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The present paper reports on the facile formation of ZnO nanorod photocatalyst electrodeposited on Zn foil in the production of
hydrogen gas via water photoelectrolysis. Based on the results, ZnO nanorod films were successfully grown via electrochemical
deposition in an optimum electrolyte set of 0.5mM zinc chloride and 0.1M potassium chloride at pH level of 5-6 and
electrochemical deposition temperature of around 70∘C. The study was also conducted at a very low stirring rate with different
applied potentials. Applied potential was one of the crucial aspects in the formation of self-organized ZnO nanorod film via control
of the field-assisted dissolution and field-assisted deposition rates during the electrochemical deposition process. Interestingly, low
applied potentials of 1 V during electrochemical deposition produced a high aspect ratio and density of self-organized ZnOnanorod
distribution on the Zn substratewith an average diameter and length of∼37.9 nmand∼249.5 nm, respectively.Therefore, it exhibited
a high photocurrent density that reached 17.8mA/cm2 under ultraviolet illumination and 12.94mA/cm2 under visible illumination.
This behaviour was attributed to the faster transport of photogenerated electron/hole pairs in the nanorod’s one-dimensional wall
surface, which prevented backward reactions and further reduced the number of recombination centres.

1. Introduction

Based on records dating back to 1880 by NASA, Earth’s
surface temperature was the warmest in 2015 [1]. The outgo-
ing heat absorbed by greenhouse gases, like carbon dioxide,
methane, and nitrous oxide, was reemitted in all directions,
resulting in the increase of Earth’s surface temperature [2].
The emission of greenhouse gases was mostly caused by the
combustion of fossil fuels. Therefore, many parties have tried
to create alternative energy substitutes to the current energy
sources around the world. One of the alternatives is hydrogen
gas. In the 21st century, the transition of fuel from liquid to
gas phase, commonly known as the hydrogen economy, for
future sustainability of fuel and hydrogen-based economies
will have an impact on all sectors in the long term.

In this research, ZnO was chosen as the photocatalyst for
water splitting applications in hydrogen gas production due
to its essential cost-benefit to the industry. ZnO nanorods
have high transparency in the visible range and high light
trapping characteristics which is very important for PEC

water splitting applications [3]. Additionally, the radiation
hardness can be applied at high altitudes or even in space
with its transparent and conductive properties [4–7]. ZnO
has a large number of nanostructures in one-dimensional
(1D) form: combs [8], wires [9–11], belts [12, 13], tubes
[14–16], spring and ring [17], ribbon, helixes, needle [18],
and nanorod [19–21]; two-dimensional (2D) form: nanopel-
lets and nanosheets [22, 23]; and three-dimensional (3D)
form: dendrites, flower, dandelion, coniferous structure, and
snowflakes [11, 24–29]. In this research, we focused on the
formation of ZnO nanorods and studied their morphology,
phase, and photochemical responses.

Another convincingmotivation arose from the benefits of
a one-dimensional (1D) ZnO nanostructure. Since themobil-
ity of electrons was crucial for the formation of hydrogen
gas, a 1D nanostructure was selected for this research due
to its anisotropic mobility of electrons. The electron mobility
increased with the decrease of density for electrons available
to scatter. This electron mobility behaviour was attributed
to the faster transport of photogenerated electron/hole pairs
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Table 1: The revolution of ZnO nanorod formation.

Researchers Synthesis method Research findings References

Azam and Babkair Low temperature wet chemical method ZnO nanorod with diameter ∼80–90 nm and
length ∼350–400 nm. [33]

Abbasi et al. Hydrothermal growth method ZnO nanorod with diameter ∼150 nm and length
∼4𝜇m on silicon substrate. [34]

Alvi et al. Low temperature aqueous chemical
growth (ACG) method

Nanowalls, nanorod and nanotubes (diameter
∼160 nm, length ∼1.2𝜇m), and nanoflowers.
Different precursor and supporting electrolyte
produced different nanorod. Pretreated p-GaN
substrate.

[35]

Chen et al. Metalorganic chemical vapor deposition
(MOCVD)

ZnO nanorod with diameter ∼100 nm on sapphire
substrate. [36]

Badre et al. Electrochemical deposition method ZnO nanorod with diameter ∼180 nm and length
∼1.2𝜇m on F-doped SnO

2

-coated glass substrate. [37]

in the nanorod’s one-dimensional wall surface, which pre-
vented backward reactions and further reduced the number
of recombination centres. Many methods were studied by
past researchers to form ZnO nanorods (Table 1). However,
electrochemical deposition promised the best advantages
with benefits like being significantly cost-effective, environ-
mentally friendly, easy to implement, uniform in deposition
of materials, reliable, and controllable and having low-energy
consumption [30–32].

