Proc IMechE Part B:

| Engineering Manufacture

1-17

© IMechE 2014

Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOL 10.1177/09544054 14534642
pib.sagepub.com

®SAGE

Augmented reality-based programming,
planning and simulation of a robotic
work cell

Yun Suen Pai, Hwa Jen Yap and Ramesh Singh

Abstract

In this article, the development of an augmented reality—based robotic work cell is presented, consisting of a virtual
robot arm, conveyor belt, pallet and computer numerical control machine that simulates an actual manufacturing plant
environment. The kinematics of the robot arm is realized using Denavit-Hartenberg’s theorem, which enables complete
manipulation of the end-effector in three-dimensional space when interacting with other virtual machines. Collision
detection is implemented in two areas, namely, modifiable marker—based detection for the robot arm, which detects
nearby obstacles as well as integration with object manipulation to pick and place a virtual object around the environ-
ment. In addition, an augmented heads-up display overlay displays live information of the current system. The case stud-
ies suggest that the proposed system can simulate a collision-free operation while displaying the coordinates of the

virtual object, current tool equipped and speed of the conveyor belt, with a percentage error of less than 5%.

Keywords

Augmented reality, robotic work cell, kinematics, collision detection, heads-up display, robot simulation

Date received: 22 January 2014; accepted: 14 April 2014

Introduction

Current implementation of robotics in engineering is
not a novel approach as numerous industries have been
utilizing automation to design and develop their prod-
ucts. However, the primary concern of robotics lies in
the complexity in integrating and fully utilizing the cap-
abilities of robots due to the fact that numerous aspects
need to be considered such as programming methods,
algorithms, path planning, display systems and kine-
matics. Owing to these requirements, small and medium
enterprises (SMEs) tend to avoid incorporating robotics
into their production processes, even though they are
fully aware of the benefits offered by automated sys-
tems. Furthermore, SMEs avoid implementing robotics
due to cost and time constraints as well as safety issues
when programming robots on site. Augmented reality
(AR) is a field of research, which is rapidly growing fol-
lowing the introduction of virtual reality (VR) that aims
to fully integrate virtual and real environments to solve
the above issues. VR utilizes a fully computer-generated
environment, which is more costly and requires a higher
degree of skills compared to AR. Even though AR has
been present since the early 1990s, it is only recently that
AR emerges as one of the forefront technologies due to

the rise of popularity in smartphones and tablets. This
indicates that AR can be applied in various research
fields and consumer products. Engineers can simulate a
manufacturing environment effectively by implementing
AR in robotics, in which a scaled simulation of a
robotic arm is possible. The integration of AR in
robotics enhances a user’s perception and visual senses
while reducing costs associated with expensive prototype
fabrication. In path planning, it is complex yet necessary
to avoid collision and accidents. In addition, there is a
lack of information feedback to the operators, which in
turn increases the chances of errors as well as time con-
sumption. AR solves these problems by clear visualiza-
tion of collision detection and two-dimensional (2D)
information overlay. Knowing the benefits of AR in
robotics, the main objective of this study is to simulate

Department of Mechanical Engineering, Faculty of Engineering, University
of Malaya, Kuala Lumpur, Malaysia

Corresponding author:

Hwa Jen Yap, Department of Mechanical Engineering, Faculty of
Engineering, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur,
Malaysia.

Email: hjyap737@um.edu.my

an AR environment for use of a robotic work cell, apply
marker-based collision detection as well as augment 2D
information in a heads-up display (HUD) to enhance
the user’s visual, aural and proprioceptive senses.

