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The advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However,
locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical
applications.Thepioneering technique in range-free localization schemes is a sequentialMonteCarlo (SMC)method, which utilizes
network connectivity to estimate sensor location without additional hardware.This study presents a comprehensive survey of state-
of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover,
the critical characteristics of each existing scheme are analyzed to identify its advantages and disadvantages. The similarities and
differences of each scheme are investigated on the basis of significant parameters, namely, localization accuracy, computational
cost, communication cost, and number of samples. We discuss the challenges and direction of the future research work for each
parameter.

1. Introduction

The digital world is becoming increasingly important in our
daily liveswith the heavy utilization of numerous small, cheap
devices called sensor nodes. These sensor devices can be
controlled and can communicate and cooperate remotely to
investigate far and hazardous areas [1–4]. Sensor nodes are
utilized in different fields, such as the Internet ofThings [5, 6],
health care [7], zoo monitoring [8], underwater exploration
[9], intelligent city [10, 11], military applications [12], routing
optimization [13], and dynamic mapping [14, 15].

The localization schemes in wireless sensor networks
(WSNs) can be classified into two types, namely, static and
mobile networks [16]. A static network is constructed with
stationary sensor nodes; the sensors are deployed randomly
or on the basis of a previous plan. By contrast, the sensor
nodes in a mobile network are flexible to maximize their
benefits in improving WSNs coverage and power consump-
tion and in discovering other areas with a limited number of
sensors [17].

Generally, the localization schemes of a mobile sensor
are classified as range-based and range-free schemes [18,
19]. However, in this work, we classified the localization
schemes into three groups, namely, range-based, range-free,
and hybrid schemes.The range-based scheme uses additional
hardware such as antenna to estimate the location of a blind
node (i.e., a node without location information), whereas
the range-free scheme uses network connectivity. The hybrid
scheme is a combination of the range-free scheme for noise
cases and the range-based scheme for stabile cases. In all
the aforementioned schemes, anchor nodes (i.e., nodes with
location information) broadcast their location information
per time slot to assist blind nodes in estimating their location.

Range-free localization schemes are classified into four
categories, namely, hop count, fingerprint algorithm, Monte
Carlo scheme, and hybrid schemes (SMC and hop distance).
The hop count estimates the location of a blind node through
an average of hop distance. Hence, each node maintains the
minimum hop number of the anchor node in the network.
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In the fingerprint algorithm, the location of a blind node
is estimated in two stages. The first stage involves the
construction of an offline database by measuring the signal
strength in the deployment area, and the second stage
involves the real-time estimation of the location of a blind
node by matching the signal strength of this blind node with
the offline database. The Monte Carlo scheme uses the prob-
ability distribution function (PDF) to estimate the location
of a blind node [19]. The hybrid schemes (SMC and hop
distance) advance localization accuracy by utilizing the DV-
hop (distance vector-hop) technique on MCL (Monte Carlo
localization).

A majority of range-free schemes use the sequential
Monte Carlo (SMC) technique to estimate the location of
blind nodes in dynamic systems within three steps, namely,
initial, sample, and filter stages [20, 21].The location ofmobile
sensors is an important parameter in WSNs. Thus, a high
level of localization accuracy can improve the confidence and
quality of sensing data. In the present study, we classified the
performance of SMC schemes according to three categories,
namely, localization accuracy, computational cost, and com-
munication cost.

Localization accuracy is measured with the variance of
the Euclidean distance between the estimated location and
the real location [11]. The localization accuracy in SMC
schemes is mostly affected by two parameters, namely, the
density of anchor nodes and number of samples [22–24].
Hence, a large number of anchor nodes can improve local-
ization accuracy by broadcasting rich location information
in the area. Moreover, a sufficient number of valid samples
can improve localization accuracy.However, the performance
of SMC schemes is extremely dependent on the distribution
function of previous samples.

The computational cost to generate a sufficient valid sam-
ple can be measured with the number of iterations required
to find a sufficient valid sample. SMC requires a sequential
repetition of sample and filter steps until a sufficient valid
sample is obtained. The efficiency of the samples is also
affected by the bounded sample area and sample evaluation
[25].

The communication cost in range-free localization
schemes can be determinedwith the number ofmessages that
are sent during the localization process [26]. Consequently,
the accuracy in range-free schemes is highly dependent on
the density of anchor nodes and normal nodes (node’s new
location in the last time slot), which can increase the number
of messages sent. Moreover, the size of messages affects
communication cost.

The following are the contributions of the present study:
a comparison of existing surveys on WSNs localization, a
classification of state-of-the-art SMC schemes and a thematic
taxonomy, a comprehensive survey of state-of-the-art local-
ization operation parameters, a discussion of critical aspects,
and the identification of challenges and open issues.

This paper consists of eight sections organized as follows.
Section 2 presents the comparison of current surveys on
sensor localization. Section 3 defines the thematic taxonomy
of existing localization schemes. Section 4 explains the

elementary approach related to SMC and the evaluation
parameters for the localization process. Section 5 reviews the
state-of-the-art SMC schemes by discussing their advantages
and disadvantages. Section 6 presents a comparison of state-
of-the-art SMC techniques. Section 7 presents the discussion
and future works. Finally, Section 8 concludes the review.

2. Comparison of Surveys on
WSNs Localization

Localization problems have been studied in various WSNs
schemes; a survey of these schemes can be found in [18,
27, 31, 32]. The present study presents a comprehensive
review of the localization problem inmobileWSNs.However,
to highlight and distinguish our contribution from other
surveys, we summarized and compared the existing surveys
on localization problems in WSNs, as shown in Table 1.

In general, previous schemes maintain static networks,
whereas current schemes maintain mobile networks. How-
ever, the localization schemes in both networks can be
classified as range-based and range-free [37]. The survey in
[28] classified the state of sensors into four types, namely,
static landmark node and static node, mobile landmark node
and static node, static landmark node and mobile node, and
mobile landmark node and mobile node.

The survey of range-free schemes in [18] classified
these schemes into the following categories: APIT, DV-hop,
multihop, centroid, and gradient. Another survey classified
range-free localization schemes in emerging applications
(cyber physical systems and cyber transportation systems)
into proximity-based localization, one-hop localization, and
multihop localization. Moreover, range-based schemes were
classified in [16] into beacon-based distributed localization,
relaxation-based distributed algorithm, coordinate system
stitching-based localization, and hybrid localization. Beacon-
based distributed localization can be further classified into
three categories, namely, diffusion, bounded box, and gradi-
ent.

The survey in [29] classified mobile sensor networks
in disaster scenarios, in which mobile nodes aid in the
search for disaster locations. The localization schemes in
static networks are classified as range-free and range-based
schemes, whereas those in mobile networks are classified as
robotic, MCL, and range-based schemes. Another survey on
harsh environments [30] classified localization schemes into
range-based and range-free, anchor-based and anchor-free,
and distributed and centralized schemes.

The survey of localization classification and technique
evaluation [31] classified localization schemes as geometrical
techniques, multidimensional scaling, stochastic proxim-
ity embedding, convex and nonconvex optimization, and
hybrid. An indoor application survey discussed the potential
improvement of the human mobility model by utilizing
smartphones [27]. Moreover, this survey investigated smart-
phone sensors according to location accuracy, deployment
cost, location context, cost, quality, and measurement errors.

In [33], the localization schemes were classified into
target localization and self-localization. Additionally, this
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Table 1: Previous survey of wireless sensor localization.

