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Effects of ultrashort laser pulses 
on angular distributions of 
photoionization spectra
C. H. Raymond Ooi1, W. L. Ho1 & A. D. Bandrauk2

We study the photoelectron spectra by intense laser pulses with arbitrary time dependence 
and phase within the Keldysh framework. An efficient semianalytical approach using analytical 
transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate 
computation of the photoionization probability at any observation point without saddle point 
approximation, providing comprehensive three dimensional photoelectron angular distribution 
for linear and elliptical polarizations, that reveal the intricate features and provide insights on the 
photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks 
from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and 
multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse 
parameters on the photoelectron spectra and their angular distributions. The photoelectron peaks 
occur at multiples of 2ħω for linear polarization while  odd-ordered peaks are suppressed in the direction 
perpendicular to the electric field. Short pulses create splitting and angular dispersion where the peaks 
are strongly correlated to the angles. For MPI and elliptical polarization with shorter pulses the peaks 
split into doublets and the first peak vanishes. The carrier envelope phase(CEP) significantly affects the 
ATI spectra while the Stark effect shifts the spectra of intermediate regime to higher energies due to 
interference.

Intense light-matter interaction has been extensively studied in recent years, particularly strong field photoioni-
zation1 and ultrafast2, 3 laser physics. A laser pulse with peak intensity εc E1

2 0 0
2 (1 a.u. = 3.5 × 1016 W/cm2; 1 a.u. 

for energy I0 = 27.2 eV, frequency ω = . × −s4 2 1016 1, wavelength λ = 45 nm) or equivalently the electric field 
strength of E0 = 5 × 109 Vcm−1 can now be easily achieved, providing experimental tools covering a wide range of 
phenomena from perturbative nonlinear optics of multiphoton ionization (MPI)4 to nonperturbative processes, 
above threshold ionization (ATI), high harmonic generation (HHG)5–9, nonsequential double ionization (NSDI), 
etc. Development of theoretical techniques of intense light-matter interactions10, 11 and experimental studies of 
ultrafast electron dynamics in the nonperturbative regime have led to applications in imaging of ultrafast pro-
cesses12 in atoms and molecules using photoelectrons angular distribution, particularly probing ultrafast molec-
ular dynamics through laser-induced electron diffraction (LIED)13. Recollision of electrons in both linear and 
bichromatic circular polarizations14 is used for molecular imaging15, 16.

Keldysh: When the ponderomotive energy =
ω
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than the ionization potential Ip, the multiphoton ionization is dominant as a perturbative process where n-number 
of photons are absorbed as the electron makes a transition from the ground state to the continuum, with the 
Keldysh parameter γ = =

ω
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p
. When Up is in the order of or larger than Ip tunnelling ionization17 

process occurs where an electron escapes from the distorted potential barrier under the influence of the intense 
laser field, with γ  1, i.e., low Ip, low frequency ω and large electric field E. The Keldysh formalism18 provides 
correct qualitative descriptions not only for the two limiting cases, but also the intermediate case where γ  119, 
covering a broad range of frequencies20. The theory is even more powerful than generally believed as it yields 
accurate quantitative results for negative ions with short-range potentials21. The Keldysh theory has been 
extended further by others22–24 into the PPT theory25, the ADK theory26, and the KFR theory to higher order 
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perturbative terms by Faisal27 and Reiss28. Tunnelling ionization theory was extended29 to study the influence of 
relativistic effects on photoelectrons in arbitrary initial states on the angular distribution of electrons30. Recently 
the original Keldysh theory that was valid the quadratic photoelectron momenta p m I/ 2 e p

2  has been generalized 
to be valid for arbitrary momenta31.

TDSE: Piraux32 provided one of the earliest theoretical descriptions that is in qualitative agreement with exper-
imental data33 for femtosecond pulse photoionization of a highly excited hydrogen atom using time-dependent 
Schrodinger equation (TDSE) and Floquet theory. In HHG, full numerical approach was used to obtain the har-
monic spectra of atoms, ions34 and molecules35. However, for photoionization36, there are not many theoretical 
treatments37 that include the temporal effects of arbitrary laser pulses into the Keldysh-type formalism for a wide 
range of laser field strength E, frequency ω, and duration tp, especially in the non-adiabatic (intermediate) regime 
where rapid pulse turn-on and off38 dominates as in recent experimental work involving excitations by attosecond 
pulses39. A partial Fourier-transform approach to tunnel ionization40 can recover all analytical results for ATI 
with arbitrary bound potential but only for static field.

Motivation: Ultrashort (approaching the attosecond time scale), circularly and elliptically-polarized pulses are 
leading to a new science (ultrafast and strong field physics)41 that requires generalisation of previous strong field 
models and theories beyond SFA and saddle point methods. Martiny and Madsen studied the effects of elliptic-
ity (or helicity) on photoelectron momentum distribution using the Keldysh theory, both with and without the 
saddle point method42, and the effects of CEP using TDSE43. However, the effects of ultrashort laser pulse and the 
CEP on the angular distribution of the photoelectron spectra for different regimes of Keldysh parameter and laser 
polarization (for linear and circular) have not been systematically studied. Besides, in the case without saddle 
point method the Keldysh theory involves cumbersome three-fold numerical integrations of the matrix element. 
Development of semi-analytical approach that avoids the three-fold numerical integration for the study would be 
useful and relevant to current development of high field physics with ultrashort pulses, especially, the emphasis 
on polarization effects, which are being investigated in the generation of attosecond pulse44, 45 and bright table-top 
X-ray pulses46.

Objective: Our main objective here is to study the effects of short pulse excitations, polarization and Stark 
shifts on the angular dependence of photoelectron spectra beyond the Keldysh-saddle point approach. In this 
paper, we generalize the Keldysh formalism by developing a computationally efficient semi-analytical approach 
for hydrogenic atom in arbitrary bound state interacting with an intense laser pulse of arbitrary time-dependence, 
duration tp, field polarization and carrier envelope phase (CEP) ϕ, valid for tunnelling and intermediate, and to 
some extent the multiphoton regimes, without using the stationary phase or the saddle point approximation.

