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Numerous work had been done to classify partial discharge patterns with variable success.
Past research work in partial discharge classification varies greatly in terms of classification
techniques used, choice of feature extraction, denoising method, training process, artificial
defects created for training purposes and performance assessment. Therefore it is neces-
sary for a literature survey to access the state of the art development in partial discharge
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1. Introduction

Electrical insulation is a significant part in all high volt-
age power equipment. Failure analysis reveals that insula-
tion failure is the root cause for more than 60% of high
voltage equipment damage [1]. Therefore it is crucial to
ensure that the insulation is in good condition. PD mea-
surement has received global acceptance as an effective
diagnostic tool with the capability to assess and monitor
insulation systems for its integrity during manufacture
and while in service |2].

PD is a type of breakdown that do not fully connect the
electrodes. This can lead to serious insulation damage and
considerably reduce the life span of high voltage equip-
ment [3]. PD occurs if the local electric field is greater than
the threshold value causing a partial breakdown of the sur-
rounding medium [4]. PD has a transient nature and is
characterized by pulsating currents with a duration of sev-
eral nanoseconds to few microseconds [5]. PD discharge
magnitude is not always proportional to the damage
caused since PD of a tiny magnitude may rapidly lead to
electrical tree growth, especially for high voltage cables
[6]. Therefore it is very cost effective if PD activity can be
detected and quantified in its early stage in order for
replacement tio be scheduled at a suitable time [7].

The IEC has a specific limit of PD for all power equip-
ment. When insulation failure occurs, it is replaced with
no information of the type of PD since current commercial
PD detector does not provide any information on the PD
source [5]. Every defect has its own unique degradation
characteristic. It is feasible to utilize this special attribute
to correlate the PD patterns with the defect type to deter-
mine the insulation quality [8]. PD patterns classification is
a crucial criteria to assess the insulation system condition
using the provided significant index of the PD severity
[9,10]. Apart from that, PD classification can be used to
forecast any imminent insulation failure and determine
whether there is a need to replace the current insulation
system [11].

After data acquisition and pre-processing, which cap-
tures, digitizes, and purifies PD signal (usually denoising),
there are basically two main steps, which are feature
extraction and classification [12]. Feature extraction is
the process that extracts the representative attributes from
raw PD data. PD contains a set of unique discriminatory
features which enables them to be recognized. Hence, the
first procedure in the classification process is to ponder
which discriminatory features can be used and extraction
method of the selected features [13,14].

The following sections of this paper are arranged as
such. Section 2 diescribes related background information
about how PD is represented and measured during practi-
cal usage. The importance of PD denoising and denoising
procedure are presented in Section 3. A brief compilation
of all known feature extraction methods are shown in
Section 4 followed by a brief summary of all the known
PD classification techniques in Section 5. Conclusion about
the current state of art development of PD classification is
presented in Section 6.

2. Background of PD
2.1. PD pattern representations

Time-resolved and phase-resolved data are the two
major types of PD pattern representations currently used
for PD related research. Phase-resolved PD data are
acquired based on the AC test voltage waveform. The phase
angle of the voltage is split into a specific amount of sec-
tions while the AC test voltage is maintained at a constant
level. A PD detector is required to capture the individual PD
signal and quantify all the pulses based on the phase angle
occurrence (¢), charge magnitude (q) and the number of
PD (n) over a predetermined time duration [ 13]. The rele-
vant phase and amplitude pulse numbers of PRPD patterns
are usually stored in matrix format for computational pur-
poses [15]. These data are commonly known as ¢-g-n or
PRPD patterns.




Time-resolved data pattern has interesting benefits
because individual pulse shape can be observed and there
are correlation between the PD signal shape and the nature
of the insulation defect, which provides aging information
of the insulation system [16]. The measurement procedure
of time-resolved patterns typically requires less expensive
measurement system compared to phase-resolved
measurements.