Reference Taxonomy Comparison parameters Years
[18] APIT, DV-hop, multihop, centroid, gradient Node density, cost, accuracy, overhead, scalability 2015

[27] Types of sensors, types of mobility, measurement
errors

Location accuracy, deployment cost, location
context, quality and cost of smartphone, and

measurement errors
2015

[28]
Static landmark and static node, mobile landmark
and static node, static landmark and mobile node,

mobile landmark and mobile node

Localization accuracy, coverage, time, landmark
density, node density, energy consumption 2013

[29] Static (range-free, range-based), mobile (robotic,
MCL, range-based)

(Centralized, distributed), dimensional analysis,
simulator, (range-free, range-based), scalability,

communication radius
2013

[30] (range-based, range-free), (anchor-based,
anchor-free), (distributed, centralized)

accuracy, hardware cost, computation cost, and
communication cost 2012

[31]
Geometrical techniques, multidimensional scaling,

stochastic proximity embedding convex, and
nonconvex optimization and hybrid

Accuracy, coverage, complexity, scalability,
robustness, and cost 2012

[32] Proximity-based localization, one-hop localization
and multihop localization Without comprehensive comparison 2012

[33] Target/source localization and node self-localization

Non-line-of-sight, energy-constrained network,
tradeoff between localization performance and

energy consumption, cooperative node localization,
and localization in heterogeneous network

2012

[16]

Beacon-based distributed localization,
relaxation-based distributed localization, the

Coordinate system stitching-based localization, and
hybrid localization

Objective (centralized, distrusted), description,
accuracy, computation cost 2010

Proposed
Range-based, range-free, and hybrid. Range-free
(localization accuracy, communication cost, and

computation cost)

Velocity, anchor and normal node density, degree of
irregularity, size of sample area, number of messages,

and message size
2016

survey reviewed the localization challenges in non-line-of-
sight node selection, optimizing the tradeoff between energy
depletion performance, cooperative nodes, and localization
in a heterogeneous radio range.

The present survey investigates the state-of-the-art local-
ization schemes in mobile WSNs in microscopic classifica-
tion.The schemes are categorized as range-based, range-free,
and hybrid. The range-free scheme is further subcategorized
into fingerprint, Monte Carlo, hop distances, and hybrid
(i.e., SMC and hop distance). Furthermore, we classify the
SMC scheme according to its main operational parameters,
namely, localization accuracy, communication cost, and com-
putation cost, in microscopic classification. The comparison
of the localization schemes assists network end users and
administrators in tracking and identifying the location of
areas under investigation. Thus, appropriate schemes are
selected to localize mobile WSNs. Throughout this study, we
further discuss the challenges and open issues related to each
location parameter.

3. Localization Scheme Classification

Estimating the location ofmobile sensors is a challenging task
in WSNs because of the frequent changes in the location of
mobile nodes per time slot, the whole topology, and con-
nectivity of networks. Additionally, the sensor node’s hard-

ware limitations, such as limited power sources, memory,
processor unit, and communication range, further compli-
cate the estimation process [38]. Therefore, WSNs need a
smart and robust technology to estimate sensor location. We
classified localization schemes into three categories, namely,
range-based, range-free, and hybrid; the SMC in range-free
schemes was classified on the basis of localization accuracy,
communication cost, and computation cost, as shown in
Figure 1.

3.1. Range-Based Localization. In range-based schemes, the
blind node finds its location using its absolute distance from
the anchor nodes. Range-based schemes use different types of
hardware to calculate distance, such as time of arrival (ToA).
ToA measures the distance between the time of arrival and
the time of departure between nodes. Then, light speed is
used to calculate the distance between nodes on the basis of
a speed equation. However, ToA needs additional hardware
to synchronize the transmission times between sensor nodes.
The time synchronization increases the traffic in networks
and delays the localization process [39].

The study in [40] proposed a time difference of arrival
(TDoA) between sound and light to improve ToA. TDoA
uses additional acoustic hardware to measure the difference
between light and sound signals from the source.The angle of
arrival (AoA) and triangle geometry between neighbors are
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Figure 1: Taxonomy of localization schemes in mobile WSNs, including range-free and sequential Monte Carlo schemes.

also used to calculate blind node location. In AoA, the sensor
node uses antennas to measure the angle between neighbors
[41].

The received signal strength indicator (RSSI) measures
the distance according to the difference in signal strengths
[42]. The RSSI assumes that signal strength degrades over
distance; this characteristic is used to measure distance
without additional hardware. However, signal strength is
affected by noise, such as physical phenomena and weather
conditions; these distortions reduce the accuracy of distance
measurement.

The global positioning system (GPS) is typically used
to localize objects in outdoor applications. However, GPS is
inapplicable to indoor applications because GPS requires the
lines-of-sight of at least three satellite signals at the same
time to determine the location of an object [43]. Moreover,
GPS signals are affected by obstacles, walls, and physical
phenomena.The other limitations of GPS include high power
consumption, high cost, and large size.

3.2. Range-Free Localization. Range-free schemes estimate
blind node location through network connectivity without
additional hardware. Thus, the blind node requires the
following: information about nodes that are within its radio
range, the location estimation of nodes, and the ideal radio
range of each sensor.The anchor nodes in range-free schemes
broadcast their locations at each time slot to help the blind
node in estimating its location. Generally, the blind node
needs at least three anchor node locations in the neighbor-
hood to estimate its location. Range-free schemes are more
cost-effective than range-based schemes. Range-free schemes
can be classified into the following types: hop distance,
fingerprint, SMC, and hybrid schemes utilizing SMC and hop
distance.

Hop Distance. Hop distance uses the average hop to esti-
mate the distance between anchor nodes. The localization
process in DV-hop follows three steps, namely, location
broadcast, distance calculation, and location estimation [44].
In location broadcast, the anchor node broadcasts its location
information and initializes the hop count to zero among its
neighbors. The receiver node keeps the minimum hop count
for each anchor node and disregards the large hop count
from the same anchor nodes. Then, the receiver increases
the hop count by one and sends it to the neighbors. Hence,
each node has a record of the minimum hop count of all
anchor nodes. In distance calculation, the node calculates the

average distance with each anchor node over the hop count
of all anchor nodes. In location estimation, the blind node
calculates its location by interlocking the matrixes of anchor
node location and thematrixes of distance with anchor nodes
[45]. The disadvantage of hop distance is that it requires a
uniform distribution of anchor nodes in the whole network
to achieve high accuracy. Consequently, DV-hop is limited to
specific applications.

Fingerprint. The fingerprint localization approach estimates
blind node location in two steps, namely, creation of an
offline database and online location estimation. The offline
database is constructed from signal characteristics (called
fingerprints) and the location recorded from the whole
part of the area of interest. Then, location is estimated for
the mobile user by matching the signal fingerprint from
the user with that in the database server. Once the signal
fingerprint matches that in the database server, the estimated
location is sent back to the user. The main drawback of
the fingerprint localization approach is the creation and
updating of the database. Creating the database requires some
expert personnel to collect fingerprints from areas of interest;
updating the offline database is a time-consuming task when
changes, such as the addition or removal of a new access
point in the area of interest, are made in the environment.
Moreover, mobile sensors can share similar fingerprints that
degrade accuracy and promote ambiguity. This drawback
of the fingerprint localization approach requires a qualified
engineer who would measure signal strength [46].

Sequential Monte Carlo (SMC). Mobile sensors change their
locations frequently over time. Hence, finding their current
locations requires relocalization at each time slot. SMC is an
efficientmethod for a dynamic system; SMCemploys the PDF
in the previous time slot and observes it at the current time
to estimate the current location by using a weighted particle
filter [47].

SMC makes the following two assumptions: (1) time is
divided into discrete time units and (2) enough samples are
required at each time slot. The SMC scheme estimates blind
node location in a distributed manner on the basis of the
connectivity information “who is within the communication
range of whom” [48].

