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Transcriptomic analysis of the role 
of RasGEF1B circular RNA in the 
TLR4/LPS pathway
Wei Lun Ng   1, Georgi K. Marinov   2, Yoon-Ming Chin1, Yat-Yuen Lim1 & Chee-Kwee Ea   1,3

Circular RNAs (circRNAs) have recently emerged as a large class of novel non-coding RNA species. 
However, the detailed functional significance of the vast majority of them remains to be elucidated. 
Most functional characterization studies targeting circRNAs have been limited to resting cells, leaving 
their role in dynamic cellular responses to stimuli largely unexplored. In this study, we focus on the LPS-
induced cytoplasmic circRNA, mcircRasGEF1B, and combine targeted mcircRasGEF1B depletion with 
high-throughput transcriptomic analysis to gain insight into its function during the cellular response 
to LPS stimulation. We show that knockdown of mcircRasGEF1B results in altered expression of a 
wide array of genes. Pathway analysis revealed an overall enrichment of genes involved in cell cycle 
progression, mitotic division, active metabolism, and of particular interest, NF-κB, LPS signaling 
pathways, and macrophage activation. These findings expand the set of functionally characterized 
circRNAs and support the regulatory role of mcircRasGEF1B in immune response during macrophage 
activation and protection against microbial infections.

Circular RNAs (circRNAs) are a unique class of endogenous noncoding RNAs formed by the backsplicing of lin-
ear transcripts into a covalently closed circular molecule. Although some circRNAs were initially identified dec-
ades ago, they were long considered to be mere alternative splicing by-products of little biological importance1,2. 
However, primarily thanks to the advent of high-throughput sequencing technologies over the last decade, this 
perception has now been changed by multiple reports showing that a large number of circRNAs are generated 
by thousands of loci in the human, mouse, and other genomes, in cell-type specific manner3–6, and that some of 
these circRNAs are in fact functional. Several algorithms have been developed for the identification of circRNAs 
to elucidate their functions7–9.

The functions of circRNAs appear to be mostly manifested via post-transcriptional regulatory mechanism. 
CircRNAs can play the role of miRNA sponges3,5,10–15, by sequestering miRNAs through base pair complemen-
tarity, thus keeping them away from their mRNA targets. This is the mechanism of action that has received the 
most attention so far. However, the potential role of circRNAs as miRNA sponges seems to be limited by the 
fact that most of them have very few binding sites for specific miRNAs, and indeed, additional mechanisms 
of circRNA action have been discovered more recently. In addition to serving as miRNA sponges, circRNAs 
can also play the role of RNA-binding protein decoys, they can regulate alternative splicing, and finally, some 
may have direct effects on transcription16,17. Recent evidence also suggests the translation ability of circRNA via 
splicing-dependent, cap-independent manner18.

Despite these advances, the number of functionally characterized circRNAs remains very low in relative to 
the total number of circRNAs that are generated in mammalian cells, and their mechanisms of action are far 
from being fully elucidated. One neglected aspect of circRNA biology is the role that circRNAs might play in the 
regulation of dynamic cellular responses to external stimuli, as most previous studies have focused their efforts 
on studying circRNAs in resting cells.

Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bacteria. Upon 
binding of LPS to the toll-like receptor 4 (TLR4), macrophages are activated leading to a myriad of bio-
logical responses that results in the induction of innate immune response along with the release of different 
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immunomodulating molecules including tumour necrosis factor-alpha (TNFα), interleukin 1 (IL-1), IL-619,20, 
macrophage inflammatory proteins (MIP) and IP1021. The release of these cytokines and chemokines is impor-
tant for pro-apoptotic activity of the activated macrophage and attracting neutrophils, natural killer cells and 
activated T-cells for host-cell defense21.

Previously, we identified a circRNA, mcircRasGEF1B, the expression of which is induced upon lipopolysac-
charide (LPS) stimulation and which appears to regulate ICAM-1 transcript stability and therefore its protein 
levels in the mouse macrophages22. LPS stimulation, through the TLR4/LPS pathway, triggers the activation of a 
large orchestrated transcriptional network involving a wide array of NF-κB responsive genes, and is thus an ideal 
system to address in details the significance of circRNA species such as mcircRasGEF1B in cellular responses to 
external stimuli.