Related studies

Manual work by humans is generally not as efficient
and flexible in comparison to robots and is further
inhibited by other limitations such as the randomness
of walking worker activities' and fatigue. Hence. ergo-
nomic studies must be taken into consideration.?
However, robots require careful calibration as well as
numerous testing and programming, which are
achieved through simulations. There are two main pro-
gramming methods currently available for industrial
robots, namely, online and offline programming.
Online programming basically requires the operator to
be within the working envelope of the robot, which is
undesirable due to safety reasons. Conversely, offline
programming uses a remole computer console, in
which the input program is translated into robotic lan-
guage. An AR-assisted robot simulation is considered
to be a form of offline programming, which requires
functions and precise positional values.” Positioning
and path planning involve computing a continuous
order of configurations between a starting point and
goal point. Motion or trajectory planning can be
clearly distinguished from path planning since the path
in motion planning is constrained by time. This means
that computing a collision-free trajectory between the
initial and end points requires both precise trajectory
and path planning. Planning involves actions taken by
the robot in order to avoid obstacles and complete the
programmed path. All actions taught to the robot are
then transferred to the controller for execution.
Kinematic modelling of an industrial robot is a vital
part of this study as the main aim is (o manipulate a
robotic arm effectively in AR environment. Kinematic
analysis can be classified as direct kinematics and
inverse kinematics. Direct kinematics is the process of
searching and calculating the position and orientation
of the end-effector from the given joint position
whereas inverse kinematics gives the (inal position of
the end-effector whereby the position for each joint
needs to be determined. The Denavit—Hartenberg (D-
H)-based method is the most popular approach for
kinematic analysis® and is used for the KUKA robotic
arm manipulator in this study. The mathematics and
notations of the robot’s forward kinematics can be best
determined through D-H method regardless of its
sequence or complexity, and the location of the joint is
dependent on the previous joint’s location, which can
be calculated using transformation matrices.
Transformation can be represented by Cartesian,
cylindrical, spherical, Euler or roll-pitch-Yaw (RPY)
coordinates. Another kinematic analysis method was
developed in 1876 and is known as the screw theory.”

Screw represents two kinds of motion, that is, transla-
tion and rotation, which can be converted from one
another. The theory is expressed in Pliicker coordi-
nates, which comprise angular and linear velocities.
Another kinematic study carried out by Rocha is differ-
ential kinematics, which has a similar approach and
utilizes Jacobian matrix to map joint velocities to the
end-effector velocity in order to implement both D-H
and screw theory methods. The screw theory offers an
advantage over the D-H method in modelling and anal-
ysis such that it is more flexible. However, the screw
theory is more complex and difficult to implement.

AR is a technology capable of blending three-
dimensional (3D) virtual objects to the real world seam-
lessly in order to visualize the D-H model of the robot
and observe its interaction with the environment. AR is
a subject of intensive studies and perceived as one of
the 10 emerging technologics.® The two main activitics
of AR are tracking and registration. Markers in the real
environment relative to the camera (also known as fidu-
cials) are (racked to obtain position and orientation
data. The tracking values are utilized during registra-
tion to superimpose the 3D virtual object onto the real
environment. ARToolKit is a marker-tracking library
implemented for AR applications and was developed
by Hirokazu Kato in 1999. ARToolKit is used as the
tracking system in this study. One study was focused on
the tangible user interface (TUI) aspect of ARToolkit
via a prototype system used for interior design,’” which
includes a physical paddle that uses transparency cues
in an AR interface for team collaboration work. Even
though the prototype is relatively simple, it exhibits a
potential, which can be further expanded such as its
implementation in this study through full 3D object
manipulation. In fact, the marker-tracking system sup-
ports rabot programming in an interesting manner.
Robot programming was developed recently using the
AR (robot programming using augmented reality
(RPAR)) system, which enables movement of a virtual
robot either by the number of start-goal paths or
enabling the end-effector to follow a pre-defined path.®
A collision-free volume (CFV) aids the system and con-
strains the movement of the robot simultaneously.
Although these methodologies are proven to be reliable
for their intended tasks, a user-defined path is compara-
tively more flexible. A user-defined path enables the
user Lo move an object, which generates a path auto-
matically for the robot to follow and this approach is
adopted in this study. However, it shall be noted that
ARToolKit is incapable of handling 3D computer gra-
phic models, and thus, a third party computer graphics
rendering software needs to be employed.

OpenGL is a 3D graphics and modelling library that
has a wide application programmer’s interface (API)
and includes a number of commands and functions.
The programmer can create 3D graphics consisting of
points, lines and primitive polygons, create inputs for
display as well as manipulate graphics with O]:x:rlGL.lJ
In addition, OpenGL is capable of handling complex

modelling transformation techniques, and therefore, an
interactive 3D simulation system can be built for robot
path planning. A recent study demonstrated a robot
collision avoidance simulation achieved via OpenGL.'*
The fully realized 3D virtual environment displays the
robot’s capability to detect collision in an axis-aligned
bounding box (AABB) collision, which is quite promis-
ing. Implementing such a technology with AR will
indeed create a more immersive system, which is what
ARToolKit is capable of achieving. Furthermore,
OpenGL can be supported by all platforms such as
Windows and Macintosh operating systems.'' This
study utilizes an OpenGL application interface written
in C++ programming language supported by the
OpenGL library to generate virtual contents in the AR
scene with collision detection.