The localization process in SMC involves three stages (as
in Algorithm 1), namely, the initial, sample, and filter stages.
In the initial stage, the blind node estimates its location by
generating samples randomly from the whole area. In the
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sample stage, the blind node draws samples in the current
time slot on the basis of the samples from the previous
time slot bounded by a maximum velocity. Hence, the node
generates samples through the following transition equation:

𝑝 (𝑆𝑡 | 𝑆𝑡−1) =
{
{
{

1
𝜋Vmax

2
if 𝑑 (𝑆𝑡 | 𝑆𝑡−1) ≤ Vmax,

0 if 𝑑 (𝑆𝑡 | 𝑆𝑡−1) > Vmax,
(1)

where Vmax is the node maximum velocity and 𝑑(𝑆𝑡 | 𝑆𝑡−1) is
the distance of the sample location between the current time
and the previous time.

In the filter stage, the samples are weighted according
to the anchor node constraint in the current time. Each
valid sample must be within one or two hops of the three
anchor node constraints. Otherwise, the sample is filtered
out. SMC repeats the sample and filter stages sequentially
until sufficient valid samples are discovered.

Algorithm 1 (phase of SMC localization algorithm).

(1) Phase One. Initial phase
(2) Generate samples S randomly from the whole area.
(3) Phase Two. Generating samples
(4) Sample set 𝐶𝑡 = {}
(5) For each sample S in previous time (𝑙𝑡−1), generate a

new sample according to

(6) Sample 𝑙(𝑖)𝑡 ∼ 𝑝(𝑙𝑡 | 𝑙(𝑖)𝑡−1)
(7) Weight of 𝑙(𝑖)𝑡 as 𝑤̌(𝑖)𝑡 = 𝑝(𝑜𝑡 | 𝑙(𝑖)𝑡 )
(8) 𝐶𝑡 = 𝐶𝑡 ∪ {(𝑙(𝑖)𝑡 , 𝑤̌(𝑖)𝑡 )}
(9) Phase Three. Filtering
(10) 𝐶󸀠𝑡 = {(𝑙(𝑖)𝑡 , 𝑤̌(𝑖)𝑡 ) | (𝑙(𝑖)𝑡 , 𝑤̌(𝑖)𝑡 ) ∈ 𝐶𝑡 and 𝑤̌(𝑖)𝑡 > 0}
(11) Normalize theweightof valid samples𝑤𝑖𝑡 = 𝑤̌𝑖𝑡/∑𝑁𝑖=1 𝑤̌𝑖𝑡
(12) Set the average of the samples as the blind node

location.

(𝑖) is the index of samples, 𝑜 is observation at current time,
and 𝐶 is the sample set.

The filtration efficiency of the SMC localization scheme is
mostly affected by anchor node density in the neighborhood.
For example, under low anchor node density, a blind node is
not always able to identify three anchor nodes in the first hop
and second hop, especially when the sensor moves with high
velocity; this process occurs because the first hop neighbors
that communicate with radio range 𝑅 are unable to identify
within its range the second hop sensor that communicates
with radio range 2𝑅.

Hybrid Schemes (SMC and Hop Distance). The multihop
version of Monte Carlo localization (MMCL) [49] improves
localization accuracy and reduces the dependence on anchor
nodes by utilizing the DV-hop technique on MCL. MMCL
measures the average hop distance between anchor nodes
and then uses MCL to estimate blind node location.The DV-
hop schemes have two drawbacks. First, these schemes need

a uniform distribution of anchors to achieve high accuracy.
Second, broadcasting the location information of anchor
nodes to multiple hops increases the communication cost.

The hybrid scheme presented in HMCL [50] utilizes hop
distance and the SMC technique to improve localization
accuracy.The sample area is constructed over the intersection
area between anchor boxes. The anchor boxes are formed
over the midpoint between anchor nodes. This scheme can
reduce the size of a sample area and improve the localization
accuracy through a virtual anchor node. The disadvantage
of this scheme is that additional computation is required to
estimate the distance and angle between the anchor node and
the virtual anchor node.

3.3. Hybrid Localization Scheme (Range-Free and Range-
Based). The combination of range-based and range-free
schemes can improve localization accuracy in WSNs. The
RSSI is a simple range-based scheme that measures the dis-
tance between two nodes by evaluating the signal strength
indicator without additional hardware. Signal strength
declines over distance. Hence, the RSSI utilizes this phenom-
enon to measure distance in the localization process. Con-
sequently, communication and computational costs are
reduced in the SMC technique [51].

The range-based MCL (RMCL) scheme combines range-
based and range-free schemes during the localization process
to overcome the high radio measurement error that reduces
localization accuracy in range-based schemes. RMCL is a
hop distance scheme that maintains the hop count and
measurement range at a minimum for each anchor node.
However, broadcasting theminimummeasurement range for
each anchor node increases the communication cost in this
hop distance method. Moreover, computing the weights in
RMCL is a complex task [52, 53].

The Monte Carlo box localization algorithm based on
RSSI (MCBBR) [54] uses a reference genetic algorithm
(linear crossing and rectangular crossing) to enhance the
localization accuracy of the RMCL scheme and RSSI obser-
vation to optimize the sample area. In MCBBR, the localiza-
tion accuracy is determined with the following four steps,
namely, constructing the sampling box, establishing the
sample number, optimizing the sample, and estimating the
location. The real implementation of RMCL [52, 55] shows
that the RSSI improves the accuracy of personal location
inside an operation environment. Another improvement of
RMCL [53] involves the use of SMC to increase localization
accuracy when the range measurement has high variation;
this improved scheme also utilizes range measurement to
reduce computational costs.

The log-normal statistical model is used in the RSS-
based Monte Carlo scheme (RSS-MCL) to improve local-
ization accuracy. The RSS amount is used in the movement
model and observation model; in the filter stage, the RSS
observation is used to measure the distance between the
sample and the anchor nodes.The invalid samples are filtered
out without additional calculation. RSS-MCL can reduce the
computational and communication costs in the filter stage.
However, RSS-MCL suffers from high computational cost in
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Figure 2: Evaluation parameter in SMC localization scheme.

the sample stage because the log-normal model is embedded
with complex equations [52].

In real-world applications, range measurement is affected
by path loss, fading, and shadowing phenomena. Hence,
radio range can be protected by environmental factors, such
as obstacles, rain, wind, and humidity; it can also be affected
by the indoor environment. However, the range noise of
the RSSI minimizes localization accuracy. Other studies [21,
56] presented the SMC scheme to enhance the localization
accuracy associated with the noise measurement amount.

4. Evaluation Parameters in SMC Localization

The SMC localization in mobile WSNs is mainly evaluated
according to localization accuracy, computational cost, and
communication cost, as presented in Figure 2.

4.1. Localization Accuracy. Localization accuracy is the most
important parameter of WSNs. A high level of localization
accuracy can help decision-makers to identify the precise
location and coverage area of data. Localization accuracy can
be measured with the variance between a real location and
an estimated location, as shown in (2). For simplicity during
the simulation test, the SMC technique is employed with the
assumption that the anchor nodes know their real locations
without error at all times.

Localization accuracy = 1
𝑛
𝑛

∑
𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 − 𝑙𝑖
󵄩󵄩󵄩󵄩 , (2)

where 𝑛 is the number of sensor nodes, 𝑒𝑖 is the estimated
location, and 𝑙𝑖 is the real location. The error in the equation
is given in terms of radio range and is thus divided by the
sensor radio range.

The localization error in the initial step is reduced quickly
when the new observations arrive. In the stability step, the
localization error is maintained at around the same mean
error. Thus, the effects of mobility and connectivity are in
equilibrium.The localization accuracy of the SMC technique
is mostly affected by the movement velocity, anchor node
density, normal node density, and degree of irregularity.