To this end, we depleted mcircRasGEF1B in mouse macrophages and studied the effects of its knockdown on 
transcriptome dynamics during LPS response using RNA sequencing (RNA-seq). Analysis of the RNA-seq data 
revealed that depletion of mcircRasGEF1B results in the misregulation of hundreds of genes, enriched for func-
tional categories involved in cell cycle progression, mitotic division, metabolic activity, NF-κB and LPS signaling 
pathways, and macrophage activation. These findings confirm that mcircRasGEF1B plays a functional role in the 
process of cellular response to LPS stimulation.

Results and Discussion
Characterizing the effects of mcircRasGEF1B knockdown on the transcriptome during LPS 
stimulation.  Previous study demonstrated that knocking down mcircRasGEF1B reduces transcript and pro-
tein levels of the LPS-induced ICAM-1 gene by destabilizing its mature mRNA products. However, the question of 
to what extend mcircRasGEF1B is an important regulator of the inflammatory network remains open. To address 
this question, we characterized the genome-wide gene expression dynamics upon activation of the TLR4/LPS 
pathway in control and mcircRasGEF1B-deficient backgrounds.

To determine how knockdown of mcircRasGEF1B alters the transcriptomic profile of murine macrophage 
upon LPS stimulation, we knocked down the expression of mcircRasGEF1B in RAW264.7 cells using two differ-
ent antisense oligonucleotides (ASOs), ASO I and II, both of them targeting the back-splice junction unique to 
mcircRasGEF1B (Fig. 1). A sense-strand version of ASO I was used as a control22. We observed robust knock-
down effciency, with ASO I reducing mcircRasGEF1B levels by 76% and ASO II depleting mcircRasGEF1B by 
85% (Supplementary Fig. S1a). In agreement with our previous findings, we also observed reduction of ICAM-1 
expression in both ASO I, and ASO II-treated cells (Supplementary Fig. S1b).

Figure 1.  Characterization of the role of mcircRasGEF1B in LPS response. (a) mcircRasGEF1B is produced 
by the RasGEF1B locus in mouse through backsplicing. Antisense oligos (ASO) were designed specifically 
targeting the backsplice junction for the purpose of depleting mcircRasGEF1B. (b) RAW264.7 cells were treated 
with the mcircRasGEF1B targeting ASOI and ASOII oligos as well as with a control oligo, then subjected to LPS 
treatment (n = 3). Gene expression changes were then characterized at the global level using RNA-seq, thus 
identifying the genes and pathways that appear to be regulated by mcircRasGEF1B.

http://S1a
http://S1b


www.nature.com/scientificreports/

3Scientific REporTs | 7: 12227  | DOI:10.1038/s41598-017-12550-w

We collected total RNA from three biological replicates of RAW264.7 cells of all three (control, ASO I and 
ASO II) groups, with and without LPS stimulation, and carried out RNA-seq experiments after rRNA removal. 
After mapping reads to the genome (Supplementary Table S1), quantification at the gene level, and extraction of 
read counts for each gene, genes differentially expressed upon LPS stimulation in each group, and genes differen-
tially expressed between control and mcircRasGEF1B-knockdown cells were identified using DESeq223 (see the 
Methods section for details).

Gene expression changes during LPS response.  After correcting for multiple hypothesis testing and 
setting an adjusted p-value threshold of 0.05, we identified 2,714 upregulated, and 2,590 downregulated genes 
in control cells after LPS stimulation (Fig. 2a and d). In the ASO I-transfected cells, 3,155 and 2,754 genes were 
upregulated and downregulated, respectively (Fig. 2b and d), while 2,352 and 2,115 genes were upregulated and 
downregulated in ASO II-treated cells (Fig. 2c and d). To confirm the specificity of the observed transcriptional 
response, we examined the top upregulated genes upon LPS stimulation in control cells, and found that most are 
immune-related genes such as IL23a, CXCL10, CCL5, IL6, IL1B, and IFNB1 (Supplementary Fig. S2). We also 
compared the LPS-responsive genes between control, ASO I-, and ASO II-treated cells, and observed that 1,793 