Phase-resolved data are more widely used in PD classi-
fication research because it is able to represent the physi-
cal process at the PD location, since individual PD pulse
has a solid relation with the PRPD patterns [9].

2.2. Online vs offline pd measurement

PD measurement consists of two main approaches
which are off-line and on-line PD detections. Off-line
methods refer to tests where the equipment under test is
de-energized from normal operation and energized by an
external voltage source [17]. On-line tests are performed
at operating voltage, thus the exact behavior of PD can be
obtained and evaluated. The off-line PD testing has advan-
tage such as able to determine PD extinction voltage
(PDEV) and PD inception voltage (PDIV) since measure-
ment voltage can be controlled. The advantages of on-line
PD testing are PD characteristics measurable at different
load conditions and tests can be carried out without caus-
ing power outage.

Currently, only off-line methods have been standard-
ized in IEC 60270. On-line methods remain unconventional
with no benchmark that one can make comparison against.
However, online tests have increasingly become popular in
cable PD detection in recent years. Both on-line and offline
PD tests are complimentary of each other. By combining
both the methods, a more valid result of cable condition
can be obtained. Majority of the research related to PD
classification uses offline detection method since it is con-
venient to conduct in a lab environment.

2.3. Electrical pulse detection vs acoustic detection

The standard PD detection systems rely on electrical
voltage or current pulse detection. Electrical pulse detec-
tion equipment is commercially available and can be
installed in HV labs [16]. Pulse detection method has its
own advantages and disadvantages [18]. The advantages
of this method are high demand for commercial applica-
tions, able to detect PD level, auto calibration supported
when double sensors are used, able to analyze PD direction
for cable accessories and can work together with PD local-
ization systems. However, the disadvantages of this
method are measurement equipment is not cheap and
challenging to install in the field, susceptible to radio fre-
quency (RF) interference when lack shielding, shield con-
struction limits inductive methods and low coupling
capacity reduces capacitive method’s sensitivity.

Acoustic detection uses acoustic sensors to measure
pressure fluctuations on the insulation surface. This offers
an interesting measurement technique for PD detection
[18]. The advantages for this method are electromagnetic
noise immunity, non-destructive and non-intrusive, high

sensitivity sensor, frequency spectrum has high range, sen-
sor installation not affected by shielding construction,
robust mechanical strength, excellent electrical resistivity
and more cost effective compared to other sensors.
However, the disadvantages of this method are signal
attenuation, measurement sensitivity affected by tempera-
ture, cannot detect PD level, highly complex calibration
required, and limited capability when handling equipment
with air insulation.

Electrical pulse detection has become the common
standard in PD detection, however, in recent years, the
acoustic detection has gained some popularity and quite
a number of research had been done using acoustic meth-
ods [18-21].

3. PD signal denoising

Ideally, by analyzing the specific combination of PD
phase distribution, pulse magnitude and changes with
time, PD patterns can be classified [22]. However, during
PD measurement, a difficulty encountered is caused by
external noise interference, which degrades the PD mea-
surement detection sensitivity. Noise was such a real prob-
lem in PD detection that researchers even add artificially
generated noise into their PD data to evaluate their PD
classification model to better represent practical situation
[2]. Major interferences faced during PD measurements
are caused by discrete spectral interferences, stochastic
pulse shaped interferences and periodic pulse shaped
interferences [23].

One way to easily disregard the presence of noise is to
set a threshold to ignore signals that are less than 10% of
the maximum discharge amplitude [24]. However this
method is not suitable for application which requires good
accuracy. This is because big threshold level ignores actual
PD pulses that have small magnitudes while small thresh-
old level mistakenly detects huge amount of noise as PD
pulse [25,26].