The Movement Velocity. The mobility of sensor nodes can
maximize the benefits of WSNs in various aspects. This

mobility allows sensors to communicate with a large number
of neighboring anchor nodes. Hence, localization accuracy
can be improvedwith theminimumnumber of anchor nodes.
Mobility also conserves energy and prolongs network lifetime
by changing routing paths [57]. Static WSNs use the same
routing path, through which messages are sent and received
frequently, even though the sensor is near the sink node;
this frequency exhausts energy and causes network partition
[27, 58, 59]. In real-world applications, the mobility of sensor
nodes allows animals to be traced in zoos and patients to be
monitored in hospitals, in addition to their other applications.
However, this mobility presents an additional challenge in
the handshaking case, in which the sensor is outside the
neighbors’ range to transmit and receive data [60, 61].

The mobility model is classified into three categories,
namely, controlled, predefined (map), and random. The
details of these categories are explained in [62]. In most
schemes, the SMC technique is used to select a random
waypoint model to transmit nodes. The waypoint model is
a simple and independent model. Moreover, the sensor node
can choose its new direction and velocity randomly without
exceeding its maximum velocity [63].The pause time is set to
0 in most schemes; this zero pause time allows the sensor to
move without stopping [64].

The velocity of a sensor node affects localization accuracy
differently. A sensor node with a low level velocity achieves
the highest localization accuracy because this node is still in
the range of the sample from the previous location, which
this node reuses to estimate a new location accuracy. A sensor
node with a high level velocity can exert a negative effect on
localization accuracy if it moves far from the sample in the
previous location and becomes unreachable. However, a high
velocity guide sensor explores additional areas per time slot.

AnchorNodeDensity.The localization accuracy of all schemes
can be enhanced with the increase in anchor node density in
the region. A high number of anchor nodes allow the broad-
cast of many observations throughout the region. However,
as the density of anchor nodes increases, the dependence on
the global positioning system (GPS) and the extra overlap
between anchor nodes increase as well. The extra overlap
between anchor nodes is undesirable because it produces a
redundant sample without improving localization accuracy.
Moreover, the high density of anchor nodes limits the sample
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area. A narrow sample area requires additional time for
blind nodes to generate proper samples. The SMC technique
addresses these drawbacks by employing a high number of
anchor nodes in the region to maintain a high localization
accuracy. In the literature, some schemes such as Monte
Carlo localization (MCL) [26] and Monte Carlo localization
boxed (MCB) [65] are fully dependent on the information of
anchor node location, whereas others combine both anchor
and normal nodes in the localization process.

Normal Node Density. The information on normal node
location can be used during the positioning process to
enhance localization accuracy and reduce the dependence
on anchor nodes. The utilization of normal nodes can
enhance localization accuracy in two ways. First, normal
nodes retransmit the location information of the anchor node
to its neighbors. Second, the location information of the
normal nodes is used in the localization process; using this
information in the sample step narrows the sample area and
filters out the invalid samples in the filter step. However, the
use of normal node location in the localization process is
susceptible to error and significant communication cost in
the network. Therefore, this localization process requires a
precise and lightweight method.

Degree of Irregularity. The variation of the radio range
between sensors leads to communication failure, which
degrades the localization accuracy of WSNs [66, 67]. For
simplicity, radio range is assumed to be a full circular range in
most of previous schemes’ simulation experiments. However,
this assumption does not present the actual radio range in
real-world applications; in reality, radio range is affected by
sensor characteristics, such as antenna direction and sensor
power, and by the types of transmission media, such as
humidity, temperature, obstacles, and wind speed. These
factors can distort radio range at different degrees.

4.2. Computational Cost. Computational cost is quantified
from the iteration to generate enough valid samples in each
time slot.Themain parameters that affect computational cost
are the size of the sample area and the number of samples.
The sample and filter stages are repeated until enough valid
samples are found; this process is costly because it wastes
additional power and delays the localization process.

High velocity and high anchor node density negatively
affect sample efficiency in the following ways. A high velocity
maximizes the sample area. Thus, the sample generation and
filtering steps are repeated several times to draw enough valid
samples for a large area. A high anchor node density narrows
the sample area. Hence, the generation and filtering steps are
repeated to generate dissimilar samples.

Sample Area Size. In the literature, various strategies are used
to draw samples. An example is the random generation of
a sample over a previous sample bounded by a circle with
a radius equal to the maximum velocity and anchor node
bounded box. However, the shape of the sample area is
irregular and is mostly affected by the number of anchor
nodes in the neighborhood.

Number of Samples. The main idea of the SMC technique is
to estimate the location of blind nodes by averaging the
weighted samples (or particles). Therefore, the number of
valid samples is an important parameter in localization
accuracy. A large number of samples can slow down the local-
ization process by repeating the generation and evaluation
steps. Thus, a typical maximum number of samples is set to
50 [26].

The size of the sample area depends on the anchor node
density in the first hop and second hop and on maximum
velocity. A large number of anchor nodes in the neigh-
borhood equates to a narrow sample area, and vice versa.
Drawing a large number of samples in a narrow region is
a critical issue because an additional calculation must be
performed to remove redundant and closed samples. A large
number of samples are required to cover a large sample area.
Therefore, a constant number of samples do not represent a
sufficient solution for all sizes of sample areas.

The simulation results for different schemes are presented
in Table 3; 50 samples are enough to estimate an accurate
location. Accordingly, most of the studies in the literature
used 50 samples as the maximum number of samples,
whereas other studies used an adaptive approach based on
the sample area to set the number of samples. Nevertheless,
the relation between the number of samples and the sample
area is a challenging issue in WSNs.

In the SMC method, drawing valid samples involves the
following two steps: (1) drawing candidate samples and (2)
evaluating candidate samples. Drawing candidate samples
is more costly than evaluating them [68]. Typically, sample
efficiency is affected by the number of valid samples and the
bounded area of the samples. Hence, a direct relationship
exists between the number of samples and the sample area.

Sample evaluation is a measurement of the distance
between two points or a comparison between the distance
and its predefined value (the communication radio range R).
The operation cost for measuring the distance between two
points is approximately 100 times that for comparing distance
and its predefined value, as shown in [68], because the sample
generation is repeated until the sample overcomes the anchor
node communication radio range.

4.3. Communication Cost. The main purpose of the range-
free localization scheme is to reduce the dependency on hard-
ware by utilizing network connectivity during the estimation
of blind node location. The estimation process requires net-
work connectivity to broadcast messages from sensor nodes.
Therefore, communication cost is computedwith the number
of messages broadcasted during the localization process [26].
The number of messages is affected by the number of anchor
nodes and normal nodes used in the localization process.The
size of the message also affects communication cost.

Number of Messages. In the SMC method, the anchor nodes
broadcast their location information to the first hop and
second hop; the normal nodes forward these messages to
their neighbors.Thenumber ofmessages that are broadcasted
is a significant parameter during the localization process
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because blind nodes need enough location information to
estimate their location. However, a large number of messages
may include redundant and closed samples.

The message of location information is categorized into
two types according to its content. The first type of mes-
sage contains the location coordinate, and the second type
contains the sample. The coordinate message commonly
defines the exact location of an anchor node on the Cartesian
plane; the sample message contains the potential coordinate
of the normal node on the Cartesian plane. The sample
message can improve localization accuracy, but it increases
the communication cost. Nevertheless, the relation between
communication cost and localization accuracy is a challeng-
ing research area in WSNs.

Message Size. The size of messages transmitted is not fixed
in SMC schemes, as presented in [69]. The anchor message
contains the IP header, transmitter ID, anchor location, and
number of hops. The standard size of an anchor message is
34 bytes in all schemes. By contrast, the size of a normal node
message varies between schemes.