2. Materials and Methods

2.1. Synthesis of ZnO Nanorod. For the preparation of ZnO
nanorods, zinc (Zn) foil (thickness 0.25mm, 99.9% trace
metals basis, Sigma-Aldrich) was dipped in an electrolyte
bath composed of 50mL of 0.5mM zinc chloride (ZnCl

2
)

and 50mL of 0.1M potassium chloride (KCl) at 1.0–3.0 V
and under a temperature of 70∘C. From our literature studies,
a voltage of 1.0 V and temperature of 70∘C were selected
because the polycrystalline structure of ZnO would start
to evolve at this potential difference and temperature with
obvious and randomly oriented grains. The as-prepared
electrolyte pH was about 5-6 and was measured with a
Mettler Toledo InLab Expert Pro pH meter. The electro-
chemical deposition process was conducted with a two-
electrode configuration system, as shown in Figure 1. The
platinumelectrode served as the anode while Zn foil served
as the cathode. This closed system was then connected to a
DC power supply. After the electrochemical deposition, the
nanodeposits were then thoroughly rinsed with EMSURE
ACS, ISO, Reag. Ph Eur Acetone for analysis and dried at
atmosphere. The deposited ZnO nanostructured films were
then annealed at 350∘C for 3 hours.

2.2. Characterizations of ZnO Nanorod. The photolumi-
nescence spectra, crystallinity, and phase transition of the
samples were analysed with a Renishaw In Via Raman
microscope and the result was supported with the result of X-
ray dispersive (XRD) Bruker D8 Advance that was equipped
with EVA Diffract software (Germany) with Cu K radiation

DC source

+

−

Working 
electrode

Counter 
electrode

Figure 1: Schematic diagram of electrochemical deposition process.

and wavelength of 𝜆 = 1.5418 Å. Meanwhile, the surface
and cross-sectionalmorphologies of the samples were viewed
through JEOL JSM-7600F Field Emission Scanning Electron
Microscopy (FESEM) and the elemental analysis of the
ZnO nanorod films was determined with a Hitachi Energy
Dispersive X-ray (EDX) spectroscopy analysis. To study the
photocurrent density of the samples, a three-electrode PEC
cell with ZnO nanorod films as the anode, a platinum rod
as the cathode, and a saturated calomel electrode (SCE)
as the reference electrode was used in a quartz cell filled
with 1M sodium hydroxide (NaOH) containing 1 v% of
ethylene glycol. A Newport model 74010 light source was
focused on the immersed portion of the photoelectrode to
stimulate ultraviolet and visible illumination. All of the three
electrodes were connected to the potentiostat (Metrohm
AutolabPGSTAT204) and the corresponding current-applied
potential value was measured. The photocurrent density
was measured with Metrohm Autolab PGSTAT204 with a
procedure linear sweep voltammetry potentiostatic applied
potential of −1 to 1 V.
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Figure 2: FESEM images: (a) 1 V of electrochemical deposition applied potential; (b) 2V of electrochemical deposition applied potential; (c)
3 V of electrochemical deposition applied potential. HRTEM image: (d) 1 V of electrochemical deposition applied potential.

3. Results and Discussion

3.1. Morphological Structure of ZnO Nanorod. The appear-
ance of deposited zinc oxide on Zn foil can be said to be
dependent on the applied potential during electrodeposition
with an optimum set of other variables like 0.5mM zinc
chloride and 0.1M potassium chloride electrolyte, pH level
of ∼5-6, electrochemical deposition temperature ∼70∘C, and
a very low stirring rate. Dimensions and uniformity of the
morphology of ZnO were a function of the applied potential
in the ZnCl