The Mean Square Error method was used by [27] to
compare the performance of 28 different types of denois-
ing methods. It was found that wavelet based denoising
has the best results. The fundamentals workings of wavelet
transform can be found in [28,29]. Steps to select an opti-
mal mother wavelet and setting automated thresholding
rule are documented in [7,22]. The J criterion [30] can also
be used to determine the optimum mother wavelet. For PD
denoising, Daubechies (dB) was the most popular mother
wavelet choice since the Daubechies wavelet and a single
PD pulse shape have high similarities. After an optimal
mother wavelet is determined, the maximum number of
decomposition can be calculated using the J,., formula
[31]. Discreet wavelet transform (DWT) is preferred over
continuous wavelet transform (CWT) since CWT is much
more difficult to compute and produces a lot of irrelevant
data [23]. Successful denoising is achieved if it has low
amplitude reduction, minimum pulse shape distortion
and high signal to noise ratio (SNR) [23].

PD denoising are usually done off line because online
PD denoising is much more challenging due to nonzero
wavelet coefficients that are higher than the PD



coefficients. A new method for online PD denoising is to
raise the voltage to slightly below PDIV to record noise
level of the measurement system [32]. A threshold value
is calculated using the recorded noise level. Lastly wavelet
transform de-noises the PD signal using the calculated
threshold level.

Notable recent advancement in wavelet denoising is the
introduction of second generation wavelet transform
(SGWT) [33] and complex wavelet transform [34]. SGWT
differs from DWT by providing interpretation of a fully spa-
tial domain of the transform compared to the original fre-
quency domain-based constructions. Complex wavelet
transform is shift invariant and possesses greater direc-
tional selectivity while filtering multidimensional signals.

4. PD feature extraction

The purpose of feature extraction is to obtain relevant
input feature from PD data to represent PD characteristics
associated with a particular defect.

As mentioned in Section 2.2 phase-resolved data are
more commonly used for PD classification. The PRPD or
(p—q-n pattern gathered from a digital PD detector is popu-
larly referred to as PD fingerprint [35]. Apart from collect-
ing relevant input features, feature extraction also tries to
decrease the dimension of the original data for easier pro-
cessing [36,37]. Raw data contained in each of the stored
patterns might be too enormous to allow its easy direct
handling. A form of data reduction such as reducing the
matrix size of the data is normally required [2].

This section provides a brief review on the extracted
input feature used by researches for PD classification for
the past few decades. Due to allowable length limitation,
the mathematical derivations are only briefly mentioned.

4.1. Statistical parameters

Statistical parameters was first used by [24] in 1993 and
consist of skewness, kurtosis, mean, variance, and cross
correlation factor.

The mean pulse height distribution Hgy(¢) is used to
represent the average PD magnitude vs the phase angle
(. The number of PD vs phase angle ¢ is represented by
the number of PD distribution H,(¢). Both of them can
be split into two different distributions, the Hg'(¢),
H,"(¢) (from the positive half cycle of the voltage) and
Hgn () and H, (¢) (from the negative half cycle of the
voltage).

Skewness describes the asymmetry of the Hg'(¢p),
Hy'(¢), Hgn (¢) and H, (¢) distribution with respect to
the normal distribution. Positive skewness represents
asymmetric with larger left side, zero skewness represents
symmetric and negative skewness shows asymmetric with
larger right side [38].

Kurtosis describes the sharpness of the H, (@), Hy'().
Hgn (@), and H, (¢) distribution with respect to a normal
distribution. Zero kurtosis represents a normal dis-
tribution, positive kurtosis represents a sharp distribution
and negative kurtosis represents a flat distribution [39].

The cross correlation factor denotes the dissimilarity in
shape of Hyn () from Hgn (¢) distributions of the positive
and negative half cycle. Zero cross correlation factor means
total asymmetry while cross correlation factor of 1 indi-
cates complete shape symmetry.