The final key component in the AR simulation sys-
tem is a display, which enables the user to view the
scene. Display systems are available in various shapes
and sizes, and a head-mounted display (HMD) is a
hardware, which is typically utilized to exploit an AR
generated environment. An early study focused on a
development of a method for calibrating see-through
HMDs using a dynamic framework that is also applica-
ble for stereo HM Ds.'? However, there are several lim-
itations associated with the use of see-through HMD
such as constrained transformations and increased
errors due to camera movement. A stochastic solution
was presented to calibrate a see-through HMD for the
application of AR and it was proven that the stochastic

model of commonly applied mathematical models is
stochastically incorrect.'* Conversely, stochastically
consistent solutions are possible. Flock of Birds (FOB)
has been used for the tracking system, and it is a stand-
alone system consisting of a one-foot cube transmitting
antenna, an extended range controller (ERC) and two
receivers. Virtual points on the HMD screen are
assigned to points in the real environment during the
calibration process, while taking into account pixel
accuracy and coordinate systems. It shall be highlighted
that there are no studies available in the literature that
provide a systematic comparison between various cali-
bration methods of an AR system through see-through
HMDs. Hence, it is evident that an intensive calibra-
tion is required to minimize errors for see-through
HMDs. In addition, the ergonomics aspect of HMDs
needs to be considered as they are typically bulky and
uncomfortable to wear, even over a short period. In
this study, a typical Windows laptop monitor is used as
the display system, as it can be used to run the required
applications. Since the system is used primarily for
robot programming, the hardware involved is station-
ary, which eliminates unnecessarily complicated cali-
bration problems associated with HMDs.

Recent advancements

Several studies were carried out in the past 2 years on
the methods of implementing AR in robotics. A recent

study showed that marker-tracking requires accurate
pose estimation, which is dependent on camera distance
and viewing angle, even though it is more accurate than
markerless ones.'* Pati et al.'* proposed a method to
model errors based on scaled unscented transform
(SUT), which is a new function for estimating nonlinear
transformation. This gives a more accurate calibration
since the method is independent of the image sequences,
and multiple markers are not required. In comparison,
ARToolKit uses a calibration dot marking system with
multiple images of 6 X 4 dot patterns captured at dif-
ferent angles. An accurate calibration leads to accurate
robot simulation, and a recently developed prototype
system is able to control a virtual robot in a real envi-
ronment."” The system architecture used in Girbacia et
al.'* bares resemblance to the study in this article, with
the exception that it does not cover a work cell interac-
tion. The system is also marker-based which differs
from another study that uses markerless gestures.'®
Markerless system is achieved through a 3D motion
tracking system for depth perception, coupled with a
2D camera. Bare-hand manipulation is seemingly more
natural especially in pick-and-place tasks due to the
gripping gesture, and the data are transmitted to an
industrial robot controller. Spatial robot programming
is a form of online programming by demonstration
(PbD), even though the AR module aids in defining the
program. Although spatial robot programming is quite
intuitive, it is rather costly due to the fact that depth
sensors are expensive simulation tools. Operations such

as welding shows potential for a system such as this,
and the ability to verify the simulation system appropri-
ately is vital to provide relevant information for further
development.'”” The recently developed half-silvered
glass works similarly to an optical see-through display,
with the exception of its aspect ratio and size of the dis-
play monitor. Superimposition of virtual robots
becomes much more intuitive and realistic. Even
though software communication is still poor in the
present, the benefits offered are promising if the system
can be scaled to fit an entire work cell or placed on a
computer numerical control (CNC) machine.

Path generation and manipulation in AR

A planned set-up is typically required to implement
AR. A novel approach towards planning a collision-
free path in an unprepared environment was presented
in Ong et al.,'® taking into account the advantages of
utilizing AR in industrial robot programming. The end-
effector is the main concern when an industrial robot is
targeted for a simulation process, and therefore, its
movements are constrained along a visible path and
supported by a piecewise linear parameterization (PLP)
algorithm. This algorithm is essentially used to parame-
terize the data points by adopting an interactive gener-
ated piecewise linear approximation. Furthermore, the
data points are used to generate 3D parametric curves
by applying Bayesian neural networks and

reparameterization. Reparameterization is used for fi-
ting problems, in which the parameters of the data
points are updated after each iteration. A CFV is gener-
ated once the curve is obtained and is used to verify
whether the end-effector collides with obstacles along
the curve. The AR transformation matrix will accu-
rately position the orientation of the end-effector of the
robot. CFV is essentially generated from the swept vol-
ume of a sphere and is represented as a mass of virtual
spheres intersecting one another. AR environment is
primarily used to provide visual feedback, which
improves interaction between the user and real world
directly, which is also part of the PbD approach. Since
a virtual industrial robot will be placed into the real
environment through AR, proper planning is crucial in
order to accurately manipulate the 3D movement path
inan AR work cell.