Approach: The ac Stark shift has been shown to give important effects in strong field interactions47, 48. Recently 
it was shown49 that off-resonant modulation of dynamical Stark shifts can produce extremely short laser pulses. 
Previous treatments neglected laser-induced Stark shifts30, 31 but it is now included here. The stationary phase 
approximation and further analytical treatment on saddle point are not possible when finite pulse duration and 
Stark effects are included. However, using a parabolic function instead of the Gaussian envelope to simulate the 
laser pulse and incorporating the Fourier transform of the initial hydrogenic (bound) wavefunctions to obtain 
analytical transition matrix element (bypassing the 3D spatial integration), we are able to obtain semi-analytical 
approach that facilitates efficient, rapid and accurate computation of the 3D angular distribution of photoelectron 
spectra compared to full numerical evaluation of the Keldysh theory without the saddle point approximation. 
This approach is in between the full TDSE and the analytical Keldysh model. It allows us to analyze the effects of 
pulse length, direction of observation and laser polarization (illustrated in Fig. 1).

Validity: As long as γ is not too small or too large the Keldysh method is valid. The original Keldysh approxi-
mation is applicable over a wide range of frequencies20 under the condition = F E E/ 1C0  where 

≈ ×E V5 10 / mC
11  is the Coulomb electric field at Bohr radius. We do not include the Coulomb interaction to 

the Volkov state50 as it only introduces a prefactor51 to the ionization rate, and therefore, alters the overall order of 
magnitude but does not significantly affect the many qualitative physical results. For excited states and elliptical 
polarization52 the Coulomb field will be less important than the electric field.

Linear and quadratic Stark shift effects
We formulate the model for pulse excitations of general atomic initial (bound) states taking into account the ac 
Stark effect within the strong field approximation53. We assume that the atomic initial state eigenvalue Inlm(t) 
varies with time parametrically or adiabatically according to the dynamical first order and second order Stark 
shift terms

= − + +I t
I

n
a E t b E t( ) ( ) ( ) ,

(1)nlm
p

nlm nlm2
2

where n, l, m are the principle quantum number, azimuthal quantum number and also magnetic quantum num-
ber respectively. |Inlm(t)| corresponds to the ionization energy that varies with the energy level, n, l, m in the pres-

ence of time varying electric field (ac Stark effect) and = = = .
πε( )I I 13 6eVp

m e
100 2 4

2
e
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0
, for the 1 s state of the 

hydrogen atom.
The coefficients anlm and bnlm are coefficients for the linear and quadratic Stark shifts, 2bnlm is also referred to, 

as quasistatic dynamic polarizability. Specific details of bnlm for atomic Cs can be found in Eqs 5 and 6 of ref. 54, 
but it is not necessary for our present study as it is sufficient to estimate the order of magnitude 

δ
d 2


 where ||d|| 

(~10−30 Cm) is reduced dipole matrix element and δ (~5 × 1013 s−1) is the laser detuning from typical atomic 
transitions. For field magnitude of 1011 V/m, the quadratic Stark shift is in the order55 of Ip.
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The Stark shifted eigenenergy satisfies the TDSE 


Ξ = Ξ∂
∂

I t t t( ) ( ) ( )nlm i t
1  as part of the initial bound state 

wavefunction
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which is similar to Eq. 12 of ref. 47 while ψ r( )nlm  is assumed to be the undistorted adiabatic initial wavefunction 
that satisfies the time independent Schrödinger equation of the bound system with time independent unper-
turbed eigenvalue I
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for electron binding potential energy ∼ = .
πε

V r( ) 27 2eVe
a4

2

0 0
 much greater than the dipole interaction with the 

laser field V ear( ) 0 0  (or × 5 10 V/m0
11 ) where a0 is the Bohr radius and 0 is the electric field amplitude 

when the electron is mainly bound to the nucleus.
In other words, we assume = ⋅V t e tr E r( , ) ( )L  to be much smaller than V r( ) when the electron is still strongly 

attached to the nucleus at the onset of ionization with the corresponding wavefunction ψ r( )nlm . The perturbative 
Stark-shifted correction energy to the eigenvalue Inlm is +a E t b E t( ) ( )nlm nlm

2 depends parametrically on time 
through the time dependent electric field E(t). The adiabatic approximation of Eq. 2 has been shown to yield 
qualitatively agreeable results with exact numerical results56 as the time variation due to the laser pulse affects the 
phase through Inlm(t) more sensitively than the transition matrix element through the wavefunction ψ r( )nlm .

Once the electron is ionized from the nucleus, the potential energy falls off rapidly and the spatiotemporal 
dynamics of the electron with quasi-momentum p is well represented by the Volkov wavefunction

Figure 1.  (a) Illustration showing the directions of the linearly polarized and circularly polarized laser pulses 
with respect to a spherical coordinate system. The directionality of the photoelectron is defined by the angles Θ 
and Φ. The numbers in the brackets are in atomic units (a.u.). (b) Table showing the 3 cases characterized by 
Keldysh parameter γ for laser field amplitude 0  and frequency ω : A (intermediate regime), B (ATI regime), C 
(MPI regime). The case of  = −10 Vcm0

9 1 and ω = −10 s16 1 has the same γ as case A and therefore gives the 
same spectral distributions as case A except with higher probabilities.
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where Π = −t q sp A( ) ( ) is the generalized momentum and q = −e, as the solution of the TDSE for ionized 
electron
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Keldysh Formalism for General Pulse-Shape
We start with the original Keldysh formalism to study the effects of pulse duration and observation direction on 
the photoionization spectra. The general wavefunction is in a superposition of discrete initial bound states and 
continuum free electron Volkov states, ψ ψΨ = ∑ + ∑t a t t c t tr r p r( , ) ( ) ( , ) ( , ) ( , )nlm nlm nlm

V
p p . To focus on the 

pulse and the Stark effects we may neglect the free-free transitions and the bound-bound transitions, which is 
essentially the Keldysh formalism. A pulse with 10 fs duration has a bandwidth corresponding to 0.07 eV much 
smaller than the transition energy between the ground and the first excited state. Thus, the probability amplitude 
for the photoelectron momentum p simplifies to involve only a single bound initial state ψ r( )s  with the free elec-
tron continuum,

 ∫ω
′ ′ ′ Sc s

i
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0 0
0

with the transition matrix element (subscript “0” indicating without Coulomb correction)
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that can be evaluated analytically for hydrogenic bound state ψ r( )s  and the important action phase

 ∫ω
′ = ′ − ″ + ″ ″S s I s K s ds( ) 1 [ ( ) ( )] ,
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2
 is the kinetic energy and VV is the normalization volume.