Variance describes how much a group of numbers is
spread out. Zero variance means all values are identical.
A very detailed mathematical description of skewness, kur-
tosis, and cross correlation can be found in [16]. The for-
mulas of all mentioned statistical parameters are shown
in Egs. (1)-(5). Where f{x;) is the function of interest.
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4.2. Image processing

Relevant input features can be obtained from a PRPD
image with the correct image processing technique. The
multi-resolution signal decomposition (MSD) can be
performed on a two dimensional PRPD image. It is recom-
mended to use 3 level MSD using dB wavelet with 56
coefficients [35]. After decomposition, a reconstruction at
the third level produces 4 images as shown in Fig. 1 which
are the approximate (A), horizontal (H), vertical (V), and
diagonal (D) images. The H and V images represent salient
features of the individual sources in a separable form while
preserving the phase and magnitude positions of the
individual PD pulse. Formulation of a suitable feature vec-
tor was carried out by averaging the H and V images, both
in the magnitude and phase directions. Averaging the
phase direction retains the magnitude information and
averaging in the magnitude direction retains information
in the phase direction. The final feature vector was
determined by concatenating the averaged phase and
magnitude vectors.

4.3. Frequency and time features

Frequency and time features of a PD signal can also be
used for feature extraction [40]. If a PD signal has K sam-
ples and s(t;) indicates the detected sample at time t;
where each buffer of memory is normalized to zero refer-
ence, the barycenter time t, is,

Spsi(ti)’ (©
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Fig. 1. Reconstruction at the third level; (a) original, (b) approximate, (c) horizontal, (d) vertical, and (e) diagonal [35].

The PD signal equivalent time length is given by

2 Lolti— to)’si(ti)*
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Assuming X{f;) is the PD signal frequency components [40]
computed using FFT, the equivalent bandwidth is

we - SofX )
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These values gives a simple and concise depiction of the
measured signals in a T2, W? plane. The PD pulse signals
with the same shape can be amalgamated in a carefully
defined areas of the T2, W? plane. Similar to other tech-
niques of data compression, this procedure causes the PD
shape information to be lost, but the frequency and time
features are optimum compromise between calculation
difficulty and practical requirements. Suitable time point-
ers permit the association of every PD pulse with its trans-
formation in T2, W? plane. Using these pointers, once the

(7

(8)

classification is performed, a detailed PD pulse in the
detected PD pulse sequence can be recognized and a 3D
figure for every PD signal cluster can be created.

4.4. Weibull features of pha curves

Weibull analysis offers a mathematical approach for
pulse height analysis pattern. Suppose the probability dis-
tribution of PD pulse rate (F) vs PD magnitude (q) could be
expressed by the Weibull function [15,36],

F(g:o: ) =1 —exp [_(ﬂ)ﬂ}

o

Each pulse height analysis (PHA) curve is represented by
the features « and f3, and the PD pulse amplitude is repre-
sented by q. The features o+, f+, o—, f— are extracted from
the PHA curves of negative and positive. The PHA pattern is
compressed using the Weibull method for digital analysis
while retaining its relevant information. An easy method
to calculate the capability of « and f to identify the



different types of PD. Scatter plots are created by using dis-
charge fingerprints of every type tested at particular volt-
age level. For example, from Fig. 2, PD fingerprints types
are labeled by markers. The left plot is the scatter of o.
The summation of o+ and o represents the entire quan-
tity of discharge and the rate of «+and «— indicates the
relationship of negative and positive magnitude pulse.
The right plot represents the f scatter that shows the
PHA curve shape character. The three main clusters which
are the slot discharge (SL) and end winding discharge (EW)
are in the scatter plot. The marker of EW and SL is removed
in the plot of f5. Typical PD might be removed from void PD
using the summation of o+ and o—.