A path editing method is required to evaluate the
movement path of a 3D object in an AR scene."” In
general, there are three forms of path manipulation,
whereby the first one involves utilizing a third party
commercial software and loading using an AR toolkit.
The second form of path manipulation involves extend-
ing commercial software in which an AR plug-in mod-
ule is connected to a conventional commercial software,
whereas the third form involves using a TUI method.
In the TUI method, the user can plan a path by hand
movements and confirm the results in the AR environ-
ment. The third method is chosen in this study due to
its interactive nature. However, this method may gener-

ate temporal errors such as trembling of the user’ hand.
In this method, the translation point of the object is
first examined in order to select a point as the control
point. Splines are then used to reconstruct the path into
a smooth line. The Catmull-Rom spline is used since it
has fewer extensions compared to other conventional
splines, and it can be easily manipulated with control
points. The control points are generated immediately as
long as the user presses and holds down a button of the
object or prop. A mouse pen is used as the input device
in this study and the movement path is constructed
until the button is released. This method differs from
conventional graphical user interface (GUI)-based path
manipulation that emphasizes the use of mouse and
keyboard input. Since there are ongoing studies on the
increasing interactiveness of path manipulation,
collision-free-path programming is also studied in the
same aspect. The utilization of heuristic beam search
algorithm for path generation coupled with AR envi-
ronment was analyzed by Chong et al?’ The system
architecture involves markers to input inverse kinematic
modules that calculate the coordinates of the virtual
robot. The forward kinematic module calculates the
end-effector’s reference point. OpenGL Renderer is
used to portray images through a HMD for each video
frame, which serves as feedback. The force module then
calculates the work done by the robot and the value is
used for path cost. They discovered that the size of the
beam does not necessarily need to be large for a more

robust result and the ARToolKit is sufficient to demon-
strate the proposed methodology. The ability to snap
the control point onto the physical prop is useful in
robot path manipulation, and a similar feature is stud-
ied in this article.

Recent studies are similar in a way that the robot
path manipulation system enables the user to create a
list of control points and these points are used to gener-
ate a ruled surface.”?? The set-up involves a robot arm
mounted with an end-effector. a computer, monitor,
camera and an interactive device strapped to a marker
cube. A fully AR-controlled environment with effective
orientation planning is possible with the utilization of
an ARToolKit-based tracking and interaction module,
as well as path planning, path optimization and simula-
tion modules. Although a series of control points within
the CFV are created so that a path can be formed, there
is an issu¢ that the path may not be collision free.
Therefore, a Euclidean distance-based method that
computes the distance between the probe, and each con-
trol point is used to generate the path through interpo-
lation, making it collision free in the joint-space. The
end-effector orientation is represented relative to the
robot’s base frame by a unit vector. The path is then
optimized using a convex optimization technique,
which is the log-barrier method. The Newton-Euler
algorithm is used to model the dynamic properties of
the robot’s behaviour and the trajectory is simulated
using a discrete proportional-derivative (PD) control
scheme. The developed system further proves that

ARToolKit is more than capable for robot path plan-
ning. This paper also demonstrates that ARToolKit is
excellent for robot path planning as verified by KUKA
Sim Pro, which is a commercially available simulation
software.

AR application in work cell

The concept, which renders virtual manufacturing very
appealing, is the idea of having a factory sitting on
vour desk, with total control over all aspects of produc-
tion.>* Automotive companies such as Mercedes Benz
have adopted virtual manufacturing as they are con-
vinced that it is an effective engineering tool. Each
Mercedes line has three types of machines, namely,
“Trallfa’, ‘Devilmat Spray Mate’ and ESTA for interior
painting, metallic painting and electrostatic painting,
respectively. These are painting programs from the
RobCad’s virtual manufacturing software and have
been proven to be highly efficient compared to import-
ing data from computer-aided design (CAD) drawings
into a PC. Such offline programming method results in
30%-40% gain in time, which increases productivity.
A more streamlined approach can be achieved for com-
munication and partnership between manufacturing
organizations by implementing virtual manufacturing
as the main production tool. Even though virtual fac-
tory layout planning (also known as digital manufac-
turing technology) may still be uncommon for most

