Research Note

Inferring the phylogenetic position of *Brugia pahangi* using 18S ribosomal RNA (18S rRNA) gene sequence

Fong, M., Asha Thanabalan, Azdayanti Muslim, Yee-Ling Lau, Sinnadurai Sivanandam¹ and Rohela Mahmud

Department of Parasitology, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur, Malaysia

¹ Parasitology Unit, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia E-mail: fongmy@um.edu.my

Received on 4 February 2008; received in revised form 22 February; accepted 25 February 2008.

Abstract. This paper presents the first reported use of 18S rRNA gene sequence to determine the phylogeny of Brugia pahangi. The 18S rRNA nucleotide sequence of a Malaysian B. pahangi isolate was obtained by PCR cloning and sequencing. The sequence was compared with 18S rRNA sequences of other nematodes, including those of some filarial nematodes. Multiple alignment and homology analysis suggest that B. pahangi is closely related to B. malayi and Wuchereria bancrofti. Phylogenetic trees constructed using Neighbour Joining, Minimum Evolution and Maximum Parsimony methods correctly grouped B. pahangi with other filarial nematodes, with closest relationship with B. malayi and W. bancrofti. The phylogeny of B. pahangi obtained in this study is in concordance with those previously reported, in which the 5S rRNA gene spacer region and cytochrome oxidase subunit I (COI) sequences were used.

INTRODUCTION

Brugia pahangi is a filarial nematode known to parasitize the lymphatic system of dogs and cats (Buckley & Edeson, 1956). The life cycle of this nematode involves an intermediate vector (mosquito) and the primary hosts (dogs and cats). Experimental infection studies have demonstrated that B. pahangi could develop to adult stage in humans (Edeson et al., 1960). Recently, B. pahangi microfilariae have been recovered in cats in some suburban areas in Kuala Lumpur (Rohela Mahmud, data not published). Due to the close relationship between cats and the human population, the risk of zoonotic infection of this parasite is

Brugia pahangi shares many morphological and biological characteristics with B. malayi, one of the aetiologic agents

for human filariasis and elephantiasis. However, not many studies have been carried out to investigate the genetic relationship between these brugian species (McReynolds et al., 1986; Xie et al., 1994; Casiraghi et al., 2001). In fact, hitherto there is a dearth of genetic information on B. pahangi. Understanding the genetic relationship of B. pahangi with other filarial nematode species, especially B. malayi, is important as it may provide clues as to why B. pahangi does not naturally infect man, despite sharing many common biological and morphological characteristics with B. malayi. The genetic information can also be used as basis for developing specific molecular methods (e.g. PCR-based assays) to detect and distinguish B. pahangi from B. malayi infections.

The 18S rRNA (also known as small subunit ribosomal RNA, SSU rRNA) gene is

87

widely used as marker for determining phylogenetic relationships among species. Our study presented here is the first to report the 18S rRNA sequence of *B. pahangi* and the inferred phylogeny of this nematode by comparing its sequence with those of other nematode species.

The adult *B. pahangi* worm used in this study was harvested from an infected male gerbil. Prior to harvest, this gerbil was intraperitoneally injected with L3 larvae which were recovered from female Armigeres subalbatus mosquitoes caught in Kampung Kerinchi, Kuala Lumpur, Malaysia. The DNA of the B. pahangi was extracted and purified using the QIAGEN Tissue DNA Extraction kit (Hilden, Germany). Primers for the PCR of 18S rRNA gene were designed according to the conserved regions flanking this gene of several filarial worm species (forward: 5'-GCTTGTCTCAAAGATTAAGCC-3'; reverse: 5'-TCCTTCCGCAGGTTCAC-3') (Bhandari et al., 2005). The typical parameters of PCR were used to amplify the gene sequence. PCR was carried out in a 25 ml reaction mixture containing 10 mM Tris-HCl (pH 8.3), 2 mM MgCl2, 50 mM KCl, 0.01% gelatin, 200 mM of each deoxynucleoside triphosphate, 20 pmol of each primer, 1 U of Taq polymerase (Fermentas Life Sciences, Canada). The PCR mixture was pre-heated at 95°C for 10 min for initial denaturation before 30 cycles of amplification, which consisted of denaturation at 94°C for 1 min, annealing at 54°C for 1 min, and elongation at 72°C for 2 min. Final extension of the reaction was carried out at 72°C for 10 min. PCR fragment was cloned into plasmid pGEM-T, as according to the manufacturer (Promega Corporation, Madison, USA). Recombinant pGEM-T plasmids harbouring the cloned fragment were sent to a commercial laboratory for DNA sequencing.