4.5. Fractal features

Fractals are good for modeling complex shapes and

natural phenomena, where existing mathematical
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techniques are found to be insufficient. Since PD can be
considered a natural phenomenon that has complex sur-
faces and shapes, fractals can be used to model it. The
usage of fractal features in PD classification is fascinating
because it represents the 3D PRPD pattern directly [41].
A 3D PRPD pattern can be represented using two fractal
features, lacunarity (1) and fractal dimension (D) that are
extracted using the box counting method. Since D is invari-
ant to variation in scale, it can be utilized to gauge the
roughness of the surface. 1 is the denseness of the fractal
surface. Both D and - are functions of the box size L. The
number of boxes N, of side L needed to cover a fractal set
is shown in Eq. (9) where D is the fractal dimension set
and K is a constant [42]:
N(L) =KL ™" (9)

The lacunarity A(L) relies on the 2nd order statistics of
p(m, L). It can be defined after calculating M(L) and M,(L).
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Fig. 2. Weibull features scatter plots of x and f extracted from PD fingerprints [36].
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Fig. 3. Cross wavelet spectrum [50].



The formulas of A(L), M{L) and M(L) is shown in Egs. (10)-
(12). Mathematical derivation of D and A can be found in
[19]

M*(L) — ML)

A(L) = 10
(L) ML (10)
N
M(L) = Zmp(m,m (11)
m=1
. N
ML) = Zm‘p(m,L] (12)
m=1

Fractal features was used in [43-48] as input features to
classify PD patterns. In 2006, for fractal dimension approx-
imation of PD images, an enhanced differential box-count-
ing technique was introduced [49].

4.6. Cross wavelet spectrum

Cross wavelet transform originates from the wavelet
analysis extension. The cross-wavelet spectrum shows
the correlation degree among two signals in frequency-
time domain. In other words, cross wavelet spectrum iden-
tify the regions in frequency-time dimension where two
signals have high common power.

Fig. 3 shows a sample of cross wavelet transform spec-
trum [50]. In the cross wavelet spectrum, the values of
|W*| at different scale and time are plotted. The y-axis
represents the scale, which is associated to the inverse of
frequency and x-axis represents the time. The value of
|W™| at that time-frequency space is represented by colors
based on the color-bar given beside the plot where higher
power at that frequency-time point is represented by
higher color values. The phase angle is represented by
black arrow. Arrows pointing left means anti phase while
right pointing arrow means in-phase.

The two signals cross-wavelet transform, x(t) and y(t) is
shown in Eg. (13). The mathematical background is
detailed in [51].

1 Y a b— 1\ dadb

Y X vz - -
1% (s,r)_qu fx /x W*(a,b)Ww (s’ S ) =
(13)

The 7 input features that could be extracted from the
cross wavelet transform are shown in Egs. (14)-(20) [50].
These input features are unique because they can be
extracted directly from noisy signal without denoising
and achieve good classification results [52].
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4.7. Wavelet coefficients

This is a feature extraction method based on the com-
putation of the wavelet coefficients first four cumulants
at different scales [53]. Wavelet packet transform was
used to transform the PD signal into wavelet coefficients
[54]. Then the kth cumulant function can be used to cal-
culate any stochastic process for statistics of higher
order. The kth dimensional function faces exponential
increase in calculation difficulty when k is higher.
Therefore just the first four cumulants are considered
and one-dimensional slice was used in a cumulant of
multidimensional by freezing the k — 1 indexes. In PD
feature extraction, the cumulants at zero indexes were
used to decrease the feature space dimensionality using
statistical parameters. Each node's wavelet coefficients
were treated as a stochastic event, hence the first 4
cumulants at zero time lags were computed and the
nodes with the similar scale were summed to produce
statistical parameters at each scale. These values can
then be used as input to the classifier.