The roles of the laser source will be elaborated in the following section where we introduce the pulse envelope 
function, g(t) that characterizes the time-dependent electric field of the laser pulse (with amplitude 0) for linear 
polarization Elin or elliptical polarization Eelp,
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Here n̂ is the harmonic time-dependent polarization vector with absolute carrier-envelope phase (CEP) ϕ defined 
by
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where we have introduced the dimensionless time s = ω0t with ω0 chosen such that ω0 × pulse duration 1261.
The vector potential, A satisfies = − ∂
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A  and can be obtained by performing integration by parts,
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∫ α β
= =






Σ
Σ + Σ




−∞

ˆ ˆ
ˆ

ˆ ˆ
a s g s n s ds

z
x y

( ) ( ) ( )
(13)

s c

c s

∫= − ′ ′ ′ ′−∞
−∞

ˆ ˆf s n s f s n s ds( ) ( ) ( ) ( ) or (14)
s s



www.nature.com/scientificreports/

5Scientific Reports | 7: 6739 | DOI:10.1038/s41598-017-05915-8

∫= − ′ ′ ′ ′−∞
−∞

ˆ ˆg s m s g s m s ds( ) ( ) ( ) ( ) , (15)
s s

′ = = = ′ = ′ˆ ˆ ˆ ˆ ˆa s da s
ds

g s n s g s m s f s n s( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), (16)

where ∫=ˆ ˆm s n s ds( ) ( ) .
For a c.w. laser, the pulse envelope function is a constant, g = 1, g′ = 0 and the vector potential reduces to that 

in our previous work31. Note that there are 2 possible expressions for â s( ) (above) by partial integration and one 
still has to go through the evaluation of the (integral) second term in â after partial integration. Thus, only the 
second version is useful for sufficiently slow varying envelopes, where the electric field envelope (not the vector 
potential) vanishes asymptotically → −∞ =g s( ) 0 and g′ is sufficiently small that the second term involving the 
integral of â may be neglected, hence
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For certain pulse shape, such as Gaussian and Lorentzian functions it is possible to evaluate â s( ) exactly with-
out the need for the slowly varying envelope approximation (SVEA). However, these functions turn out to have 
complex arguments. We find that parabolic envelope function leads to analytical results that are simpler as shown 
in the Appendix A and will be used to simulate the pulse shapes.

Action Phase for General Pulses
For electric field strength exceeding 1012 Vcm−1, the electron is beyond the classical limit and relativistic correc-
tion needs to be included in the TDSE, particularly generalization of the kinetic energy term30, 
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The integrals in Eq. 18 to be evaluated can be expressed as
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where Σ s( )s c, , Σ s( )s c,
(2) , Ξ s( )s c,  and Ξ s( )s c,

(2)  in the above integrals are given in Appendix A and ∆Σ = Σ − Σs( ) (0), 
with the upper(lower) element for linear (elliptical) polarization.

Note that for elliptical polarization we face the difficulty to analytically integrate Eq. 19, due to the first order 
or linear Stark shifts. The linear Stark term is negligible for centrosymmetric systems such as atoms and symmet-
ric molecules, contributes only for degenerate levels such as n = 2 of hydrogen atom by mixing the degenerate 
states equally, eg, 2s ± 2p for “static” fields only. Besides, for time dependent fields there is no first order Stark shift. 
Only the second order time dependent Stark shift remains which can be important for strong fields in the case of 
pulsed lasers, especially for excited states as it is comparable to the ponderomotive energies for Rydberg states, as 
found in ref. 57.

The action phase can be written as

λ α β λ
α β

λ
α β

λ
α β

Ω =


 + ℘



 −


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℘ Ξ

℘ Ξ + ℘ Ξ




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+







Ξ

Ξ + Ξ







−






Σ

Σ + Σ






−







Σ

Σ + Σ







S
n

s

a b

1 2

,
(23)

z c

x c y s

c

c s

nlm
c

c s
nlm

c

c s

0 2
2

0 0
2

(2)

2 (2) 2 (2)

,0 0 2 2 2 2 ,0 0
2

(2)

2 (2) 2 (2)

in terms of the dimensionless parameters (that is helpful for numerical computation)

� Eω
λ ω

ω
γ

ω
ω ω

Ω = ℘ = = =
��

I m I
e

m I
p;

2
; /

2
,

(24)p e p e p
0

0
0

0 0

0

ω ω
= =a a

e
m
I

b b m
e

2 ; 2 ,
(25)

nlm nlm
e

p
nlm nlm

e
,0

0
,0

0
2

2

λ
ω

= Ω =a a a
I

1

(26)
nlm nlm nlm

p
,0 0 0 0

0

0E
�

E


λ =b b

I (27)
nlm nlm

p
,0 0

2 0
2

with the Keldysh parameter γ =
I

U2
p

p
 and =

ω
Up

e E
m4 e

2 2

2
. According to Eq. 23 the coefficient of the quadratic term 

 0
2 can be zero when ⋅ ⋅

ˆ ˆ ˆ ˆa a b g n nnlm ,0
2 .

Transition Matrix Element for Arbitrary Pulses
The transition of the electron of hydrogen atom from an arbitrary energy level, ψnlm to Volkov state, Ψ tr( , )p  under 
the interaction of laser pulse, can be described by computing the transition matrix element using the hydrogenic 
wavefunction for arbitrary initial state as

E
�∫ ψ= ⋅



− Π ⋅



 .ˆ

VV
V s e g s n s i s d rr r r( ) ( ) ( ) ( ) exp ( )

(28)s0 0

3

Performing the volume integration numerically would be very time consuming. We find that the transition matrix 
element can be evaluated analytically by noting that the integral ∫ ψ ⋅ − Π ⋅ˆ

VV( )n s sr r r( ) ( ) exp ( )s
d r1 3


 is actually a 

Fourier transform and has an analytical expression

π
ψ⋅ ∇ Π = ⋅ ∇Π Πˆ ˆ

VV
i n

VY
i n FGH(2 ) ( ) 1 { }

(29)
s

3

3


 

= ⋅ ∇ζˆ
Y

i n FGH1 { },
(30)



where ψ Π = Φ′ Θ′ ΠF G H( ) ( ) ( ) ( )s  is the Fourier transform of the initial wavefunction. VY3 = 1 and the dimension-
less quantities are defined as 

 
ζ = = = = ′Π Π Π p

Y
n

Z m I
na

Z
n
Z2 e p

0 , η= =Y Z na Z n/ /0 , η = =m I a2 / 1/e p 0 , 
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′ = Πp m I/ 2 e p . The expressions for F, G and H have been worked out by Podolsky and Pauling58 for general 
hydrogenic state as

π
Φ′ = ′± ΦF e( ) 1

(2 ) (31)
im

1/2

Θ′ =





+ −
+






Θ′G l l m
l m

P( ) (2 1) ( )!
2( )!