enterprises, those who have chosen to adopt virtual fac-
tory layout planning perceive it as a way to encourage
parallel processing, decrease cycle time and improve
precision. One of the methods that can be used to con-
struct a mixed reality manufacturing environment is
image-based tracking.24 Image-based tracking does not
involve the use of markers, and tracking is done by
finding an arbitrary feature in the real environment
such as a safety sign. The safety sign acts as a marker
and acquires a fixture on the site. However, it shall be
noted that not all kinds of feature are suitable for use
as real-life reference markers and a circular contour
shape, which is typical of safety signs, is analysed in
Lee et al.>* The Hough transform method, direct least
square fitting and moment of inertia optimization
method are among the methods used to analyse an
ellipse, which pertains to the appearance of a circle at
certain angles. The virtual manufacturing system soft-
ware Delmia is used to apply 3D CAD geometry data of
each equipment and machine for process planning. V-
Collide library is used for collision detection such that a
flag will be created at the collided parts in the event of a
collision. However, accuracy is an issue because safety
signs are not designed specifically for camera tracking
and recognition, unlike fiducial markers.

Comparison with VR

Although AR application is the main focus of this
study, a comparison with VR will not only produce
valuable data for ongoing studies, but allows ample
room for improvement in the field of visualization. VR
replaces reality, in which the user is totally immersed in
an artificial world and all surroundings are rendered
through a computer. Meanwhile, AR enhances or
modifies reality by adding minimum virtual objects and
requires high accuracy in tracking scenery and environ-
ment. Both VR and AR have been growing rapidly
over the past few years with continuous improvements
in variety, functional capabilities and usability.25 The
multitude of technologies include computer assisted vir-
tual environment (CAVE) environments, power walls,
holographic workbenches, HMDs and sensors. The
integration of VR into CAD (called VR-CAD/E tech-
nology) has gamered much attention in scientific
research, in which the aim is to overcome issues such as
integrating VR with commercialized CAD software
tools, modelling and tooling applications. The chal-
lenges in integrating VR into CAD lie in the limitations
in current technology. A number of studies have been
devoted on addressing the above challenges, in which
new AR approaches, advanced VR solutions and
extensions of CAD/E systems are proposed. For
instance, studies on AR are focused on product devel-
opment process by using augmented technical drawing
(ATD),” interfacing AR with custom-built 3D applica-
tions and immersive modelling system (IMMS) for
interface dlesign.27 In contrast, studies on VR analysis
are centred on VR tools for product life cycle

management (PLM) systems,”® haptic feedback system
and simulation, SIMUCAL virtual simulator for analy-
sis of footwear comfort®” as well as VR-based modular
fixtures. Studies that integrate VR into CAD/E systems
stress on immersive interaction and haptic paradigms
for CAD, bi-manual 3D input for CAD modelling and
human overall performance in multi-modal CAD.™
The common factor for all VR integration is that cost
is substantially higher compared to AR, which results
in the need for higher computational power.

Simulation has been proven to be a significant
research tool towards the continuous development of
various engineering industries, especially robotic sys-
tems, due to effective manipulation of the end-effector
while accounting for limited floor availability as well as
operator safety. Therefore, AR is the subject of much
research due to its robust application in simulating a
manufacturing environment, with its seamless interfa-
cing between real and computer-generated content.
However, there are still limitations of AR even with
today’s technology, especially with regard to fully inte-
grating AR with robotics, display systems, sensors and
path programming. It is evident that there are many
areas for improvement in order to realize the goal of a
fully digitalized factory with increased accuracy, regis-
tration and latency. One of the factors that need to be
considered for robotic applications is the ability of the
robot to recognize its path and effectively avoid colli-
sion. Collision avoidance is crucial since collision may
result in injuries to nearby operators and increase
maintenance costs for the robot arm. Studies have
shown that there are several ways to prevent collision,
either by developing a complex algorithm, generating a
CFV or utilizing commercial software. These methods
are challenging and may be inflexible for use in various
environments. Hence, a marker-based method is
devised in this study in order to develop a simpler rec-
ognition system. In this system, markers are placed at
specific points, which will be recognized by ARToolKit
as an obstruction in order to avoid collision effectively.
Finally, a display system is mandatory (o view the
effects of AR on the system. However, a feature that
portrays information will indeed be more useful for
engineers. Even though various display systems can be
used, there only a few systems available that can ana-
lyze and provide information feedback of current oper-
ations. Hence, this study is aimed to provide accurate
2D information using a heads-up display with proper
calibration.

