An assembly sequence planning approach with a rule-based
multi-state gravitational search algorithm

Ismail Ibrahim » Zuwairie Ibrahim - Hamzah Ahmad -
Mohd Falfazli Mat Jusof « Zulkifli Md. Yusof -
Sophan Wahyudi Nawawi » Marizan Mubin

Received: 28 August 2014 /Accepted: 27 January 2015 /Published online: 3 March 2015

(© Springer-Verlag London 2015

Abstract Assembly sequence planning (ASP) becomes one
of the major challenges in product design and manufacturing.
A good assembly sequence leads to reduced costs and dura-
tion in the manufacturing process. However, assembly se-
quence planning is known to be a classical NP-hard combina-
torial optimization problem; ASP with many product compo-
nents becomes more difficult to solve. In this paper, an ap-
proach based on a new variant of the gravitational search
algorithm (GSA) called the rule-based multi-state gravitational
search algorithm (RBMSGSA) is used to solve the assembly
sequence planning problem. As in the gravitational search

L. Ibrahim - Z. Ibrahim (57) - H. Ahmad - M. F. M. Jusof
Faculty of Electrical and Electronics Engineering, Universiti
Malaysia Pahang, 26600 Pekan, Pahang, Malaysia

e-mail: zuwairie(@ump.edu.my

L Tbrahim

e-mail: peel 2001 (@stdmail.ump.edumy

H. Ahmad

e-mail: hamzah@ump.edu.my

M. F. M. Jusof

e-mail: falfazli@ump.edu.my

Z. M. Yusof

Faculty of Manufacturing Engineering, Universiti Malaysia Pahang,
26600 Pekan, Pahang, Malaysia

e-mail: amdyusof{@ump.edu.my

S. W. Nawawi

Faculty of Electrical Engineering, Universiti Teknologi Malaysia.
81310 Skudai, Johor, Malaysia

e-mail: sophan@fke.utm.my

M. Mubin

Faculty of Engineering, Universiti Malaya, 50603 Kuala
Lumpur, Malaysia

e-mail: marizan(@um. edumy

algorithm, the RBMSGSA incorporates Newton’s law of grav-
ity, the law of motion, and a rule that makes each assembly
component of each individual solution occur once based on
precedence constraints; the best feasible sequence of assembly
can then be determined. To verify the feasibility and perfor-
mance of the proposed approach, a case study has been per-
formed and a comparison has been conducted against other
three approaches based on simulated annealing (SA), a genetic
algorithm (GA), and binary particle swarm optimization
(BPSO). The experimental results show that the proposed
approach has achieved significant improvement in performance
over the other methods studied.

Keywords Combinatorial optimization problem - Assembly
sequence planning - Meta-heuristic - Multi-state gravitational
search algorithm

1 Introduction

The costs of assembly processes are determined by assembly
plans. Assembly sequence planning, which is an important
part of assembly process planning, plays an essential role in
the manufacturing industry. Given a product-assembly model,
assembly sequence planning (ASP) determines the sequence
of component installation to shorten assembly time or save
assembly costs. ASP is regarded as a large-scale, highly
constrained combinatorial optimization problem because it is
nearly impossible to generate and evaluate all assembly se-
quences to obtain the optimal sequence, either with human
interaction or through computer programs.

Historically, the typical combinatorial explosion problem
requires experienced assembly technicians to determine as-
sembly plans. This manual assembly planning approach thus

@ Springer

requires significant time investments and does not allow quan-
titative analysis of assembly costs before production begins.
Thus, many studies in the last two decades have focused on
geometric reasoning capabilities and full automatism to locate
more efficient algorithms for automated ASP. The approaches
used for ASP can be categorized into four groups, which are as
follows:

1. Graph-based representation: In this representation, the da-
tasource originates from the user or a CAD system. Using
this approach, many details of the assembly analysis can
be determined. Mello and Authur [1] and Zhang [2] pro-
posed graph-based representation methods based on
AND/OR and directed graph. Lee and Shin [3], Moore
et al. [4], and Zha [5] proposed graph-based representa-
tion methods based on Petri nets.

2. Lingual representation: This representation uses a special
language to represent subassemblies, their parts, and the
relations between them. A few approaches include but are
not restricted to PADL, AUTOPASS, and GDP [1].

3. Anordered list representation: This type of representation
can be categorized as an ordered list of task representa-
tions, binary vectors, partitions of the set of parts, and
connections. Garrod and Everett [6] represented each as-
sembly sequence in the form of a set of list.

4. Meta-heuristic-based representation: Meta-heuristic ap-
proaches include but are not restricted to the rule-based
method [7], heuristic search [8], neural networks [8-10],
genetic algorithms [11-17], simulated annealing [18, 19],
ant colony optimization [20], memetic algorithms [21],
particle swarm optimization [22-24], and hybrid methods
[25, 26].

The implementation of meta-heuristics in solving discrete
optimization problems, particularly in the ASP problem, leads
to significant reductions in computation times, which in turn
sacrifices the guarantee of finding exact optimal solutions [27,
28]. However, these approaches typically obtain acceptable
performance at acceptable costs in a large number of possible
assembly sequences; thus, these approaches have a capacity to
find good solutions to large-sized problems.

In the past few years, there has been increasing interest
in algorithms inspired by Newton’s law of universal grav-
itation, which states that all objects attract each other with
a force of gravitational attraction. Rashedi et al. [29] pro-
posed a stochastic population-based meta-heuristic algo-
rithm based on Newton’s law called the gravitational
search algorithm. The conventional gravitational search al-
gorithm (GSA) was originally designed to solve problems
in continuous-value space. Later, Rashedi et al. [30]
reworked the conventional GSA to create the binary grav-
itational search algorithm (BGSA) to allow the GSA to
operate in discrete binary variables.