2
and KCl electrolyte. For samples deposited

under 1 V (Figure 2(a)), nanorods with an average diameter
of 37.9 nm and average length of 249.5 nm were produced
with near-perfect 𝑐-direction.When the applied potential was
increased to 2V, the diameter of the nanorods became slightly
larger with an average of 61.6 nm but with shorter average
lengths of 211.2 nm (Figure 2(b)). In this manner, increases
in applied potential produced reductions in lengths as higher
precursor dissolution occurred at higher potentials and the
Zn2+ concentrations were higher in the [0001] direction.
Hence, the unit growing in the [1000] direction was preferred
and therefore increased in diameter [25, 38]. However, upon
achieving steady state, the propagation or crystal growth at
direction [1000] would be terminated and the nucleation of
new crystals started in the direction of [0001] again. The
process would repeat until the applied potential stopped.
However, any further increases in applied potential to 3V

would cause irregular features on the surface of the Zn
foil and create a dense ZnO structure instead of ordered
nanopores that were previously observed. It can be concluded
that higher applied potentials produced negative effects on
the self-ordering of the deposited zinc oxide, whereby the
nanorod structure disappeared and the deposited zinc oxide
would be composed of irregular and dense structures with
thicknesses of ∼2.78𝜇m, as shown in Figure 2(c). Therefore,
a minimum potential of 1 V was found to be optimum for
the formation of self-organized ZnO nanorods with lengths
approaching 249.5 nm in 60 minutes. On the other hand, the
lattice fringes of 1 V samples measured 0.23 nm and indicated
(101) ZnO wurtzite (Figure 2(d)).

The final morphology of ZnO nanorods was the compe-
tition of field-assisted dissolution and field-assisted deposi-
tion of ZnO. By applying higher potentials, strong electric
fields helped to accelerate the three-step formation of ZnO
nanorods. The driving force of externally applied potential
led to the dissolution of ZnCl

2
, KCl, and water (field-

assisted dissolution). Equation (1) shows the dissolution of
KCl + ZnCl

2
+ H
2
O. Equation (2) shows the formation of

zinc hydroxide (Zn(OH)
2
). Equation (3) shows the reaction

Zn(OH)
2
+ HCl + KOH → ZnO + H

2
O + KCl. When the

ionic species arrived at the cathode under the influence of
applied potential, there was a difference between the actual
concentration and solubility concentration (supersaturation)
due to the increased local pH of KOH at the cathode which
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Table 2: Average compositional ratios for 1 V, 2V, and 3V applied
potential from EDX spectroscopy.

Element Atomic percentage (%)
1 V 2V 3V

Zn 50.3 51.7 55.9
O 49.7 48.3 44.1

produced very high supersaturation. Therefore, in (3), the
nucleation of ZnO was started (field-assisted deposition) by
the dehydration process of Zn(OH)

2
to ZnO [4, 25]. EDX

spectroscopy showed averages of 50.3 at% Zn and 49.7 at%O,
51.7 at% Zn and 48.3 at% O, and 55.9 at% Zn and 44.1 at% O
for the respective 1 V, 2V, and 3V applied potential samples
(Table 2). Below are the equations for the formation of ZnO
nanorods and a summary of the diameter, length, and aspect
ratios of 1 V, 2V, and 3V as shown in Table 3.

Dissolution of KCl + ZnCl
2
+ H
2
O occurs as follows:

KCl 󳨀→ K+ (aq) + Cl− (aq)

ZnCl
2
󳨀→ Zn2+ (aq) + 2Cl− (aq)

2H
2
O 󳨀→ H

2
↑ +2OH− (aq)

(1)

Formation of zinc hydroxide (Zn(OH)
2
), KOH, and

KCl occurs as follows:

K+ (aq) +OH− (aq) 󳨀→ KOH

(increase in local pH at the cathode)

Zn2+ (aq) + 2OH− (aq) 󳨀→ Zn (OH)
2

H
2
↑ +2Cl− 󳨀→ 2HCl

(2)

Formation of zinc oxide (ZnO) occurs as follows:

Zn (OH)
2
󳨀→ ZnO +H

2
O

(dehydration process)

HCl + KOH 󳨀→ H
2
O + KCl

(3)

3.2. Structural Analysis for ZnO Nanorod. In this study,
Raman analysis was used to determine and understand the
structural changes of ZnO with different applied potential.
Raman inelastic scattering is shown at peak 𝐸

2
(high) mode

at 438 cm−1 and indicated that the ZnO nanostructures’
thin film had crystal wurtzite structures with the highest
intensity at 1 V (796.5 counts) (Figure 3(a)) as compared to
2V (468.4 counts) and 3V (459.7 counts) (Figures 3(b) and
3(c)). However, these thin films in both samples were still
weak in pure stoichiometric ZnO due to the dominance of
𝐸

1
(LO) and 𝐴

1
(LO) mode (570–585 cm−1) as compared

to 𝐸
2
(high) mode at 438 cm−1 and this situation normally

occurs in Zn rich ZnO thin films. This can also be due
to deficiency in oxygen atoms represented by these two
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Figure 3: Raman spectra for (a) 1 V, (b) 2V, and (c) 3V (excitation:
𝜆 = 514 nm).