(cos )
(32)

l
m

1
2

ζ π ζ
ζ

ζ
ζ

= − −





− −
+




 +






−
+






+
+ − −

+H i l n n l
n l

C( ) ( ) 2 ! ( 1)!
( )! ( 1)

1
1 (33)

l l
l

l n l
l2 4

1
2

2 2 1
1

2

2

where Pl
m are the associated Legendre polynomials and − −

+Cn l
l

1
1  are the Gegenbauer polynomials. The explicit 

definitions for Π, Θ′, Φ′ are given in the Appendix B.
Therefore, the transition matrix V0(s) can be expressed as

= ⋅ ∇ζˆV s e g s i
Y

n FGH( ) ( ) { }, (34)0 0

clearly showing the pulse-shape dependence with the above dot product evaluated analytically as

ϕ

α ϕ

β ϕ

= ⋅ ∇

=







+ Θ′ − Θ′

+ Θ′ Φ′ + Θ′ Φ′ −

+ + Θ′ Φ′ + Θ′ Φ′ +







.

ζ

ω
ω ζ ζ

ω
ω ζ ζ ζ

ω
ω ζ ζ ζ

∂
∂

∂
∂Θ ′

∂
∂

∂
∂Θ ′

Φ ′
Θ ′

∂
∂Φ ′

∂
∂

∂
∂Θ ′

Φ ′
Θ ′

∂
∂Φ ′

ˆ

( )
( )
( )

( )
( )
( )

M s n s FGH

s FG FH

s FG FH GH

s FG FH GH

( ) ( ) { }

cos cos sin

cos sin cos cos cos

sin sin sin cos sin
(35)

H G

H G F

H G F

1

1 sin
sin

1 cos
sin

0

0

0

The required derivatives ∂ Φ ′
∂Φ ′
F( ) , ∂ Θ ′

∂Θ ′
G( )  and ζ

ζ
∂

∂
H( )  are given in the Appendix C. If we adopt the Coulomb-Volkov 

wavefunction50 where the Volkov plane wave has to be multiplied by the normalized continuum state of hydrogen 
that depends on r through the hypergeometric function, thus it would be complicated to obtain analytical matrix 
element.

Finally, the photoionization amplitude can be evaluated numerically as

E
� ∫ω

= ′ ′ ′ ′Sc s e
Y

g s M s i s dsp( , ) ( ) ( )exp{ ( )}
(36)

s
0

0 0

Equations 18, 35 and 36 together are semi-analytical expressions that provide convenient computation of the 
transient photoionization probability density =P s c sp p( , ) ( , )b

2 of atoms in any excited59 initial state by laser 
pulses with arbitrary shape, width, polarization and CEP.

Other computable quantities involving photoionization are the transient photoionization rate of a particular 
momentum λ= 




− 



Φ
Ω

⁎ { }c s M s ip2 Re ( , ) ( )expdP s
ds b

sp( , )
0
2 ( )

0
 and the total photoionization rate =

π
w s( ) V

(2 )3

∫−∞

∞ d pdP s
dt
p( , ) 3 .  Using = Ωd p p dpd a

3 2  the rate over the solid angle Ωa  can be obtained as =
Ω

dw
d a

 ∫ .
π

∞VV p dpdP
dt

p
(2 ) 0

( ) 2
3

Analysis of Stationary Phase Approximation
We next explore the saddle point approximation with the possibility of using the approximate expression 
∫ → π

″
g z e dz g z e( ) ( )

C
sf z

sf z
sf z( ) 2

( ) 0
( )

0

0  to find the semi-analytical expression for the photoionization probability in 
the steady state

∑πλ=
″S

SP M s

s q
i s qp( ) 2 ( )

( , )
exp{ ( , )} ,

(37)s

s

s
s0

2

2

which requires evaluation of the second order derivative of the phase using ′ =ˆ ˆa s g s n s( ) ( ) ( ),

λ λ λ

λ

Ω ″ = − ℘ ⋅ ′ + ′ ⋅ − ′ + ′

− ′ ⋅ ′ + ′

�� ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
S a a a a g n g n

b a g n gn

2 2 { }
2 ( ) (38)

nlm

nlm

0 0 0
2

,0 0

,0 0
2

while the first order derivative is
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λ λ λ λΩ =


 + ℘



 − ℘→ ⋅ − − ⋅ + ⋅ˆ ˆ ˆ ˆ ˆ ˆSd

ds n
a a g n b g n n a a1 2 ,
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with the corresponding unit vectors, and their magnitudes
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Equation 39 does not lead to an analytical solution for the stationary points (subscript’s’) in time when ′ =S 0 
unless the Stark terms are neglected. For linear polarization we have λ λ+ ℘ − ℘ Σ + Σ =( ) 2 0

n z c c
1 2

0 0
2 2

2 ,

λ
Σ =




℘ ± + ℘




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0
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2

where ℘ = ℘ + ℘⊥ x y
2 2  is the transverse normalized momentum, giving the analytical probability
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0

Reduction to Results of CW
In the continuous wave (cw) limit we set the pulse envelope g(s) → 1, so
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ω( )C s s( ) cos

0
, ϕ= +ω
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0

. For cw case, the derivative of the action phase simplifies to
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For linear polarization one obtains
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If the linear Stark is neglected =a 0nlm  for linear polarization, the stationary phase approximation gives 
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In the absence of the Stark shifts ( = =a b 0nlm nlm ) Eq. 53 leads to full analytical expressions, as in our previous 
work31
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Comparing Eq. 54 with Eq. 46 for linear polarization, we see that effect of the pulse on the stationary point 
depends on solutions of ∫ ϕΣ = ′ ′ + ′s g s s ds( ) ( )cos( )c

s

0
 instead of ∫ ϕ ϕ′ + ′ = +ω

ω( )s ds scos( ) sins

0 0
. So, there 

are finite number of stationary times and the times are no longer periodic, as illustrated in Fig. 2. Physically this 
means that the photoionization times exist only during the duration of the pulse and there is a gradient force 
asociated with the short pulse envelope that distorts the periodicity of the tunneling times.