The most vital parameter in the localization process is
the localization accuracy. The precise location can increase
the confidence on the sensed data and the data originality.
The achievement of high localization accuracy is difficult
in terms of increasing the computation and communica-
tion cost. Thus, the optimal solution should maintain high
accuracy with low computation and communication cost. To
investigate and highlight this issue, localization schemes in
the literature are classified based on these parameters.

5. State-of-the-Art SMC Localization Schemes

Monte Carlo localization (MCL) scheme is pioneered from
the SMC schemes; in MCL, time is divided into discrete time
slots, the pause time is set to 0, and all sensors move per
time slot. After each movement, the node estimates its new
location by utilizing the new observation from the anchor
nodes in the neighborhood. Therefore, the sample and filter
steps are repeated until the sensor collects enough valid
samples. The weaknesses of MCL are that it requires high
anchor node density to achieve sustainable accuracy and that
it uses slow sampling method. The sample and filter steps are
repeated up to 1000 times per each sample in MCL.

Dual and mixture MCL schemes improve the accuracy
of MCL by inverting the probability function in the dual
Monte Carlo scheme during the sample and filter steps [70].
The disadvantages of the dual Monte Carlo scheme are high
computational cost and low sample efficiency. The authors
slightly improved the sample efficiency in the mixture Monte
Carlo scheme bymixing dual Monte Carlo samples andMCL
samples. The negative effect of the mixture Monte Carlo
scheme is that it has a lower accuracy than the dual Monte
Carlo scheme.

The study [71] presented MSL∗ and MSL (mobile sensor
network localization and static sensor network localization)
to improve the accuracy of MCL. The MSL∗ scheme uses
the location information of both anchor and normal nodes
from the first hop and second hop. The location information

Valid sample area

Bounded box

Anchor

Figure 3: Bounded area of valid sample area MCB scheme.

contains the samples in the current time slot and their
weights. However, broadcasting all node samples increases
the communication cost. To reduce the communication cost,
MSL is used to broadcast only the location coordinates of
the anchor and normal nodes. This strategy reduces the
communication cost and localization accuracy.

The MSL∗ scheme adds the additional parameter of
maximum velocity (𝛼 = 0.1𝑅) in the sample generation to
satisfy static networks. Each normal node sample in MSL∗
has a partial weight in the range of zero to one; the anchor
node sample maintains a weight value of 1 at all times. The
node keeps its sample on the basis of its weight. Weight is
estimated with a power function according to the number
of normal nodes in the neighborhood. The node uses the
close neighbor’s samples to evaluate its samples. Hence, this
node is greatly affected by the number of nodes in the
neighborhood.Moreover, the power function inMSL∗ entails
a higher computational cost than the distance measurement
between two point methods. The broadcasting of anchor,
normal nodes samples, and their weight in MSL∗ highly
increase the communication cost.

In our previous LCC scheme (low communication cost)
[72], the communication cost ofMSL∗ is reduced by selecting
the closed normal nodes in the neighborhood instead of
selecting all normal nodes as in MSL∗. LCC reduces the
communication cost ofMSL∗ by 18% andmaintains the same
localization accuracy of MSL∗.

The Monte Carlo localization boxed (MCB) scheme uses
the bounded box for each anchor node in the first and second
hops to improve the sampling efficiency of MCL. The box is
drawn around the node center with radii of 𝑅 and 2𝑅 in the
first and second hops, respectively, as in Figure 3. The valid
sample area is restricted on the intersection area between the
anchor node boxes. Unlike MCL, MCB effectively improves
sampling efficiency by bounding the valid sample area.
Hence, the sample and filter steps require 100 repetitions to
generate the valid sample. The number of anchor nodes in
the neighborhood and themaximum velocity affect the shape
of the sample area. The shape of the sample area is irregular
in MCL; thus, a complex calculation is needed to determine
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the bounded area. However, such calculation is impossible in
sensor nodes. For simplicity, the box surrounding the sample
area is used to assess the shape of the sample area, as shown
in Figure 3. This implementation improves the sampling
efficiency of MCL by 93% and maintains the same accuracy
level as that of MCL.

The weighted Monte Carlo localization (WMCL) scheme
improves localization accuracy by utilizing the location infor-
mation of normal nodes [68], in addition to that of anchor
nodes, as in MSL∗. The WMCL scheme reduces the size of
the sample area and improves the sample efficiency of MCB
by employing the two-hop anchor node neighbors’ negative
effect and normal node location information. The estimated
location of the normal node contains a fraction of error.
To overcome this challenge, the normal nodes utilize the
maximum location error in 𝑥-axis and 𝑦-axis for bounding
the sample area. Thus, the sample area in WMCL is bounded
by both the anchor node constraints and normal node
location information. The normal nodes estimate the errors
in both axes. In filtering out the invalid samples efficiently,
the weight for the anchor node samples is set to 1 at all times,
and the partial weight for the normal node is set in the range
of 0 to 1.

Thepartial weight for the normal node samples inWMCL
is calculated as follows. First, the distance between all sensors
samples in the neighborhood are estimated. Second, the
intersection of the bounded box is utilized to reduce the
communication cost of the first step. Finally, the radio range,
maximum velocity, and maximum localization error from
the previous time are utilized. These processes filter out the
invalid samples more efficiently than MSL∗ and quicken
the sampling step. Unlike MCB, WMCL reduces the sample
area by 78% and improves the sampling efficiency by up
to 95%. Moreover, WMCL uses the normal node location
information in the sample and filter steps, whereas MCB
utilizes only the anchor node location information in the filter
step.

The negative effect of two-hop anchor nodes in the
literature is defined as follows: “node 𝑥 is not within distance
𝑑 of node 𝑦.” Range-free schemes utilize this definition
(“node 𝑥 is not within the radio range of 𝑦”) to enhance
localization accuracy. The negative effect of two-hop anchor
nodes and normal node location information can enhance
localization accuracy and sample efficiency by 87% and 95%,
respectively, as in WMCL. The shadow area in Figure 4 can
be ignored without losing any valid samples; this fact can
be explained as follows. 𝑞 is assumed to be the two-hop
anchor node for normal node 𝑝. Thus, the shadow area does
not contain 𝑝 because, otherwise, 𝑞 is the one-hop neighbor
of node 𝑞. The negative effect of two hops is a critical and
precise issue. For example, if the distance between node 𝑝
and 𝑞 is underestimated, then the negative constraints can
reduce localization accuracy. On the contrary, if the distance
between node 𝑝 and 𝑞 is overestimated, then the practical
location may be lost.

The movement direction of anchor nodes between the
previous time slot and the current time slot is used in the con-
straint rule-optimized Monte Carlo localization (COMCL)
scheme [73]. COMCL utilizes the locations of anchor nodes

P q

Bounded box of P

Figure 4: Improve the size of the bounded box: the shadowed area
should be cut.

in the previous and current time slots to track the movement
direction of these anchor nodes within the upper and lower
bounds. COMCL classifies the location of the anchor nodes
per time into two types: moving backward and moving for-
ward in time. The location information in COMCL requires
the following three steps: (1) construct the anchor node
constraint, (2) construct the sample area, and (3) optimize
and filter out the invalid samples. COMCL can involve more
efficient and faster filtering steps than WMCL; nevertheless,
it adds additional calculation. Each anchor node requires
calculating the distance with neighbors and comparing the
distance with upper and lower bounds to track themovement
direction.

The range-based Monte Carlo boxed (RMCB) scheme
compares and utilizes both range-based and range-free
schemes to answer the question “when does range-based
localizationwork better than range-free localization?” RMCB
is suitable for both static and mobile WSNs with a hetero-
geneous radio range [74]. RMCB improves the sample area
and efficiency in WMCL using a positive anchor node effect
behind the negative effect used in WMCL. To ensure the
efficiency of RMCB, the authors employed the same hardware
devices for both RMCB and WMCL. The result shows that
RMCB can improve WMCL in different parameters.