4.8. Two pass split window (TPSW) scheme

The TPSW scheme was successfully used as a feature
extraction and pre-processing method in various fields
such as sonar signal processing and speech recognition
[55]. This method is widely used for audio processing
and underwater passive sonar signals classification [56].
The spectrum of the emitted signal comprises of two
spectral types which are narrowband and broadband.
Tonal features extraction from mixed spectra is an
important task, which is similar to the discontinuous
pulsating components extraction in PD patterns. This is
due to it is analogous to the radiated spectrum signal
tones of sonar waves. TPSW filtering can produce local-
mean estimates which is smooth along the signal
although the analyzed signal has spurious spikes. This
includes having a moving-average filtering throughout a
long pulse of specific segment. The continuous spectrum
is first estimated, before the tonal components are
extracted. TPSW feature extraction scheme is proven to
be able to achieved higher classification rate compared
to using statistical features. The steps of the TPSW
scheme are shown below [8]:

Step 1: A window centered on k bins is selected for sig-
nal flx):

Ri=k-Mk-M+1,... kk+M-1k+M (21)

The number of bins in the bus windows is 2M + 1.



Step 2: First pass: The local mean is computed:

; 1
T =531 22O (22)

Step 3: A clipped sequence g(k) is formed to avoid of
bias on the local mean estimation by the tonal presence,
where « is a constant and set as 0.5 and serves as a pri-
ori estimate.

gm_{ﬁk): f(ly < af (k) 23)
fky: f(k) > af (k)

Step 4: Second pass: The continuous spectrum is
obtained by determining the local mean using g(k):

) 1
mk) = g 2 80 (24)

Step 5: Narrowband component h(k) is computed:
h(k) = f(k) — m(k) (25)

4.9. Octave frequency Cepstral coefficients (OFCC)

OFCC is a feature comparable to the Mel frequency
Cepstral coefficients [57], which is computed using the
average spectral magnitude, E,., in the kth octave fre-
quency sub-band given by

18
E = l—jZmﬁ( (26)
[
where P is the frequency bins number contain in every
sub-band. It is possible to use the average energy as a sub-
stitute to the average magnitude if required. The OFCC is
defined as DCT in the sub-band of the log average energy,

which is computed using

LI-1
OFCC; = lng(E:w) cos(mik/L) (27)
=
After denoising, the PD signal spectral energy is spread
across multiple sub-bands of low frequency band contain-
ing the most energy. Majority of the signal energy is con-
tained in the first some coefficients depicting the
distinctive DCT packing properties. These coefficients can
be treated as input features to the classifier such as
Support Vector Machines (SVM) to achieve great accuracy.

4.10. Auto-correlation technique

Auto-correlation technique computational effort is les-
ser compared to other classification methods since it only
needs to accumulate the products of corresponding sample
values and time shifting [58]. Auto-correlation is a mea-
sure of resemblance of two matching waveforms when a
function of a time-lag was applied on one of them.
Feature extraction based on auto-correlation is a mathe-
matical tool used to detect concealed patterns in a signal.
Measured PD signal for a source location auto-correlates
to itself to gain a sequence of auto-correlation. For this
method to succeed, 7 features (Fy—F;) are computed from
the discharge signals that were detected. The PD signal is
denoted as X(n) while the same PD signal correlates with

itself. The resultant auto-correlation sequence enables fea-
tures to be extracted. The signatures of single or multiple
PD source type is contained in Ay along with the
corresponding locations as shown by

N-M-1
Yoo XnmXn m=z=0

(28)
Axx(—m) m<0

Aw(m) = {
where m=-N..., 2, -1, 0, 1, 2, .. +N, indicates the time
shift while the subscript ‘XX signifies the auto correlated
PD signal size for a specific position of the source. If N is
the samples number in each of the detected discharge sig-
nals, the auto-correlation sequence has (2N — 1) samples.
In short, A, is considered the nth coefficient of auto-
correlation of the two discharge signals. F;-F; are
extracted where F, is the sequence maximum, F; illustrates
the sequence equivalent width, F; represents sequence
centroid, F, describes the centroid of absolute, F; is RMS
width, Fs represents the sequence of mean value and F»
is the standard deviation of sequence [59].