Figure 2.  Gene expression changes upon LPS stimulation. (a–c) Scatter plots show gene expression changes 
relative to resting cells after LPS treatment in (a) control cells, (b) ASO I-treated cells; and (c) ASO II-treated 
cells. (d) Number of differentially expressed genes upon LPS stimulation in all conditions. (e) Overlap between 
the sets of differentially expressed genes upon LPS treatment in control, ASO I- and ASO II- treated cells.
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upegulated and 1,522 downregulated genes were common to all three conditions (Fig. 2e). However, a number 
of genes were only up or downregulated in control or in control and ASO I-treated cells, with ASO II-treated 
cells exhibiting the fewest LPS-responsive genes. As noted above and in Supplementary Fig. S1, ASO I decreased 
mcircRasGEF1B levels by 76% compared to the 85% knockdown observed in ASO II treatments. These observa-
tions are therefore consistent with the greater depletion of mcircRasGEF1B in ASO II-treated cells affecting LPS 
response to a greater extent than the more moderate knockdown in ASO I-treated cells.

Gene expression changes upon mcircRasGEF1B depletion.  To directly examine the role of mcir-
cRasGEF1B in the cellular response to TLR4/LPS pathway activation, we compared differentially expressed 
genes between ASO I-treated, ASO II-treated and control cells upon LPS stimulation (Fig. 3). We observed 
558 upregulated and 409 downregulated genes after LPS stimulation in ASO I-treated cells relative to control 
cells (Fig. 3a and c). The transcriptome profiles of ASO II-treated cells were considerably more different, with 
1,916 upregulated and 1,870 downregulated genes (Fig. 3b and c), again consistent with the higher efficiency 
of ASO II-mediated mcircRasGEF1B knockdown. We also compared the LPS-responsive genes between ASO 
I- and ASO-II-treated cells, and observed that 166 upregulated and 262 downregulated genes were common to 

Figure 3.  Gene expression changes upon mcircRasGEF1B depletion. (a and b) Scatter plots show gene 
expression changes in (a) LPS-stimulated ASOI-treated cells; (b) LPS-stimulated ASO II-treated cells; relative 
to LPS-stimulated control cells. (c) Number of differentially expressed genes in ASOI- or ASO II-treated, and 
LPS-stimulated cells. (d) Overlap between differentially expressed genes in ASO I- or ASO II-treated, and LPS-
stimulated cells.
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both conditions (Fig. 3d). These results show that perturbation of mcircRasGEF1B affects the transcriptional or 
post-transcriptional regulation of hundreds to thousands of genes in response to LPS stimulation.

Genes affected by mcircRasGEF1B depletion are enriched for functional categories related 
to LPS response.  In order to understand the biological roles of genes misregulated upon mcircRasGEF1B 
depletion, we identified significantly enriched (p ≤ 0.05 after correcting for multiple hypothesis testing) gene 
ontology (GO) functional categories of genes in the sets of genes up- and downregulated relative to control in 
LPS-stimulated ASO-treated cells (Fig. 4; Supplementary Tables S2–S5). We focused on genes up- and downregu-
lated in the ASO II background due to the higher magnitude of the effect of ASO II on the macrophage transcrip-
tome profile. The GO analysis revealed that genes upregulated in mcircRasGEF1B knockdown cells are enriched 
for categories involved in metabolic activity, autophagy, DNA replication and mitotic division, macrophage acti-
vation too, and immune response, specifically the regulation of IκB/NFκB signaling and the LPS response path-
way. The set of downregulated genes also revealed a number of coherent functional categories, specifically genes 
involved in chromatin remodeling, RNA splicing, cell adhesion, as well as, common with upregulated genes, 
mitochondrial respiratory function and macrophage activation. Detailed examination of the lists of downregu-
lated genes corroborates these global observations. For example, among the top downregulated genes was IFNB1, 
a member of the type I interferons, which play key roles in the defense against viral infections and in the innate 
immune responses to pathogens; production of IFNB1 is dependent on the LPS-induced TRIF-dependent path-
way24. The LPS-mediated activation of RAW264.7 cells is known to be associated with the regulation of cell cycle 
progression25, and the NF-κB and TLR4/LPS signaling pathways are the mechanism through which LPS response 
is mediated, thus the observations of global misregulation of genes involved in these pathways underscore the 
functional importance of mcircRasGEF1B during LPS response.