In [69], an improved MCL (IMCL) scheme was used
to enhance the localization accuracy in MCL by adding
constraints ofmovement direction in the previous schemes to
the anchor andnormal nodes. IMCL selects the normal nodes
in the first hop’s neighbors whose locations are constructed
by the anchor node constraint. Moreover, IMCL employs
the circular sector in the localization process to filter out
the invalid samples. Each normal node divides the circular
range into eight sectors; the longest sample sector is used
to filter out the invalid samples. Computing the longest
distance of samples and the angle of each sector increases the
computational burden in IMCL and can delay the location
estimation.

PMCB [75] (permeant Monte Carlo localization Boxed)
scheme uses a time series to forecast the position of a blind
node in case no anchor nodes exist in the neighborhood.
Otherwise, SMC is used to estimate the location. The time
series reduces the dependency on the anchor node. However,
a recursive step is required to calculate the linear prediction
coefficients in each time slot.

The orbit scheme improves localization accuracy by
utilizing the characteristics of a star graph. The graph is
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constructed with one root and five leaves to optimize the
number of neighbors in the network. The orbit coordinates
the neighbor’s node constraint within the star graph to
improve localization accuracy. The orbit scheme is highly
affected by node density. In this scheme, five nodes may not
constantly be discovered in the neighborhood [76]. Thus, the
accuracy in the low normal nodes density will be reduced.

In [77], a Gaussian process regression was formulated
with observations to improve localization accuracy. The
observations on noise measurement, localization error, and
previous distribution are correlatedwith the posterior predic-
tive statistics. Hence, the posterior predictive statistics utilize
MCL sampling and Laplace’s method to improve localization
accuracy. Laplace’s method requires a complex calculation
that is not applicable in thin device like sensor node.

In the sequential Monte Carlo-based localization algo-
rithm (SMCLA), each sensor node maintains a table to
store the localization parameters: estimated location, velocity,
direction, and motion type at the current time slot. The blind
node in the initial four stepsmoves according to the waypoint
model. Then, the motion type is estimated by evaluating the
velocity, acceleration, and movement direction to generate
samples. Hence, the blind node stores the last four pieces of
location information in the table with their time stamps. The
disadvantage of utilizing the time stamp is that it requires
additional hardware for the time synchronization between
sensor nodes and the table data protect additional memory
size [78].

The variation of radio range is evaluated during the local-
ization process in the sequential Monte Carlo localization
(SMCL) scheme. A perfect circular sector is used to simulate
the radio range in most schemes. The radio range in real-
world applications is affected by noise, path loss, shadowing,
and physical phenomena.Hence, DOI (degree of irregularity)
is used to check the variation of the radio range in the SMCL
scheme. The updating stage is added to the SMC method
to measure the effective factor of each sample in location
estimation [79].

In [80], a sample adaptive Monte Carlo localization
(SAMCL) algorithm was employed; in SAMCL, the sample
area is divided into small bins, and each valid sample is
assigned to one bin. The new samples are selected if they are
acquired inside an empty bin. Otherwise, they are ignored.
Thus, the number of samples is counted by bin numbers. The
generated sample can be acquired several times in nonempty
sample. Thus it requires repeating the sample generation.
Moreover, the size of small bin is a critical issue. The number
of bins can be maximized in the large size and minimized in
the small size. Thus the localization accuracy will be affected.

The uniform sampling Monte Carlo localization (USML)
scheme modifies the sampling strategy of SMC by dividing
the sample area into small squares; this scheme selects the
samples on the basis of their uniform distribution over a
small square. The uniform distribution can reduce the time
needed to generate random samples over the whole area.
However, this uniform distribution does not represent the
real state of all systems. Therefore, random generation can
improve localization accuracy more efficiently than uniform
distribution [81].

Reduce redundant messages and hop distance overhead
using the back off-based broadcasting mechanism. This
mechanismuses the following assumption in the RSSI: a node
that is far from the sender has a signal strength that is too
weak to select messages with a signal strength exceeding a
predefined threshold [50].

In [82], the location information messages were used to
improve failure detection. Generally, sensor nodes in WSNs
exchange heartbeat messages to detect neighbors. These
messages can be utilized for failure detection during the
localization process. Hence, the compound between the
localization process and failure detection can reduce the
number of exchanged messages in networks.

Localization accuracy can be improved by combining
SMC schemes and the genetic algorithm as in Genetic
and Weighting Monte Carlo Localization (GWMCL) [83].
Crossover and mutation can be used to draw samples from a
virtual anchor node. Hence, linear crossover and rectangular
crossover are used to filter out invalid samples on the basis of
the distance between the anchor node and the blind node.

The geometry of the intersection points between sensor
nodes is used to bound the polygon shape; the shape is used
to filter out the invalid samples [34]. However, the shape
of the sample area is irregular and depends on the number
and location of anchor nodes in the neighborhood. Hence,
constructing the polygon is not easy in all cases.

5.1. Schemes Utilizing a Single Anchor Node. A single mobile
anchor node (or online localization) is used to save scarce
resources of sensor nodes and improve the localization
accuracy ofMCL.A blind node requests a location estimation
from an anchor node. Thus, the anchor node calculates the
location of the blind node and sends it back to the blind node.

Mobile-assisted Monte Carlo localization (MA-MCL)
scheme uses one anchor node with high resources to localize
static blind nodes. The anchor node moves randomly to
collect arriver static and leaver static of blind observation.
Then, invalid samples are filtered out according to the move-
ment direction. After finding the blind node observation, the
anchor node calculates the location and sends it back to the
blind node [84].

Wireless node-based Monte Carlo localization
(WNMCL) is another scheme that utilizes a single anchor
node in the localization process.WNMCL divides the sample
area into separate clusters. The closed clusters are merged,
and the merging is repeated until the number of separate
clusters is found. The center of the separate cluster is used as
the estimated location of the blind node [85].

A single mobile anchor node with different types of blind
node observation, such as connectivity, AoA, ranging, and a
mixture of all of these, was utilized to estimate location [35].
The blind node collects at least the connectivity range of the
first neighbor and sends this range to the anchor node when
it arrives. The localization process occurs in the anchor node
side; the location is sent back to the blind node.

Utilizing a single anchor node with high resources in the
localization process can save scarce resources in sensor nodes
and avoid time synchronization. Moreover, security can be
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Table 2: Summary of localization schemes categories.

Localization category Dependent on hardware Scalability Accuracy Noise Environment Cost
Range-based Full Low High High Outdoor High
Range-free Partial High Low Low Indoor Low
Hybrid Partial High Medium Medium Indoor Low

improved by securing a single anchor node. Nevertheless,
the use of a single mobile node increases the overhead over
the beacon node and maximizes the probability of network
congestion. Moreover, the noise and overload of a single
anchor node range can degrade the localization accuracy of
the whole network.

5.2. Schemes Utilizing MCL in Target Tracking. The MCL
scheme enhances target tracking by estimating target loca-
tions [86, 87]. The novel Monte Carlo-based tracking
(NMCT) scheme utilizes the perpendicular bisector zoning
technique and triangulation assumption in the point in trian-
gle (PIT) scheme to gather and check the blind nodes within
or outside the anchor node triangle [88]. The perpendicular
line is used to find the bisector area and check the closeness
of the anchor nodes in the neighborhood. Therefore, the
possible location of the blind node can be estimated from the
anchor node pairs in the PIT and perpendicular bisector line
[89].Therefore, the valid sample area can be bounded, and the
invalid samples can be filtered out efficiently.Theweakness of
NMCT is that it assumes that anchor nodes are static nodes
and that normal nodes are mobile nodes.