Results and Discussions
Where we stand.  Our semi-analytical method within the Keldysh framework without the saddle point 
approximation used to compute 3D figures of angular-dependent photoelectron energy spectra is useful, efficient 
and unique compared to all other existing approaches. It is in between the full TDSE and the analytical Keldysh 
model. The use of analytical matrix element is most unique and advantageous as it bypasses the need for three-di-
mensional spatial integrations, facilitating the computation of the angular-dependent photoelectron energy spec-
tra in 3D to be more efficient and less expensive than the TDSE, and more accurate than the saddle point 
approximation adopted in many other existing works. To see where our work stands, let us remind the main 
existing works. Often, the saddle point approximation was used59 while going beyond the first order Born approx-
imation60. Recent study of the time evolution of the photoelectron peaks used SFA without saddle point approxi-
mation61 but did not show angular-dependent spectra. The PPT theory25 is for cw laser although it was used as a 
semi-empirical model capable of predicting the rate of tunnel ionization for molecules62. Popov63 incorporated 
ultrashort laser pulses into the PPT theory using the imaginary time method (ITM) for limiting cases of tunnel-
ling ionization and MPI but without proper atomic transition factor. In his full analytical calculations the pho-
toionization rate was written in exponential form as generalizations of Keldysh theory at the expense of certain 
approximations, namely quasiclassical approach (


E m ee

2 5

4  and 
ω
 1

Ip ) and cannot be used to compute the 
angular distributions of the photoelectron spectra. The review ref. 19 of the physics of photoionization by arbi-
trary laser pulses shows that only for small and large Keldysh parameter γ it is possible to obtain analytical expres-
sions for photoionization rate. Photoionization rate for few-cycle pulse was also obtained within adiabatic 
approximation64 by modifying the Smirnov–Chibisov formula and multiplying by an overlap integral, but intro-
duction of the Stark shift55 did not yield consistent agreement with experimental results. Faisal27 and Reiss28 
added higher order rescattering terms to the formula for the transition amplitude to obtain more precise results. 
They obtained the photoelectron spectrum (without the saddle-point technique) by expanding the final state 
wave function as an infinite (Fourier) series65. The series expansion approach is only valid for monochromatic 
laser fields and not valid for arbitrary pulses. Here, we do not need to evaluate infinite series and neither saddle 
point approximation nor adiabatic approximation are employed.

Figure 2.  The red curve is ∫Σ = ′ ′ ′s g s s ds( ) ( )cos(10 )c
s

0
 with pulse envelope = −g s s s( ) (2 ), showing 

nonperiodic values of stationary points on s when the curve intersects the (blue) dash line which represents a 
constant value on the right hand side of Eq. 46. The black curve is ∫ ′ ′s dscos(10 )s

0
 giving the periodic 

intersection points.
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Benchmarking.  We emphasize that our results are unique (no existing works have done this) as we analyze 
the effects of short pulse duration, Keldysh parameter γ and Stark shift on the angular distribution of photoelec-
tron energy spectra. The 3D photoelectron angular distributions for hydrogenic system appear spectacular and 
may be benchmarked with the work by Martiny and Madsen42, probably closest to ours, who computed the pho-
toelectron momentum distributions for few cycle pulse using the Keldysh theory without the saddle point 
method. However, their study focuses on how the validity of the Keldysh theory with the saddle point method 
depends highly on the ellipticity of the laser pulse. They found intricate details of the momentum distribution 
when the saddle point approximation is not used, in agreement with our results. But they did not cite earlier 
experiment on inert atoms that showed helicity of elliptically polarized pulses produces asymmetric photoelec-
tron angular distributions66. The effects of carrier-envelope phase difference have also been studied43. Qualitatively 
similar features are found in the photoelectron momentum angular distributions of +H2  using ab initio method by 
Fernandez and Madsen67 and of xenon atoms using quantum trajectory68. In addition, the results obtained from 
our semi-analytical approach can also be benchmarked with those 2D plots in literatures. For example, the pho-
toelectron spectra of Figs 3, 4, 6 and 7 for longer pulse agree well with experimental and numerical results from 
TDSE69, 70. The general features of our photoelectron peaks agree with the typical ATI photoelectron spectra of 
helium atom for linearly and circularly polarized lasers71, and the ATI spectra of xenon and krypton72 that show 

Figure 3.  Photoionization probability versus angle Φ at Θ = π/2 (in x-y plane) and kinetic energy (K) with 
tp = 100 fs for linear and elliptical polarized lasers for the Case A (intermediate regime) whose laser field 
amplitude 0 and frequency ω are tabulated in Fig. 1. The 2D spectra correspond to the end point of Φ = π. Here, 
there is no first and second order Stark effects, = =a b 0nlm nlm  and the CEP phase ϕ = 0. We do not show the 
3D plot for linear polarization since it has azimuthal symmetry and therefore independent of angle Φ.

Figure 4.  Same as Fig. 3 (versus angle Φ with tp = 100 fs) but for case B.

Figure 5.  Same as Fig. 3 (versus angle Φ with tp = 100 fs) but for case C.
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regularly spaced peaks with the central energy of the group of peaks and the width of the peaks increase with the 
laser intensity. The ATI photoelectron spectra show no abrupt cutoff 73 but decrease smoothly with kinetic energy, 
different from HHG spectra where the cutoff at maximum kinetic energy of 3.17 Up is due to electron recollision 
with the parent nucleus74, while the ATI spectra in molecules that show two cutoffs at high energies are due to 
scattering of the tunnelled electron from the molecular sites75.