Conclusion
In this study, we identified a broad spectrum of genes involved in the cellular response to LPS activation whose 
proper expression dynamics is dependent on the LPS-inducible cytoplasmic circular RNA mcircRasGEF1B. 
We knocked down mcircRasGEF1B and studied the effects of its depletion on the transcriptome in resting and 
LPS-stimulated cells.

We observed that depletion of mcircRasGEF1B leads to the misregulation of a plethora of genes, among them 
functional modules involved in cell cycle progression, macrophage activation and LPS response signaling, cell 
adhesion and metabolic activity. Normal levels of mcircRasGEF1B thus appear to be important for the proper 
progression of macrophage activation and LPS signaling, and mcircRasGEF1B likely plays an important role in 

Figure 4.  Functional categories enriched among differentially expressed genes in ASO II- and LPS-stimulated 
cells relative to control LPS-stimulated cells. Representative enriched functional categories are shown for 
(a) downregulated genes; (b) upregulated genes, with the x-axis indicating the statistical significance of the 
observed enrichment.
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the process, confirming its functional significance. Further experiments should reveal in detail the precise mech-
anisms through which mcircRasGEF1B exercises its function.

Materials and Methods
Cell culture and reagents.  RAW264.7 cells were cultured in Rosewell Park Memorial Institute medium 
(RPMI), supplemented with 10% FBS, 20 U/ml penicillin and 100 µg/ml streptomycin (GIBCO). LPS was pur-
chased from Sigma.

ASOs transfection.  ASOs (Supplementary Table S6) were synthesized by IDT technologies. ASOs (20 nM) 
were transfected into RAW264.7 cells with the X-tremeGENE HP DNA (Roche) according to the manufacturer’s 
protocol. To maximize knockdown efficiency, ASO transfection was repeated 24 hours after the initial transfec-
tion. Cells were then treated with LPS for 2 hours.

Quantitative RT-PCR.  Total RNA was isolated with the Thermo Scientific GeneJET RNA Purification Kit. 
Complementary DNAs were synthesized and quantitative RT-PCR was performed with 2X SYBR Green PCR 
Master mix (Thermo Scientific) and run on a Bio-Rad Connect Real-Time PCR System. Expression levels of cir-
cular RNAs described in this study were measured by qPCR using gene specific divergent primers (Supplementary 
Table S6). The relative expression levels of circular versus linear isoforms were normalized to the L32 gene.

RNA extraction, library preparation, and sequencing.  Total RNA was isolated with the Thermo 
Scientific GeneJET RNA Purification Kit. The RNA samples were checked for quality using Bio-Analyzer 2100 
(Agilent Technologies, San Diego, CA, USA) and Qubit RNA assay kit. 1.5 μg of total RNA from each sample 
was used to prepare the library using ScriptSeq Complete Kit (Epicentre Inc, Madison, WI, USA) according to 
the manufacturer’s protocol.

RNA-seq data processing and analysis.  Except where otherwise indicated, all analysis were carried out 
using custom-written Python scripts.

Paired-end (2 × 75 bp) RNA-seq reads were aligned against the mm9 version of the mouse genome using 
TopHat226 (version 2.0.8, run with Bowtie27 version 0.12.9) and the Ensembl 66 annotation with the follow-
ing parameters:–no-discordant–no-mixed–read-realign-edit-dist 0–read-edit-dist 4–read-mismatches 4–
min-segment-intron 10–min-coverage-intron 10. Read mapping statistics can be found in the Supplementary 
Table S1. Raw sequencing reads are available from the Gene Expression Omnibus under GEO accession number 
GSE99811.

Gene-level quantification in FPKM (Fragments Per Kilobase per Million mapped fragments) units was carried 
out using Cufflink28 (version 2.0.2).

For differential expression analysis, sequencing counts at the gene level were obtained using HTSeq29 (version 
0.6.1p1). DESeq223 was then used to identify differential expressed genes between different conditions. We note 
that one of the three replicates of unstimulated ASO II treated cells exhibited a globally discordant transcriptomic 
profile, and was accordingly excluded from the differential expression analysis.

Statistically enriched functional categories of genes were identified using FuncAssociate 2.030.
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