F, = Maximum value of sequence (A; max) (29)
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4.11. Chaos theory

In order to obtain chaotic characteristics from a chaos
signal, it is necessary to reconstruct the phase space before
calculating the reconstruction trajectory. Phase space
reconstruction is a technique of analyzing system dynamic
behavior by rebuilding attractors based on inadequate
information. The key concept of this technique is based
on the evolution of any component in a system that relies
on other components which interacts with it [60]. The data
of the interaction component is concealed in the change of
other component. Thus, the original system can be recre-
ated based on single component observation of the system.

Chaos exist when the biggest Lyapunov exponent is
exceeds 0 [61]. The largest Lyapunov exponent /; is
obtained as follows [62]:

[ S T
£1 = M_1¢4 A(i) (36)

i=1



where i4(i) is defined as

1 [IXipin + Xl

0= 7 PR, X

(37)

where terms inside the modulus are the Euclidean dis-
tance. After PRPD patterns are mapped into a matrix, the
/1 can be computed and used as input to the classifier.

5. PD classification methods

PD patterns can be classified into several different cate-
gories. Some research work attempts to classify the size of
cavities based on PD patterns [12], while others are inter-
ested in the phase determination of PD in three-phase
transmission lines [63]. However, majority of research
are aiming to identifying the type of insulation fault that
causes PD to occur. According to [39], there are 4 main
types of defect that can be classify based on PD patterns
are cavities or voids, surface discharges, corona and tree-
ing. This section provides a summary of all the methods
used for PD classification to date.

5.1. Back propagation neural network (bpnn)

BPNN consist of one layer of input (IL), a minimum of
one hidden layer (HL) and one layer of output (OL). It
had been confirmed that with two hidden layers any com-
plex decision region can be generated [2]. A typical model
of BPNN is shown in Fig. 4. Every layer is completely joined
to the next layer. The primary function of the HL is to
obtain PD features from different sources and pass the
information to the OL. The amount of processing elements
(PE) in the IL rely on the amount of PD fingerprint data. The
amount of PE within the OL is dependent on the number of
defects to be classified [39]. Details about the mathemati-
cal models and learning algorithm can be found in
[12,39,64,65]. For PD classification purposes, at least two
input features are required to ensure convergence of the
BPNN during training [30].

Hidden Qutput
Layer Layer

Output

Fig. 4. Typical model of BP NN with one hidden layer.

L; (output)

L, (classification)

L; (input)

Fig. 5. Architecture of the standard FCPN.

5.2. Counter propagation networks {CPN)

CPN is used for estimating a function that is character-
ized by a group of desired pairs of input output, and their
function of inverse. For PD classification, the forward vari-
ant only of the CPN (FCPN) is utilized. An FCPN is depicted
in Fig. 5 [11]. In this figure, part of the Kohonen self-
organizing map is merged with the outstar structure [66].
It works as a lookup table which can compare a pattern
with the prototypes encoded in input-to-hidden weights,
and chooses the most identical one. Then, the results are
encoded in the hidden-to-output weights. The previous
weights are trained by unsupervised competitive learning
while the latter weights are trained by supervised learning.
To increase the classification efficiency, the networlk struc-
ture is dynamically modified by using a vigilant structure.
The complete working of CPN can be found in [11,67].

5.3. Cascaded neural network (CNN)

For classification of different cavity size using PD pat-
terns, CNN arrangement has higher classification accuracy
compared to single stage neural network (NN) [68]. This is
because CNN uses an indexed feature that set up the high-
est vital input to the next stage of CNN that is influential in
producing a classified attribute output from the CNN.

Fig. 6 shows an example of CNN with double outputs
[68]. For the CNN system, the output of the first stage that
is indexed Ig, is created to represent unity output for a
1.5 mm void and zero for a 1.0 mm void. The indexed sig-
nal I is passed to the second stage along with AV and AQm,
inputs as one of the inputs. After training, CNN can suc-
cessfully distinguish different cavity sizes efficiently using
three inputs (AVy, AQm, Is) with 6 neurons in the HL. The
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