Oriented tracking-based Monte Carlo localization
(OTMCL) scheme utilizes the movement orientation in the
sample step to improve MCL accuracy [90]. The angle of the
movement sector is calculated on the basis of the elaboration
between the locations in the previous and current times. The
drawback of OTMCL is the need to constantly find enough
valid samples. Thus, OTMCL uses the bounded box in MCB
to generate samples.

The binary detectionMonte Carlo localization (BDMCL)
scheme utilizes the binary assumption in MCL to examine
the node with the maximum range or outside range [91]. BD
MCL maintains and records the interval time of each mobile
sensor in the range. Hence, the mobile sensor with a large
time interval has a highweightage sample.The use of the time
interval requires the anchor node to synchronize the time
between nodes; this synchronization may not be applicable
in thin devices.

The movement continuity phenomenon of mobile sen-
sors was used in [36] to estimate locations and movement
directions.The study proposed the use of the linear prediction
method and required the normal node to maintain the
location information from four previous time slots. In this
method, the sample area is divided into separate posterior
density function regions on the basis of the movement
direction in the previous time slot. However, maintaining
four previous locations increases memory usage. Moreover,
the network needs a long period to stabilize.

State-of-the-art SMC localization schemes are presented
to highlight the advantage and disadvantages of each scheme.
The SMC technique is a recursive method that requires
repeating the sample and filter steps. The sampling efficiency
is improved by restricting the sample area. The bounded
box method can optimize sample area size and improve the
sampling efficiency more than other methods. The localiza-
tion accuracy is mostly improved by utilizing the normal
node location information. Nerveless, the use of normal node
location information can highly increase the communication
cost.

6. Comparison of Range-Free SMC
Localization Schemes

Localization schemes are categorized on the basis of addi-
tional hardware requirement, scalability, accuracy, noise,
operation environment, and cost, as shown in Table 2.
Among all schemes, the range-based one achieves the highest
accuracy despite being fully dependent on special hardware.
This scheme is followed by the hybrid scheme that utilizes the
network connectivity in noise and the RSSI assumption in the
normal case.The range-free scheme achieves the lowest accu-
racy; location is estimated using network connectivity. SMC
locations schemes can be compared in terms of localization
accuracy, computational cost, communication cost, a number
of samples, dependency on anchor nodes, and network type,
as summarized in Table 3.

6.1. Comparison of the Localization Accuracy. Accuracy is a
vital and challenging issue in the localization process. Achiev-
ing high accuracy in SMC schemes can be achieved through
high anchor nodes density. There are various schemes that
fully depend on anchor nodes such asMCL, dual andmixture
MCL, MCB, and PMCB, and there are others that combine
anchor and normal nodes location information like MSL∗,
WMCL, RMCL, COMCL, IMCL, and Orbit. Relying on
anchor nodes increases the dependency on the hardware
(each anchor node requires a GPS device) which increases
the power consumption, cost, and size, whereas using normal
nodes can increase the communication and computational
cost. Moreover, location information of normal nodes is an
estimated location that embedded with the fraction of error.

An efficient filtration method of invalid samples can
significantly improve the accuracy in SMC technique. There
are different filtrationmethods used in various SMC schemes.
TheMCL, dual andmixtureMCL, andPMCB schemes draw a
circle over the previous sample to observe whether it satisfies
the anchor nodes constraints in the current time. In case no
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anchor nodes exist in the neighbors, PMCB uses a time series
to forecast location [75]. The bounding of valid sample area
in this method is an irregular shape. It is constructed by the
intersection between radio range circles of anchor nodes. For
this, the distance between each sample and anchor nodes
in the first and second hops is utilized to check whether
the sample satisfies the anchor nodes constraints. The main
drawbacks of this method are that it highly depends on
anchor node density and that it uses inefficient and slow
filtration methods.

The MSL∗ [71] uses the closeness value of the sample to
filter out low weight samples. This method can improve the
localization accuracy but produces a high communication
between the neighbors. Each node broadcasts its samples and
samples weight in each time slot to the neighbors in the first
and secondhops.The communication cost is highly increased
in this scheme but, in our previous research named LCC, the
communication cost is reduced by selecting the normal nodes
that have high intersection elements with the normal nodes
in the neighbor.

The MCB scheme uses the intersection area of the
bounded box over the anchor nodes to restrict the valid
samples area. The shape of the box is regular; thus, it can
easily filter out the invalid samples. Nevertheless, this shape
contains an invalid area in some corner. WMCL narrows the
bounded box by using the negative effect of two-hop anchor
and normal nodes location information to optimize the
sample area and enhance localization accuracy. Furthermore,
RMCB utilizes the positive effect of the two-hop anchor and
normal nodes to optimize the sample area and improve the
accuracy in WMCL. It should be noted that WMCL uses the
normal node location information in the sample and filter
steps, whereas MCB utilizes only the anchor node location
information in the filter step. The restriction on the sample
area is a challenging issue.

IMCL [69] employs the longest circular sector to filter out
the invalid samples and a star graph with one root and five
leaves is used in Orbit scheme to improve localization accu-
racy [92]. The circular sectors method requires additional
computation to find the angle and longest sectors, and finding
five nodes in the neighbor is inapplicable in each time slot.

TheMCL sampling and Laplace’s method use the statisti-
cal posterior prediction to filter out invalid samples.However,
the improvement of accuracy is minimum and requires high
computation [77]. Storing posterior location information of
estimated location, velocity, direction, and motion type in
the table needs more memory and can slow the localization
process in SMCLA [78]. Another localization scheme is
genetic algorithm implemented in SMC technique to filter out
invalid samples [83]; the genetic algorithm requires large data
and high execution time, so it is unsuitable for thin devices
like sensor node.

The fast method and precious filtration of invalid samples
are essential in mobile WSNs location estimation. Filtration
within the irregular shape can be tedious, as it requires
repetition of the filtration and sampling steps for several times
to generate the valid samples. The bounded box method can
constrain the sample area fast and improve the accuracy at
the same time. The circular sector and star graph require

high normal node density in the neighbor which may not
exist all the time. Statistical and genetic methods require
large memory and instruction for execution. Thus, they are
incompatible with a thin device like sensor node.

6.2. Comparison of Computation Cost. A fast location esti-
mation is desirable in mobile WSNs location estimation. A
slow sampling method can delay the movement and the
sensormaymove to other locations before generating enough
valid samples. The computational cost is mainly counted by
the number of iterations required to generate enough valid
samples.

The amount of filtration is a function of both sampling
method and shape of the sample area. MCL, Dual and
mixture MCL and MSL∗ generate samples randomly over
previous samples within the sample area limited by a circle
with a radius of maximum velocity. The sample and filter
steps are repeated up to 1,000 times in some cases to find
valid samples. This weakness is from the irregular shape
of the sample area and filtration strategies. The MSL∗ has
advantages in keeping the highly weighted sample from the
previous time slot. Thus, the new sample is generated over
a low weighted sample. Dual and mixture MCL schemes are
inverting the probability function in the dual Monte Carlo
scheme during the sample and filter steps to improve local-
ization accuracy [56].The disadvantages of these schemes are
high computational cost and low sample efficiency.

Bounding of sample area becomes more precise and the
sampling efficiency improved by using anchor node bounded
box intersection in the MCB scheme, in which the amount
of filtration is reduced to 100 times per each sample. WMCL
reduces the sample area by 78% and increases the sampling
efficiency up to 95%.Moreover,WMCLuses the normal node
location information in the sample and filter steps, whereas
MCB utilizes only the anchor node location information
in the filter step. RMCB improves the sample area and
efficiency inWMCL by utilizing a positive anchor node effect
behind the negative effect used in WMCL. The anchor node
movement directions such as moving backward and moving
forward are utilized in COMCL to maintain the sample area
over WMCL assumption.