Methodology

In this study, C++ programming using ARToolKit is
used to create a running program that generates AR
content through a marker-based tracking method. The
program includes path drawing, whereby a line can be
drawn with two vertices. The marker probe acts as a
teach pendant in order to determine the location of the

vertex and needs to be fabricated out of paper and
cardboard. The full kinematics of the robot is then
studied. Forward kinematics is first studied to under-
stand how the coordinates of the end-effector are deter-
mined, followed by inverse kinematics in which the
joint variables are determined based on the location of
the vertices. The entire formulation is carried out by
programming in order to combine line drawing and
kinematics effectively for simulation. A full work cell is
added to the virtual environment when the AR robot
functions as desired. The work cell consists of a con-
veyor belt, CNC machine and pallet, which are called
by other static markers. HUD is added by program-
ming in order to provide a more effective information
feedback, which shows the speed of the conveyor, cur-
rent tool equipped to the machine, as well as coordi-
nates of the manipulated object. The object serves as a
visual cue to show how a full operation is done in the
work cell and requires collision detection and object
manipulation algorithms in the code. The combination
of these elements creates a fully functional AR robotic
work cell with a pick-and-place system. However, the
work cell is not merely constrained to perform this
operation.

Figure |. Experimental set-up at Robotics Laboratory.

The experimental set-up comprising hardware and
software is relatively low cost and can be constructed
virtually anywhere provided that there is proper light-
ing and sufficient space. The initial testing of the pro-
gram is carried out by a simple set-up, which consists of
a laptop, Webcam and ‘Hiro’ marker. The experimental
set-up is then transferred to the Robotics Laboratory,
Department of Mechanical Engineering, University of
Malaya, after the program is compiled. A photograph
of the experimental is shown in Figure 1. The main pur-
pose is to position the virtual robot over the physical
one in order to demonstrate the feasibility of running a
real work cell in the laboratory. The layout plan is mea-
sured prior to the experimental set-up as this will influ-
ence the accuracy of the results.

Positioning of markers and camera is also crucial.
The markers must be placed in a way that they are
clearly visible to the camera under direct lighting. The
camera must be positioned at a suitable height as higher
locations will result in blurry images for the markers.
An additional marker (labelled as ‘Star’) is added for
the purpose of a case study. The ‘Hiro’ marker serves
as a global origin, in which every other marker’s posi-
tion is calculated relative to the “Hiro’ marker. The 3D
marker cube is used as the teach pendant because its
function resembles that of an actual teach pendant of
the KUKA robot, whereby it can move the robot arm
around and save the coordinates of a point in space.
This means that the position of the tip of the teach pen-
dant is calculated relative to the ‘Hiro’ marker and is
registered whenever one of the four faces are viewable.
The primary reason the teach pendant is constructed as
a marker cube is so that it is viewable to the camera
regardless how it is held. The set of static markers
as well as marker cube teach pendant are shown in
Figure 2 and the overall system architecture is shown in
Figure 3.

Kinematic modelling

Each compartment of the robot is first assigned a coor-
dinate frame. The 6-DoF KUKA robot’' and the

Figure 2. Set of static markers (left) and marker cube teach pendant (right).

l Place static markers in front of camera |

| Generate virtual work cell]

Real-time HUD

Transformation matrix and robot

Teach pendant

kinematics

User input

Left-click for pick and place operation

i_l

s | €

Right click to save coordinate, robot
arm angles, draw vertex, and show
robot path

Figure 3. Overall system architecture.

(@)

Axes 1103

Axes 410 6 wrist axes

Ys

P T .

X3

“

Z3 1Y3
Z

a
Y1 X2
X1 Y2 l
a)

Z
d;, J% Yo 2
.x

Figure 4. (a) KUKA robot 6-DoF. KUKA industrial robots, http://www.kuka-robotics.com/res/sps/e6c77545-9030-49b | -93f5-
4d17¢92173aa_Spez_KR_6_KS_en.pdf and (b) robot configuration with D-H frame.

assigned D-H frame are shown in Figure 4. The top
surface of the pedestal, which is a solid cube onto
which the robot is mounted, acts the world coordinate
or point (0, 0, 0) of the robot. It shall be noted that
angle A, B and C rotates about the z-axis, y-axis and
x-axis, respectively.

The D-H coordinate frame consists of mainly four
parameters (a, a, 6, d), which represents the link length,
link twist, joint angle and link offset, respectively. The
link length and link twist are the link parameters that
describe the relative position between joints. The joint
angle will be variable if the joint is revolute.

Figure 5. Calculation of # in X-Y plane, rotation about Z-axis.

Angle 6, Joint 1 is a twist joint, and therefore, it
changes the orientation of its subsequent frame while
the position of the subsequent frame is kept constant.
In fact, there are three twist joints present, namely,
Joints 1, 4 and 6. From calculations, only the x- and
y-axes, as well as the length of the joints, are considered.