Onchocerca cervicalis, DQ094174; Toxocara canis, AF036608; Toxocara cati, EF180059; and Wuchereria bancrofti, AF227234.

The nucleotide sequences were aligned using the CLUSTAL-W programme which is available on-line (http://www.ebi.ac.uk/Tools/clustalw2). Homology among the sequences was computed using CLUSTAL-W. Phylogenetic trees were constructed using the Neighbour Joining (NJ), Minimum Evolution (ME), and Maximum Parsimony (MP) methods described in MEGA version 3.1 (Kumar *et al.*, 2004). In each method, bootstrap replicates of 1000 were used to test the robustness of the trees (Felsenstein, 1985).

The alignment the B. pahangi 18S rRNA sequence (GenBank Accession Number EU496884) with those of other nematodes is shown in Figure 1. A close inspection of the alignment reveals length heterogeneity of the 18S rRNA sequences, including among the filarial nematodes. The sequences of B. pahangi and B. malayi are of equal length (641 nucleotides), whereas W. bancrofti, L. loa and O. cervicalis have shorter sequences (637, 634 and 634 nucleotides, respectively). The *D. immitis* sequence, however, is 646 nucleotides in length. The similarity of the B. pahangi 18S rRNA sequence with other nematodes is summarized in Table 1. It can be observed that the B. pahangi sequence shares high similarity with other filarial nematodes. Very high similarity is shared with *B. malayi* (99%) and *W. bancrofti* (98%), followed by L. loa (97%), O. cervicalis (97%) and D. immitis (93%). When compared with non-filarial nematodes, a relatively lower similarity (89%-93%) was observed. These findings are reflected in the phylogenetic trees generated using the NJ, ME and MP methods (Figure 2). We used these methods, which are based on different algorithms, in



Figure 1. Comparison of *Brugia pahangi* 18S rRNA nucleotide sequence with those of other nematodes in a multiple sequence alignment. Dot (.) indicates identical nucleotide with that of *B. pahangi*. Hyphen (-) indicates a gap.

genetically quite distant from the *Brugia-Wuchereria* group.

The phylogeny obtained in this study is in concordance with previous reports. Xie et al. (1994) based their pylogenetic trees on the 5S rRNA gene spacer region and observed the placement of B. pahangi in the Brugia-Wuchereria group. A similar phylogeny was obtained by Casiraghi et al. (2001), who used the cytochrome oxidase subunit I (COI) to construct the trees.

- Casiraghi, M., Anderson, T.J., Bandi, C., Bazzocchi, C. & Genchi, C. (2001). A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of *Wolbachia* endosymbionts. *Parasitology* **122:** 93 103.
- Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* **39:** 783 791.
- Kumar, S., Tamura, K. & Nei, M. (2004). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5: 150 – 163.
- McReynolds, L.A., Desimone, S.M. & Williams, S.A. (1986). Cloning and comparison of repeated DNA sequences from the human filarial parasite *Brugia malayi* and the animal parasite *Brugia pahangi*. *Proceedings of the National Academy of Sciences*, USA 83: 797–801.
- Xie, H., Bain, O. & Williams, S.A. (1994). Molecular phylogenetic studies on filarial parasites based on 5S ribosomal spacer sequences. *Parasite* 1: 141 – 151.