddies increased for higher value of Ri (=10.0)  for every 

location of the heat-generating block. 

 

5.2 Thermal Field 

The characteristics of thermal field in the lid driven cavity 

is analyzed by plottinging the effects of Richardson 

numbers, block size as well as location of the block in the 

cavity. The corresponding effect of the size of the heat-

generating block on thermal fields as isotherms at various 

values of Ri shown in the Fig. 5. We can ascertain that for 

Ri = 0.0 and D = 0.0, the parabolic shape isotherms are 

observed near the hot surface and the number of open 

isothermal lines escalating with the rising values of D. 

Furthermore, similar trend is observed in the isotherms for 

different values of D at Ri = 1.0, which is due to the 

conjugate effect of conduction and mixed convection flow 

in the cavity. From the left and middle columns of Fig. 5, 

one may notice that the isotherm pattern seems to be like 

the upper human torso for lower values D (= 0.2 and 0.3). 

As Ri increases further from 1.0 to 10.0, the shape of 

thermal layer is just upturned from forced and mixed 

convection regions (Ri = 0.0 and 1.0) for higher values of 

D (= 0.2, 0.3, 0.4) values of, which is owing to the strong 

influence of the convective current in the cavity. 

The influence of the thermal fields on the locations of the 

heat-generating block in the cavity can be obtained in the 

plots of the isotherms for various values of the block 

locations in Fig. 6, while AR = 1.0, Re = 100, Ha = 10.0, Q 

= 1.0, D = 0.2, Pr = 0.71 and K = 5.0 are kept fixed. At Ri 

= 0.0 and different locations of the block, the isothermal 

lines near the heat source are parallel to the nearest vertical 

wall due to the dominating influence of the conduction and 

mixed convection heat transfer. One may notice that 

higher values isotherms seem to be elliptic rounding the 

heat-generating block. A similar development is observed 

for Ri = 1.0. On the other hand, the shape of thermal layer 

for Ri = 10.0 is just reversed from forced and mixed 

convection regions for all considered locations of the heat-

generating body. 
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D
 =

 0
.1

 

Fig. 3: Streamlines for different values of cylinder size D and Richardson number Ri, while AR = 1.0, Ha = 10.0, Q = 1.0, 

Pr = 5.0, K = 5.0, Re = 100 and (Lx, Ly) = (0.5, 0.5). 
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Fig. 4: Streamlines for different values of cylinder locations (Lx, Ly) and Richardson number Ri, while AR = 1.0, D = 

0.2, Ha = 10.0, Q = 1.0, Pr = 5.0, K = 5.0 and Re = 100. 
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D
 =

 0
.1

 

Fig. 5: Isotherms for different values of cylinder size D and Richardson number Ri, while AR = 1.0, Ha = 10.0, Q = 

1.0, Pr = 5.0, K = 5.0, Re = 100 and (Lx, Ly) = (0.5, 0.5). 
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5.3 Heat Transfer 

The variation of the average Nusselt number at the 

heated surface, average temperature av of the fluid in 

the cavity and temperature c at the block center 

against Ri at various values of D is shown in the Fig. 

7. It is observed from the bottom figure that the heat 

transfer rate Nu decreases very slowly with the rising 

value of Ri for the higher values of D (= 0.2, 0.3, and 

0.4). But Nu remanis unalatered for the lowest value 
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Fig. 6: Isotherms for different values of cylinder locations (Lx, Ly) and Richardson number Ri, while AR = 1.0, D = 0.2, 

Ha = 10.0, Q = 1.0, Pr = 5.0, K = 5.0 and Re = 100. 