Angle 6, can be determined from the position of
Joint 5§, as shown in Figure 5. Frames 4 and 5 share the
same position but different orientations, and hence, po;
and pps have the same coordinates. It is assumed that
the end of the arm will always face downwards, parallel
to the floor. Therefore, the robot link will always form
a straight line when viewed from the top. Thus, the

position of Pp; can be obtained using the following
equation

Pod.x Px 0
poay | =|p |+ [0 (1)
Pos, p: ds

6, = arctan 2(pga, ,r)m_x}

The arctan?2 function was used in this case rather than
arctan since arctan? represents angles in a different
quadrant.

Angle 05 In this case, Link 4 is different from other
links, as illustrated in Figure 6. This link is a special
L-shaped link attached to Joint 3. An offset line paral-
lel to Link 4 is required in order to determine 5. This
angle can be solved from angle ¢ using the law of
cosine. |pa4| represents the opposite length of the new
triangle formed and is obtained by determining the
position of Joint 2 (pgz) and Joint 5 (pgs) with refer-
ence to the base. The position of Joint 2 is obtained
from forward kinematic transformation (37), whereas
the position of Joint 5 (Pps) shares the same position as
that for Joint 4 (pgy). The difference between these two
positions will yield 2 and thus, the hypotenuse |pas|
can be determined.

P24, x P04, x Po2.x = Cr1dy
Py Posy | — | pozy = 51 (2)
P24,z Poa,z poz,: = d

Z .
% =ve Direction

> X

Figure 6. Calculation of 63 in X~Z plane, rotation about Y-axis.

Paal® = Pla + Pray + Poa (3)

The L-shaped link forms a small degree of difference
and can be solved using the areran function

o = arctan (as, dy) (4)

The link, which connects Joints 3 and 5, is not d,.
Rather, it is the hypotenuse of a right angled triangle
(dy) with the edges dy and a;. Hence, Pythagoras’ theo-
rem can be used to determine d; as follows

dy=/a + & (5)

Applying the cosine law gives

(@ = arccos (—a% h ({i‘:jz H,qulz) (6)
0 =7 — ¢ — o (magnitude) ™)
0, = —(m— ¢ — o) (direction)

B =6 + g (8)

Angle 6. From Figure 7, it can be seen that angle 6,
can be calculated using angles 8, and 3-. Starting from

—_—
angle S, 11‘324’ (which is the vector pag) is used refer-
enced to Frame 2. From forward kinematics, it can be

.
noted that pfﬁ: consists of only two components (x
and y) as it is not a twist joint and will always form a
right angled triangle. Hence, Pythagoras’ theorem is
used to solve for the edges of the triangle

o

P24 x P2, -
——
)

Py m (9)
= 0

@)
P,

2) 2)
B, = arctan (;7(31 . pgl),) (10)

Figure 7. Calculation of #, in X—Z plane, rotation about Y-axis.

The law of cosines is applied for the second triangle
in order to obtain 8>

2
& + padl — (d4)°

——
2-az- |pa|

B:=

drccos

(11)

There are two solutions for 6, as follows:
Case . If By is negative and S5 is positive

The direction of 90° rotation is clockwise from home

position and is therefore negative. If a part of Link 3
remains on top of x-axis of Joint 2 and the position of
the end of arm moves downwards having negative B,
only angle 3 is required to define 6,

0's) = g— B> (magnitude)

(12)
o (T N
651 (2 ,83) (direction)
m
fry = 5 + ﬁrll
Case 2. Else

#, will always be equal to the summation of the angles
B, and B, (i.e. By + fB») and is subtracted from 90°.
The solution for 6, as in D-H is then added with 90°.
Hence

60— —— (B, +B,) (magnitude)
? (13)

e

022 = — (— — (B + ,33)) (direction)

-ve Direction

Figure 8. Calculation of f5 in X—Z plane, rotation about Y-axis.

Since 6,4 is a twist joint, this angle does not change the
consecutive joint’s coordinate. It is assumed that the
orientation of Link 4 is constant throughout this study,
and therefore, 64 is 0.

Angle 6s. The law of cosine is applied twice for the two
triangles in order to find 6s, as shown in Figure 8. A;
can be easily determined using the following equation
by substituting the length of the triangle () obtained
previously

2 4 Ipoal? — &2
A1 = arccos —({!4) Pl — @
2-(d4) - |pas|

(14)
Following this, the length connecting from Joint 2 to
Joint 7 (A,) needs to be determined. Knowing that the
vector is equal to the position of the end of arm minus
with the position of Joint 2 referenced to the base, the
length [p27] can be obtained easily as follows

P21, x Px Po2,x = C1dy
Pty py | = | pozy = s1a (15)
P27,z P= Po2,z = l'[I
2 2 2 2
[p27]” = P27, + P27y + 12,2 (16)

The law of cosines is applied to solve for A, using the
length obtained using equation (16). The direction of
rotation for angle #5 moves downwards from the home
position and therefore has a negative sign

oa|? + 2 — |po|*
AI: arccos M (]7)
2-|Pj4|-d{,

95= —(’JT—(A| —0’)+A1)

Angle 6
Bf, =0

¢ remains zero throughout the equation. This angle is
dependent on the type of end-effector used. The posi-
tion of the end of arm is unaflected.