modes (𝐸
1
(LO) and 𝐴

1
(LO) mode (570–585 cm−1)) with

the existence of Zn elements from the Zn substrate [39,
40]. Besides this, the shift in the peaks occurred due to
the differences in structure. For the 1 V and 2V sample, it
has appeared in the ZnO nanorods and the asymmetric LO
phonon peaks were observed at 571 cm−1. Meanwhile, the 3V
samples had dense structures (ZnO bulk crystal); therefore,
the frequency of the LO phonon was located at 574 cm−1 [41].
In addition to this, many researchers found that the shift
occurred at at least 3 cm−1 [42–44]. The shift of the peak
occurred due to the defects or impurities in the nanocrystals,
optical phonon confinement, laser irradiation heating, and
the tensile strain effect [41, 45]. Furthermore, the intensity
of the peaks was reduced by increasing the applied potential.
This occurred due to the quality of thematerials which in turn
also affected the Raman intensity where higher crystalline
quality exhibited higher intensity. Increases in grain size also
produced a substantial reduction in asymmetry and intensity
of the peaks [46].

The XRD pattern supported the Raman scattering as
it showed that the ZnO nanorods were in wurtzite phase
which belonged to reference code ICDD 00-036-1451 with a
hexagonal crystal system. The plane attributes for this ZnO
were 31.7∘ (100), 34.4∘ (002), 36.3∘ (101), 47.5∘ (102), 56.6∘
(110), 62.9∘ (103), and 67.9∘ (112) (Figure 4).The wurtzite ZnO
crystallographic lattice parameters were 𝑎 = 3.25 Å, 𝑏 =
3.25 Å, and 𝑐 = 5.21 Å, which confirmed that the number
of alternating planes consisted of O2− and Zn2+ that were
stacked in tetrahedral structures along the 𝑐-axis [47]. 43.2∘
(101) and 76.9∘ (004) showed the apparent existence of Zn
elements which also reinforced the Raman scattering results
(Figure 4).

3.3. Photoluminescence Behaviour. The photoluminescence
study for ZnO nanorods was mainly related to some defects,
for instance, the zinc vacancies, zinc interstitial, oxygen
vacancies, oxygen interstitial, and oxygen antisites. The 350–
450 nm region determined the exciton recombination pro-
cess and is triggered by the recombination of free excitons,
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Table 3: Average values for length, diameter, and aspect ratio for different applied potentials.

Potential (V) Surface morphology Length (Å) Diameter (Å) Average aspect ratio
1 Nanorod 2495 ± 103 379 ± 12 6.58
2 Nanorod 2112 ± 98 616 ± 16 3.43
3 Dense structure 27890 ± 225 — —
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Figure 4: The XRD pattern for ZnO nanorod for 1 V applied
potential.
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Figure 5: PL spectra for sample: (a) 1 V, (b) 2V, and (c) 3V
(excitation: 𝜆 = 514 nm).

which points to the good crystallinity of the ZnO nanorods
[48, 49]. 1 V sample showed the greatest ZnO nanorod
crystallinity arrangement since it had the least emissions at
the 50–450 nm region (UV region) but small emissions at
the 600–700 nm region (orange-red region) indicated small
intrinsic defects which was attributed to the presence of small
excess oxygen such as oxygen interstitial [50]. This result is
supported by EDX which shows a high atomic percentage
of oxygen at 49.7% (Figure 5(a)). On the other hand, the
sample 2V showed combinations of more than one defect.
Based on the available literature, this could be a combination

of an oxygen vacancy and zinc interstitial, VoZni [51]. The
origin of green emissions normally came from oxygen based
defects [51–54] and a combination of both defects, oxygen
vacancy and zinc interstitial defect, produced broad green,
yellow, and orange region (Figure 5(b)) [51, 55]. EDX proved
that % imbalance occurred in the 2V sample; the atomic
percentage of oxygen (48.3 at%) was lower than that of zinc
(51.7 at%). Nevertheless, a few researchers proposed that high
volumes of Zn(OH)

2
could also produce the broad green,

yellow, and orange region [50, 56]. In this case, insufficient
annealing was one of the reasons. A second reason would be
the rate of field-assisted deposition that was higher compared
to the rate of dehydration (formation of ZnO). It therefore
produced a high volume of Zn(OH)

2
on the nanorod surface.