of D for the considered Ri. It is to be highlighted here 

that maximum heat transfer rate occurs for largest 

value of D (= 0.4). One the other hand, av and c at 

the block center increase with the increasing Ri upto 

2.5 then it declined for the higher values of D (= 0.2, 

0.3, and 0.4). But av and c are unaffacted for the 

lowest value of D for all values of Ri. The average 

Nusselt number at the heated surface, average fluid 

temperature av in the cavity and the temperature c at 

the block center are plotted against Richardson 

numbers in Fig. 8 for the four different locations of the 

heat-generating body. For each locations of the block, 

the Nu-Ri profile is parabolic shape shows two distinct 

zones depending on Richardson number. Up to a 

certain value of Ri the distribution of Nu smoothly 

decreases with increasing Ri and beyond these values 

of Ri it is increases with Ri. On the other hand, 

average fluid temperature av in the cavity and the 

temperature c at the block center increase 

monotonically with Ri (up to a certain value of Ri) and 

the decreasing at each locations of the cylinder except 

the location Lx=0.35, Ly=0.50. 
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Fig 7: Effect of cylinder size D on (i) average Nusselt number, (ii) average fluid temperature and (ii) temperature at 

the cylinder centre, while AR = 1.0, Ha = 10.0, Q = 1.0, Pr = 5.0, K = 5.0, Re = 100 and (Lx, Ly) = (0.5, 0.5).  
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Fig. 8: Effect of cylinder locations (Lx, Ly) on (i) average Nusselt number, (ii) average fluid temperature and (ii) 

temperature at the cylinder centre, while AR = 1.0, D = 0.2, Ha = 10.0, Q = 1.0, Pr = 5.0, K = 5.0 and Re = 100. 
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6.  CONCLUSION 

A computational study is performed to investigate the 

MHD mixed convection flow in a double-lid driven 

enclosure with a heat-generating horizontal square 

block. Results are obtained for wide ranges of heat-

generating block diameter D and the location of the 

block in the cavity. The following conclusions may be 

drawn from the present investigations: 

 The heat-generating block size has a significant 

influence on the flow and thermal fields in the 

cavity. Higher average Nusselt number is always 

found for the largest value of D for three 

convective regimes. The average temperature of 

the fluid and temperature at the cylinder center in 

the cavity are lesser for D = 0.1. 

 It is observed that the location of the block is one 

of the most important parameter on fluid flow, 

temperature fields and heat transfer 

characteristics. Moreover, noticeably different 

flow behaviors and heat transfer characteristics 

are observed among the three different flow 

regimes. The value of the average Nusselt number 

is greater if the heat-generating cylinder is placed 

near the left wall along the mid-horizontal plane 

at Ri > 2.5 and beyond these values of Ri it is the 

highest when the cylinder moves near the bottom 

insulated wall of the cavity along the mid vertical 

plane. 
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NOMENCLATURES 

Bo Magnetic field strength 

Cp Specific heat of fluid at constant pressure 

D Block diameter (m) 

g Gravitational acceleration (ms
-2

) 

Ha Hartmann number  

k Thermal conductivity of fluid (Wm
-1

K
-1

) 

ks Thermal conductivity of solid (Wm
-1

K
-1

) 

K Thermal conductivity ratio of the solid and fluid 

L Length of the cavity (m) 

Nu  Nusselt number 

p Dimensional pressure (Nm
-2

) 

P Non-dimensional pressure  

Pr Prandtl number 

q Heat generation per unit volume of the block (W/m
3
) 

Q Heat generating parameter 

Re Reynolds number 

Ri Richardson number 

T Dimensional temperature (K) 

u, v Velocity components (ms
-1

) 

U, V Non-dimensional velocity components, 

V  Cavity volume (m
3
) 

x, y Cartesian coordinates (m) 

X, Y Non-dimensional Cartesian coordinates 

Greek symbols 

α Thermal diffusivity (m
2
s

-1
)  

β Thermal expansion coefficient (K
-1

) 

υ Kinematic viscosity of the fluid (m
2
s

-1
) 

θ Non-dimensional temperature 

ρ Density of the fluid (Kg m
-3

) 

Subscripts 

av Average 

b Block surface 

c Less heated wall 

h  Heated wall 

s Solid 
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