RRac DR -nRARs AR 000

LEPTE L]

Figure 9. CAD model of the robot sketched using Pro-
Engineer software.

CAD modelks

The actual 3D CAD model of the KUKA robot is
rather complex, and therefore, a simplified version is
used, while adhering to the kinematics study of the
robot. Pro-Engineer software is used to sketch the
robot, which is drawn to scale and follows the dimen-
sions of the real KR 16 KS model, as shown in
Figure 9. This means that each joint of the robot must
be sketched individually to scale. The parts are then
assembled to create the full robot arm in the 3D model
in which each joint can be moved when they are
dragged. The black base represents the pedestal.
However, it shall be noted that the assembly file cannot
be imported into the program, and thus, each joint

needs to be individually imported as an STL file and
re-assembled and rendered using OpenGL. Hence, the
placement of the origin of the coordinate system for
each joint needs to be accurate in order to reduce com-
plications when assembling parts in the program.

Three additional parts are added in order to create a
robotic work cell. Since it is required that the robot
must interact and perform operations with other
machines, a CNC machine, conveyor belt and pallet
are added to the robot. The basic operation performed
by the KUKA robot is pick and place, which is highly
dependent on the tools provided at the end-effector
and is not defined in this study. The purpose of this
study is to demonstrate that the AR work cell is appli-
cable for a variety of work cell operations. Unlike the
robot arm, the drawings for the CNC machine, con-
veyor belt and pallet are part files and no assemblies
are required. Since these components act as dummy
machines without specific operations, the files are
drawn to full scale and remain static throughout the
study. They are also rendered and coloured using
OpenGL.

HUD implementation

The addition of a HUD is extremely useful when vir-
tual content is involved in any context. The use of a
HUD not only extends the user’s knowledge of the

Link to Full-Text Articles :

http://pib.sagepub.com/content/229/6/1029

current operation, but also updates itself continuously
on the current situation. HUD is purely AR generated
and therefore, it is solely dependent on the codes added
into the program. The information needs to be por-
trayed in such a way that it is viewable regardless of
display systems. The display system can either be a
HMD or a simple PC monitor such as that used in this
study. The information overlay includes the current
tool equipped to the CNC machine, speed of the con-
veyor belt (albeit not specific) as well as the current
coordinate of the manipulated object in the virtual
workspace.

It is relatively simple to print text on the virtual envi-
ronment using OpenGL. This poses a problem as the
global origin is set to the ‘Hiro’ marker beforehand,
which causes the text to appear on the marker and
moves accordingly when the marker is moved. Hence,
the text that appears on the marker is merely a text,
rather than a HUD. For HUD, the text is a 2D overlay
located on the top left corner of the screen. The follow-
ing codes are utilized to achieve the above purpose:

glMatrixMode (GL_PROJECTION) ;
glMatrixMode (GL_MODELVIEW) ;

These codes basically project the information onto a
2D space and the coordinate of the origin appears at
the centre of the screen. A semi-transparent back-
ground is first drawn before the information is dis-
played on the screen in order to increase the visibility

of the words. The following functions are added in the
init() function of the program:

glEnable (GL_BLEND) ;
glBlendFunc (GL_SRC_ALPHA, GL ONE_MINUS_SRC
ALPHR) ;

These functions enable blending, in which incoming
primitive colours are blended with the colours stored in
the frame buffer. The relevant information on the
screen is then printed out using the printw function.
Figure 10 shows the real-time HUD display, with the
information of the cube’s coordinate updated in accor-
dance with changes in position.

Results and discussion

The code is initially tested with a downscaled version of
the robot in order to observe the degree of accuracy of
the end-effector in following the teach pendant accord-
ing to the angles calculated for each arm. This is made
possible by assembling the joints individually in the AR
environment based on the kinematic model. A vertex is
drawn at a point by right-clicking the mouse button,
and the coordinate and angle of each arm are automati-
cally saved in separate files. Drawing additional vertices
will create lines for the linear movement of the robot
arm.

http://pib.sagepub.com/content/229/6/1029