This proposed reason would need further investigation for
confirmation. The 3V sample showed that the superlative
performance at the 500–800 nm region for ZnO indicated
fewer defects but had very high free exciton recombination
at the 350–450 nm region which showed poor crystallinity
arrangements of ZnO. The 3V sample’s results indicated that
the dense structure was based on its morphology and was in
the bulk ZnO as per the results of Raman analysis.

3.4. Photoelectrochemical Response. ZnO with its excellent
electronic properties and interfacial stability exhibited great
photoelectrochemical response for hydrogen generation.The
electrical simulation for water electrolysis (hydrogen gener-
ation) was studied by using photoelectrochemical response
focusing on the photocurrent density analysis (Figures 6 and
7). Water splitting in excess of 90% occurred with applied
potentials of −1 to 1 V [57]. This small current was needed
to maintain the double-layer (surface charging and redox
reaction) electron flow at the electrodes’ surface [58]. A lot
of literature has reported that the high active surface areas
of photocatalysts generally exhibited excellent photocatalytic
and photoelectrochemical responses due to the high percent-
age of produced and exposed atoms and ions on the catalyst
surface. Therefore, a high volume of active sites was crucial
for catalytic reactions [59]. Furthermore, the increments in
rod lengths provided the fastest way for the charges to be
transported along the longitudinal direction of a 1D single-
crystalline nanomaterial [58, 59]. In addition, it helped ionic
species to have higher driving force in order to move through
the barrier layer of the ZnO nanorod tip.The large active area
referred to a high average aspect ratio (Table 3).

The 1V applied potential exhibited the highest photocur-
rent density, 𝐽

𝑝
, for ultraviolet illumination (17.8mA/cm2)

(Figure 6(a)) and visible illumination (12.94mA/cm2) (Fig-
ure 7(a)) as compared to 2V (ultraviolet illumination 𝐽

𝑝

= 11.78mA/cm2; visible illumination, 𝐽
𝑝
= 10.78mA/cm2)
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Figure 6: Current density-applied potential characteristics for (a)
1 V, (b) 2V, and (c) 3V under ultraviolet illumination.
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Figure 7: Current density-applied potential characteristics for (a)
1 V, (b) 2V, and (c) 3V under visible illumination.

(Figures 6(b) and 7(b)). Based on the above statements,
the 1 V applied potential exhibited the highest photocurrent
density results due to it possessing the highest aspect ratio
as compared to 2V (Table 3). Meanwhile, the 3V applied
potential exhibited an ultraviolet illumination photocurrent
density, 𝐽

𝑝
, of 6.83mA/cm2 and 5.74mA/cm2 for visible

illumination (Figures 6(c) and 7(c)). The dense porous
structures (3V applied potential) inhibited the charge trans-
fer competence via ZnO (anode) and this charge transfer
competence significantly decreased the collection of current
density, 𝐽, and thus reduced the photocurrent density, 𝐽

𝑝
,

which represented the photoresponse activity.

4. Conclusion

In this paper, it was found that the optimum electrolyte
mixture consisted of 0.5mM zinc chloride and 0.1M potas-
sium chloride, with pH value of ∼5-6, electrochemical depo-
sition temperature of ∼70∘C, and a very low stirring rate.
When this optimum electrolyte mixture was run through

an applied potential of 1 V and other important conditions,
ZnO nanorods were produced with the highest average
aspect ratiomorphology.These nanorods also had the highest
photocurrent density, 𝐽

𝑝
, with a value of 17.8mA/cm2 under

ultraviolet illumination and 12.94mA/cm2 under visible illu-
mination. Apart from the phase analysis, the sample ZnO
confirmed it was a wurtzite type of ZnO with a number
of alternating planes consisting of O2− and Zn2+ and had
stacked tetrahedral structures along the 𝑐-axis. The free
exciton recombination for 1 V was the lowest as compared
to 2V and 3V (photoluminescence spectra). However, the
small emission region at 600–700 nm (orange-red region)
was identified under PL testing.This indicated small intrinsic
defects, which was attributed to the presence of small excess
of oxygen such as oxygen interstitial.
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[50] A. B. Djurišić, Y. H. Leung, K. H. Tam et al., “Defect emissions
in ZnO nanostructures,” Nanotechnology, vol. 18, no. 9, Article
ID 095702, 2007.

[51] N. H. Alvi, Luminescence Properties of ZnO Nanostructures and
Their Implementation as White Light Emitting Diodes (LEDs),
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