In Figs 3, 4, 5, 6, 7 and 8, the photoionization probabilities at the end of the pulse, =
→

P c sp p( ) lim ( , )
s s

b
2

2

0

, for 

linear and elliptical polarized lasers, Plin and Pelp (with α β= = .0 5 ) are plotted versus kinetic energy K and 
observation angles Φ, Θ for moderate pulse duration tp = 100 fs. We use the initial atomic state nlm = 1, 0, 1. 
Results for hydrgenic atoms with any initial excited states can also be obtained from the theory. Based on Eq. 1 in 
Appendix A, the parabolic function for the pulse, the laser interaction duration is 2s0 and we have defined a nor-
malization frequency ω0 such that ω =t 1p0 , where =t tp 0 is defined as the pulse duration. For n = 1, I100 = 0.5 a.u. 
We consider the following three cases A, B, C, as tabulated in Fig. 1b. In the simulated figures, the first and second 
order Stark effects are neglected anlm = bnlm = 0 with zero CEP ϕ = 0, unless stated otherwise. We show the results 
for tp = 100 fs and for tp = 10 fs (shorter pulse), corresponding to 32 and 3.2 cycle pulses, respectively.

The K-Φ and K-Θ maps of spectral distributions look qualitatively distinct for all the three regimes (A, B and 
C) with different electric fields and frequencies, corresponding to the intermediate, ATI and MPI regimes, respec-
tively, and cannot be described by the classic theory76. The values of the probability for case B is slightly larger 
than case A, which implies that higher laser field amplitude increases the probability of photoionization.

Polarizations.  For linearly polarized laser there is no Φ dependence in the spectra, thus only the 2D plots are 
shown in Figs 3, 4 and 5 for longer (100 fs) pulse and in Figs 9, 10 and 11 for shorter (10 fs) pulse. The spectra for 
linear polarization in the intermediate cases (Figs 3 and 6), the ATI case (Figs 4 and 7) and the MPI case (Figs 5 
and 8) clearly show that the peaks are regular spaced by exactly ω = .2 2 63eV  for Θ = 90°. For other angles of Θ, 

Figure 6.  Photoionization probability with tp = 100 fs, versus angle Θ at Φ = 0 and kinetic energy (K) for case A 
characterizing the intermediate regime. The bottom panels are K-Φ map with probability in log scale. The is no 
Stark effect and no CEP phase.

http://A
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the spacing between peaks is always ω  for any polarization. However, for elliptical polarization, the peaks are 
always spaced by ω = .1 36eV . The spectra with linear polarized laser show only even-ordered peaks at energies 

ω=π( )K n2n
lin

2
  at Θ = 90° (perpendicular emission) as the result of destructive interference and can be con-

firmed by looking at the plots versus Θ in Figs 6, 7 and 8. This effect was also found in ref. 77 for linear polarized 
laser.

Peak Energies.  For intermediate and MPI cases, the peaks appear more regularly, and we can clearly see a dip 
region with the lowest probabilities at K ~ 24 eV, especially for linear polarization with the longer pulse of 100 fs. 
For the intermediate case (Fig. 3), the emission of the photoelectron is at regular energies with the peaks modu-
lated with a period of about 24 eV.

However, the high peaks in the ATI case (Figs 4 and 7) for elliptical polarization are not regularly spaced but 
correlated to the angles Φ and Θ. A closer look at the 3D plots reveals that the peaks are actually split into doublets 
(as in the case of molecular ion oxygen78) and shifted depending on the angles. Also, the high peaks are found at 
a broad range of energies but confined to only Φ < 90°. The ATI peaks satisfy the energy conserving relation 

ω = + +n I U p m/2p p
2 79. The peaks for elliptical polarization are slightly smaller than linear polarization since 

Figure 7.  Same as Fig. 6 (photoionization probability for tp = 100 fs, versus Θ at Φ = 0 and K) but for case B 
characterizing the ATI regime.
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the field is spread over the radial directions. Thus, the peak photoionization in the elliptical polarization case is 
slightly smaller for ATI since the tunnelling mechanism strongly depends on the transverse momenta induced by 
the transverse electric field.

In the MPI regime the peaks appear consistently at ω = .n n eV13 16  (Fig. 5) with the first peak missing for 
Phi = 0° and 180°. Subsequent peaks are too weak to be seen on normal/linear scales as the probability drops 
rapidly with energy. Thus, the log scale is useful as it clearly shows the regularly spaced subsequent peaks in the 
spectra.

Variations over Φ.  The spectra for linear polarization are independent of Φ due to azimuthal symmetry (as 
m = 0 here) for any field strength 0  and frequency ω or γ since the laser field oscillates along the z-axis. However 
the spectra with elliptical polarization for the intermediate, ATI and MPI regimes depend on the angle Φ. 
Figures 3, 4 and 5 show that there is no well-defined direction with large photoelectron emission.

In the intermediate case (Fig. 3), the spectra for elliptical polarization are less correlated to the change of angle 
Φ in the case of longer pulse compared to the case of shorter pulse, except for a dip (seen in log scale) that creates 
a double peak at around Φ ~ 0.7. The high peaks are mainly at angles 0° < Φ < 90° but only peaks at low energies 
appear at all angles. Only the amplitude of the peaks (and not the energy) is correlated to Φ. For the ATI case 
(Fig. 4), the strongest peaks are also predominantly confined within 0° < Φ < 90°. However, here, the amplitude 
of the peaks as well as the energy of the peaks are correlated to Φ. This can be regarded as angular dispersion. 
The angular dependence is stronger in the ATI regime (for elliptical polarization), with double peaks extending 
through the angle Φ and energy K. This multipeak effect found here for the initial ground state in the ATI case is 
similar to the multipeak found for the excited states by Bauer80.

Figure 8.  Same as Fig. 6 (photoionization probability for tp = 100 fs, versus Θ at Φ = 0 and K) but for Case C 
characterizing the MPI regime.
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Figure 9.  Photoionization probability with tp = 10 fs versus angle Φ at Θ = π/2 and kinetic energy K for the case 
A (intermediate regime). There is no Stark effects and the CEP phase ϕ = 0, unless stated otherwise. Only the 
panels labelled with Stark have finite coefficient = . ≈b E t I( ) 0 8 10eVnlm p

2 .

Figure 10.  Same as Fig. 9 (versus angle Φ with tp = 10 fs) but for case B.