The aforementioned schemes used a static number of
samples which is equal to 50 in different sample area size. In
PMCB and IMCL schemes, the number of samples is based
on the percentage of the sample area with respect to the
maximum area of one anchor node in the neighborhood,
as represented in (3). However, at least one anchor node is
assumed to be in the first hop of the blind node neighbor in
most simulations.

Sample number = (50 ∗ (Δ𝑥) ∗ (Δ𝑦))
4𝑅2 , (3)

where Δ𝑥 and Δ𝑦 are the height and length of the bounded
box (sample area), respectively, and 4𝑅2 is the maximum area
of one anchor node in the first hop.

In SAMCL scheme [77], the sample area is divided into
small bins, and each valid sample is assigned to one bin; the
number of samples is counted by bin numbers. Reference
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[93] divided the sample area into small squares and the
sample is distributed uniformly over the squares.Thepolygon
shape property is used to construct the sample area in [34],
where the location and number of anchor nodes are used to
maintain the polygon shape.

Large number of iterations can slow the location esti-
mation and consume more power. The main difficulty in
the localization process is the shape of the sample area.
Generating valid sample from the irregular shape is a tedious
issue. The bounded box method can maintain the shape
of the sample area to become a regular shape. Generating
sample from such area is an easy thing and can reduce the
number of iterations required to generate the valid sample.
Dividing the sample area of the small bins or distributing
sample uniformly over small squares is weak assumption and
is unable to present the reality of the sample area; the using of
random generation is more precise and can be more general.
Adapting the number of samples with sample area size is an
important thing but themost important issue is the efficiency
of the sampling method.

6.3. Comparison of Communication Costs. The number of
messages sent is the function of anchor node density in
the schemes such as MCL, MCB, and dual MCL; and this
number is equivalent to the anchor node number (𝐴) in the
neighborhood. In MSL∗ and MSL, the normal node location
information is utilized along with the anchor node. The
normal node in MSL∗ broadcasts the samples in each time
slot to the first and second hops, whereas the normal node in
MSL only broadcasts its coordinates and not all samples. The
communication costs of MSL∗ and MSL are represented by
(𝑁∗𝑆+𝐴) and (𝑁+𝐴), respectively, where𝑁 is the number
of normal nodes, 𝑆 is the number of samples in each time slot
(50 samples), and 𝐴 is the number of anchor nodes in the
neighborhood.

Among all schemes, the MSL∗ scheme achieves the
highest communication cost, whereas MCL achieves the
lowest communication cost. In our LCC scheme, the com-
munication cost in MSL∗ is reduced by 18% by selecting the
closed normal node in the neighborhood.

The assumption in MSL∗ is adopted in WMCL and
RMCL; the normal node broadcasts its sample to the first hop.
WMCL and RMCL modify the sample with the information
onmessage size; the location of themaximumerror is defined
in 𝑥-axis and 𝑦-axis. The COMCL scheme embeds the range
of the bounded box from the previous time slot in the
sample of the normal node. However, the communication
cost of COMCL is 1.04 times higher than that of WMCL.The
simulation results in WMCL show that the communication
cost is more significantly affected by the size of the message
than by the densities of the anchor and normal nodes.

MSL∗ broadcasts the message with information on the
IP header, transmitter ID, estimated position, number of
hops, and coordinates of 50 valid samples in the previous
time unit; this information costs 634 bytes. The normal node
messages in WMCL or BB (bounded box) combine the IP
header, transmitter ID, estimated position, number of hops,
valid samples, and maximum error in 𝑥-axis and 𝑦-axis; this

information costs only 46 bytes.The normal nodemessage in
the IMCL scheme has a size of 66 bytes by combining the IP
header, transmitter ID, estimated position, number of hops,
valid samples, and eight sectors. The MCL, MCB, and dual
MCL schemes yield the lowest communication costs because
they only utilize the anchor node location information. The
details of bytes sent in each scheme per time slot are listed in
[69].

The number of messages is also affected by the number of
hops used in the localization process. Normally, SMC utilizes
the sensor in the first and second hops. However, the sensor
node in the second hop can maximize the communication,
especially when normal node samples are used. For example,
MSL∗ uses the normal node samples of the first and second
hops; each anchor node and normal node broadcast their
respective samples in each time slot to the first and second
hops’ neighbors. Therefore, MSL∗ requires a high communi-
cation cost.

Table 3 presents the comparison between SMC schemes
based on effective parameters. The localization accuracy is
the most important variable especially when sensors move
in high speed. Most of the schemes improve the localization
by utilizing normal nodes location information that highly
increases the communication and computation cost.

7. Discussion of Future Works and
Localization Issues

Range-based schemes achieve a higher localization accuracy
than range-free schemes. However, range-based schemes are
highly dependent on additional hardware that consumes a
large amount of power and increases the size and cost of
sensor nodes, especially in a dense deployment. The battery
replacement of sensor nodes is difficult, particularly when
nodes are in remote and hazardous areas. Moreover, commu-
nication range and hardware signals are affected by noise and
obstacles. Therefore, range-based schemes are unsuitable for
certain types of applications.

By contrast, range-free schemes estimate locations using
network connectivity and without any additional hardware.
A range-free scheme is a challenging area. The obstacle of
SMC is its dependency on anchor node density and a high
number of valid samples to estimate an accurate location.
Repeating the sample and filtering stages several times
is a time-consuming process. Furthermore, hop distance
schemes require a uniform distribution of anchor nodes,
and fingerprint schemes are time-consuming because expert
personnel are required to create the offline database and
update the database every time the environment changes.

Connectivity information may remain unchanged when
sensor nodes move a small distance without establishing a
new connection or disestablishing the previous connection.
Therefore, we can define the lower bounds in range-free
schemes as the average distance in which the sensor node can
move with the same connectivity information between the
previous time and the current time. In this case, localization
accuracy degenerates for range-free schemes [94].
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The localization accuracy of range-free schemes is a
challenging research area. The localization error in SMC
increases rapidly when the velocity ofmobile nodes increases.
A high velocity can change the topology of WSNs quickly.
Therefore, WSNs require an adaptive mobility model to
transmit sensor nodes efficiently. Another issue in the SMC
localization process is the accuracy highly affected by anchor
node density and number of samples.

Sample efficiency is a significant parameter in the SMC
method. However, the repetition of the sample and filter
steps for several times delays the localization process. Other
significant parameters are the number of samples and sample
area channeling.The shape of the sample area is irregular, and
the bounded area is difficult to find. The number of samples
of this area requires the highlight method, whereas the use
of the bounded box is embedded with a high percentage of
error.

Messages in WSNs consume scarce resources and waste
sensor battery life. Hence, localization schemes require a
lightweight algorithm to avoid additional, redundant mes-
sages.

8. Conclusion

The localization of mobile sensors is a key issue in WSNs.
Specifically, an accurate location can maximize the benefits
of WSNs. A high localization accuracy can be achieved
through an efficient and lightweight scheme that is adaptable
to sensor characteristics. Constructing an efficient scheme on
the basis of the SMC method can improve the localization
accuracy in dynamic systems, such as mobile sensors. In this
study, we introduced a thematic taxonomy to classify the
current SMC localization schemes. Moreover, we presented a
comprehensive survey of state-of-the-art SMC schemes and
classified them according to their localization requirements.
The critical aspects of existing SMC localization schemes
were analyzed to identify the advantages and disadvantages
of each scheme. Furthermore, the similarities and differences
of each scheme were investigated on the basis of important
parameters, such as localization accuracy, computational
cost, communications cost, and number of samples. We
discussed the challenges and open research issues related to
the parameters. The future work on the localization accuracy
of range-free schemes can be improved by combining RSSI
technology and SMC schemes. The RSSI can reduce com-
putational and communication costs by utilizing the signal
strength indicator.
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