Figure 11.  Same as Fig. 9 (versus angle Φ with tp = 10 fs) but for case C.
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At lower frequencies or higher field (γ < 1 ATI regime), λ â0  would be well above unity and greater ℘→ . Thus, 
the normalized generalized moment λ= = ℘→ −Π ˆs a sQ( ) ( )s

m I
( )

2 0
e 0

 would be dominated by λ â0  which causes the 

Π s( ) to depend strongly on Φ, Θ through the term 


− Π ⋅( )s rexp ( )i  in the transition matrix element Eq. 28. The 
Φ dependence is connected to the preferential photoionization between the certain sign of magnetic quantum 
number m of the bound electron and the elliptically polarized laser field17.

A closer look at the MPI plot (Fig. 5) reveals that the width of the peaks is modulated by the change over Φ, 
becoming higher and broader as Φ decreases toward Φ ~ 45°, the estimated angle where the peak splits into dou-
blet for shorter pulse (Fig. 11). These spectra are quite identical to those found in experimental work with pulsed 
lasers81. The results for MPI also show that the shape and position of the peaks depend on the pulse duration, 
intensity and photon frequency82.

Variations over Θ.  Figures 6, 7 and 8 show the angular dependence on Θ for linear and elliptical polarizations 
with longer pulses tp = 100 fs. For linear polarization the photoelectron is mainly emitted in the direction close 
to Θ = 0° but there are also noticeable (but less prominent) peaks at low energies close to the backward direction 
180°. For elliptical polarization (right panels of Figs 6, 7 and 8), the most probable direction is Θ ~ 90°, corre-
sponding to the field E which is on the x-y plane since the photoelectron is emitted mainly along the direction 
of the electric field. Here, the spectra has a reflection symmetry across Θ = 90°. However, a closer look at the 3D 
plots for both polarizations reveals the distinctly different features in the spectra of the three cases. The spectra 
show the energy and angular dispersions, i.e. the heights of the photoionization probability peaks depend on K 
and Θ.

For the intermediate regime (Fig. 6) there is neither splitting nor angular dispersion. The energy at around 
K = 24 eV when Θ = 90° corresponds to a dip region for linear polarization spectra. For elliptical polarization this 
region is where the photoelectron is emitted to the narrowest range of angles centered at Θ = 90°. As the pulse 
shortens to 10 fs, additional features appearing in the intermediate regime (Fig. 12) are strong splitting of peaks at 
certain energies and angles corresponding to strong angular dispersion, especially for linear polarization. The dip 
region for linear polarization and the narrowest angular dispersion region for elliptical polarization have shifted 
down to K = 20 eV at Θ = 90°.

For the ATI case (Fig. 7), the emission of the photoelectron is broad, centered predominantly around Θ ~ 90° 
for the elliptical polarization but at around Θ ~ 0° and 180° for linear polarization. The peaks are irregular, exten-
sively split and shited, with intricate dependence on K and Θ with the angular dispersion that becomes much 
stronger and dramatically different for shorter pulse (Fig. 13). Overall, the ATI spectra are highly correlated to 
the angle Θ, i.e. very sensitive to the observation direction, especially for shorter pulses. Such intricate depend-
ence on Θ is less vivid in the case of longer pulses as the regularly spaced spectral peaks are due to excitations by 
photons of narrower energy range. Thus, shorter pulse leads to increased energy dispersion and more diffused 
photoelectron scattering.

However, for the MPI case (Fig. 8), the angular dependence of the spectra is not so clear as the peaks are more 
well defined and appear only at multiples of 13.16 eV except the vanishing first peak at K = 13.16 eV (and odd 
ordered) for angles Θ = 0° and 180° in the elliptical polarization case due to destructive interference; the same for 
shorter pulse (Fig. 14).

Pulse duration effects.  We found several distinct features in the photoionization of atom by ultrashort laser 
pulses by comparing the results for shorter pulses tp = 10 fs (Figs 9, 10, 11, 12, 13 and 14) and those with longer 
pulses tp = 100 fs (Figs 3, 4, 5, 6, 7 and 8).

The general trend of the shorter pulse tp = 10 fs is that the peaks in the photoionization spectra do not only 
become broader81 but also appear to be less regular across the energy, due to splitting, shifting and overlap/cross-
ing of peaks with angles of observation, giving rise to the stronger angular dispersion83. A large shift of 8 eV for 
γ ≈ .0 9 is possible for He atom with intensity 3 × 1014 W/cm2 84.

For 100 fs pulse, the peaks in the intermediate case are quite regular (Fig. 6) while for the ATI case (Fig. 7) 
there seem to be more peaks that are irregular, not evenly spaced and have varying widths, because of the shifts 
cause by the ponderomotive energy81 and crossings of the peaks.

The multiple frequency components within a pulse means that the photoionization mechanism is driven by 
photon energies within ω ± −t( )p

1  range. When the pulse duration becomes shorter, 10 fs (Fig. 12), the peaks in 
the spectra for intermediate case become irregular. In addition to splitting of the peaks, adjacent peaks merge and 
cross each other at particular contours, some forming “avoided crossing channels”. The asymmetry between 
Θ < 90° and Θ > 90° for linear polarization agrees with the findings in ref. 85 for few cycle pulses.

However, for ATI case (Fig. 13) with linear polarization, the features due to splitting have transformed to 
interference-like features with regular peaks appearing near Θ = 0° but strongly curved with angle Θ. This is 
strong angular dispersion. Similar interference and curvy peaks are found for elliptical polarization but at Θ = 90° 
where the spectral peaks are curved like a parabolic contour.

When the pulse duration tp is shortened by 10 times to 10 fs, the maximum peaks for both polarization cases 
in the intermediate regime are a few times weaker (Figs 9 and 12). This shows that higher pulse energy in the case 
of longer pulses (for same field amplitude or peak intensity) leads to higher photoionization yield. However, the 
maximum of ATI peaks seem to be unaffected by the pulse duration tp, which shows that the pulse energy has 
little effect on the highest tunnelling probability (Figs 10 and 13).

The probabilities for the MPI case (in Fig. 8) do not change much except the peaks are broader for shorter 
pulse (Fig. 14) and for smaller Θ. For elliptical polarization the vanishing peak at Θ = 0° and 180° due to the 
destructive interference remains for shorter pulse. However the shorter pulse gives rise to doublets due to splitting 
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of the peak for linear polarization at ω = .2 26 3eV  at Φ = 0, Θ = 0 (see Fig. 14); and also the peaks for elliptical 
polarization at ω2  when Φ = 0, Θ = 180° (see Fig. 14) and at ω2  when Φ ~ 45°, Θ = 90° (as seen in Fig. 11), as 
the result of destructive interference at this angle of symmetry.

CEP effect.  We also compute the photoionization spectra for finite CEP with a (shorter) 10 fs pulse to find out 
if there is any qualitative effect on the overall features of the angular dependent K-Φ and K-Θ maps. For the 

Figure 12.  Photoionization probability for tp = 10 fs, versus angle Θ at Φ = 0 and kinetic energy (K) for Case A 
characterizing the intermediate regime, with no Stark effect and no CEP. Only the panels labelled with Stark 
have finite coefficient = . ≈b E t I( ) 0 8 10eVnlm p

2 . The bottom panels (reddish color) are K-Φ map with 
probability on log scale.
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intermediate regime (case A) the phase of ϕ = 45° (and 90°) causes small enhancement of some peaks at large 
energies for the K-Φ map (on normal scale of Fig. 9) while the finite phase of ϕ = 90° has very little effect on the 
intricate features of the K-Θ map (log scale of Fig. 12). Only the small details of the intricate patterns are affected 
by the phase.

However for the ATI (case B) the intricate patterns in the K-Φ map (when ϕ = 45° in Fig. 10) and K-Θ map 
(when ϕ = 90° in Fig. 13) are significantly different for finite phases compared to ϕ = 0. The peaks become more 
correlated to the angles, with traces of minima at certain angles. Thus, the tunnelling time, which is associated 
with the stationary time in the stationary phase analysis in Sec. VI, affects the spectra through its dependence on 
the absolute phase ϕ. Our results show that the qualitative change caused by ϕ is more significant when the laser 

Figure 13.  Same as Fig. 12 (photoionization probability for tp = 10 fs, versus Θ at Φ = 0 and K) but for case B 
characterizing the ATI regime.
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field amplitude is higher. When the phase ϕ = 180° (not shown) the results are exactly the same as ϕ = 0 since it 
simply reverses the direction of the unit vector n̂ and has no effect on the photoionization probability.

Stark effect.  We introduced the first and second order Stark coefficients of =a E t( ) 0nlm , = .b E t I( ) 0 8nlm p
2 . The 

second order Stark coefficient has to be sufficiently large to exhibit qualitative difference in the features of the 
photoionization spectra, especially for γ >∼ 1 (intermediate and MPI regimes). It is remarkable that the second 
order Stark has completely no effect on the K-Φ map of the intermediate and ATI cases (where γ <



1 of Figs 9 and 
10). This is because of the destructive interference at Θ = 90°.

However, in the intermediate case, the Stark effect displaces and redistributes the high peak structures of the 
K-Θ map (in Fig. 12) to higher energies for both linear and elliptical polarizations, with the dip (lowest proba-
bilities) at K ~ 20 eV shifted to higher value K ~ 25 eV. This can be due to the interference between the temporal 
variations of the bound levels during the pulse Inlm(t) (Eq. 1) and the time dependent ponderomotive energy, 
Up(t), as also explained in refs 86 and 87.

For ATI regime (small frequency ω and large field E), the Stark shifts alter only some of the peaks and not the 
main features of the K-Φ map of Fig. 10 and the K-Θ map of Fig. 13, particularly, around Θ = 90° for elliptical 
polarization we see sign of modulation of the highest peaks. Thus the Stark shifts have little effect on the angular 
dependence of both polarizations in the ATI regime. Here, the ponderomotive energy Up is larger than the inter-
mediate case and may overwhelm the Stark energy, reducing its effect on the tunnelling mechanism.

Conclusions
We have developed a new semi-analytical Keldysh theory for photoionization by arbitrarily short laser pulses 
without using the stationary phase or saddle point approximation. Using the analytical expression for the tran-
sition matrix elements obtained from the Fourier transform method, photoionization spectra can be computed 
more accurately and rapidly. The efficient theoretical framework without the saddle point approximation pro-
duces the 3D figures that significantly enhance our visualization of the (observational) angular dependence of 
the photoelectron spectra and the variations with laser pulse parameters, providing new and insightful results 
after analysis.

Shorter laser pulses not only give rise to broader spectral peaks that are equally spaced by ω , but also cross-
ings and splitting of peaks in the photoionization spectra. The angular dependence of the photoionization spectra 
for the intermediate, ATI and MPI regimes are quite distinct, with strong angular dispersion/correlation of the 
ATI peaks. In particular, we find the absence of the odd ordered photoionization peaks for linear polarized case 
at observation angle Θ = 90° due to destructive quantum interference effect, and vanishing first MPI peak with 
elliptical polarization at the angles Θ = 0° and 180°.

The CEP changes the detailed positions of the ATI peaks and therefore significantly alters the angular corre-
lation of the ATI spectra, but has little effect on the intermediate case. The Stark shift has completely no effect on 
the azimuthal angular dependence (when Θ = 90°), has little effect on the ATI spectra but significantly shifts the 

Figure 14.  Same as Fig. 12 (photoionization probability for tp = 10 fs, versus Θ at Φ = 0 and K) but for case C 
characterizing the MPI regime.
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photoionization spectra to higher energy for intermediate regime due to the interference between the temporal 
variations of the bound level and the time dependent ponderomotive energy.

Analysis of the stationary phase (compare Eqs 49 and 55) for linear polarization shows that the tunnelling 
times are nonperiodic due to the short pulse effect. For elliptical polarization, a larger number of stationary points 
appear and this is reflected in the presence of secondary peaks alluded to splitting and crossing of peaks in the 
photoionization energy spectra. In short, our present study has unveiled more physical insights of photoioni-
zation with ultrashort pulses, at least qualitatively, on the effects of polarization, revival of peaks by short pulse; 
crossing, splitting and dispersion of peaks; spectral variations with angles; CEP and Stark effects. The present 
semi-analytical Keldysh theory without the saddle point or stationary phase approximation would inspire further 
works, such as inclusion of the Coulomb corrections and relativistic effects, as well as extension to more complex 
quantum systems like multielectron atoms, molecular ions88, 89 and small molecules90, 91.
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