In this paper, a new variant of the GSA called the rule-
based multi-state GSA (RBMSGSA) that embeds a rule to
represent each agent’s vector as an unrepeated state is intro-
duced to solve discrete combinatorial optimization problems.
The RBMSGSA is applied to generate and optimize assembly
sequences of mechanical products. The purpose of this algo-
rithm and thus this study is to investigate the applicability of
an alternative intelligent approach to the ASP.

The organization of this paper is as follows: Section 2 ex-
plains the original GSA; Section 3 describes the concept of the
RBMSGSA; Section 4 presents the description of the problem;
in Section 5, the implementation of the proposed ASP approach
with the RBMSGSA is described; Section 6 provides the exper-
imental results of the RBMSGSA compared to SA, GA, and
BPSO; and Section 7 offers general conclusions.

2 GSA

In the GSA, agents are considered as objects and their associ-
ated performances are measured by their masses. All these
objects attract each other by the gravity force, and this force
causes a global movement of all objects, the masses unite
using a direct form of connection, using gravitational force,
an agent with heavy mass corresponds to good solution and
moves slowly than the lighter mass.

This guarantees exploitation step of the algorithm. Gravi-
tational and inertial masses are eventually determined using a
fimess function.

The computation of the GSA requires a set of N agents that
are randomly positioned in the search space during initializa-
tion. The positions of agents, which are the candidate solu-
tions to the problem, are represented as follows:

Xi=(x(1), ..., xi(d), ..., xi(n)) fori=1,23,..N (1)

where x,(d) presents the position of the ith agent in the dth
dimension, and # is the space dimension. Figure 1 portrays the
principle of the GSA. Initially, all agents are assigned a veloc-
ity vit,d) that is equal to zero, where ¢ represents the iteration
number. Next, the fitness of agent 7 at ¢, fit,(¢) for each agent, is
evaluated with respect to x,(¢). The gravitational constant G(t)
is then updated using

G(1) = Goe™*)

where T is the number of maximum iterations, and Gy and 3
are constant values. The gravitational constant is a decreasing
function with time where it is valued to (5, at the beginning
and exponentially decreases towards zero as the number of
iterations increases to control search accuracy. Next, best(r)
and worst(f) are calculated.

‘ Generate initial population I

|

_,l Evaluate fitness for each agent ‘

|

Update the G, best and worst of
the population

!

‘ Calculate M and « for each agent ‘

|

‘ Update velocity and position ‘

Is termination
condition met?

Report best solution

Fig. 1 General principle of GSA

For the minimization problem, the definitions of best(f) and
worst(7) are given as follows:

best(t) = min;eq vy fit; () (3)

worst(t) = max g vy fit; (1))

For the maximization problem, the definitions of best(?)
and worst(f) are modified to the following:

best(t) = max;eq,. nfit;(f) (5)

worst(r) = mincq it (1) (6)

The gravitational and inertial masses are then updated as
follows:

 fity(£)—worst(1)

mMi(2) = Gest(r—womst(r) !
M;(t) = ’1’7@ X

J_lm} (£)

where M({(t) is the inertial mass of the jth agent.

The acceleration, «v, of mass 7 at f in the dth dimension is
calculated as follows:

Fi(t,d)

t,d) = y 9
ot d) = S ©)
where the force acting F(t,d) is calculated as

N
Fi(t,d) = Z}_ 1 und; Fis(t,d) (10)

M;(O)M,(1)

Fy(t,d) = G(1) Ri(1) +¢

(x;(r.d)x,(t,d)) (11)

where £ is a small constant, R;(7) is the Euclidean distance
between agents 7 and j, and rand; is a random number uniform-
ly distributed between 0 and 1.

Afterwards, the next velocity of the agents (as given in
Eq. 12) is calculated as a fraction of their associated current
velocity added to their associated acceleration, and their next
position of the agents is calculated by using Eq. 13

vi(t+1,d) = rand; x wi(r,d) + Ar (1, d) (12)

xi(t+1.d) =x(t,d) + At wi(t + 1,d) (13)

where the time step Af between the distinct time instants is
assumed to be equal to unity, and rand; i1s a random number
selected from a uniform distribution between 0 and 1. The
algorithm iterates until the stopping condition is met: usually,
the maximum number of iterations is reached or a sufficiently
good fitness is obtained.

Fig. 2 Burmal4 benchmark instance of the Travelling Salesman
Problem (TSP)

Fig. 3 Tlustration of the
multi-state representation in the
RBMSGSA for the Burmal4
benchmark instance of TSP. Each
agent’s vector shows a similar
representation

Current state

A member of
uter states (OS)

New velocity

3 RBMSGSA

The RBMSGSA is explained in this section. The RBMSGSA
follows a similar general principle to the original GSA with a
few modifications in updating the velocity and position of
each agent and formulating the calculation of force for each
agent.

3.1 Updating velocity and position of each agent
in the RBMSGSA

Each agent’s vector in the RBMSGSA is represented by a state,
which is neither a continuous nor discrete value. To elaborate this
state representation, the Burmal4 benchmark instance of the
Travelling Salesman Problem (TSP) is used as an example, as
shown in Fig. 2. All cities in the Burmal4 benchmark instance
can be represented as a collective of states, in which the states are
represented by small black circles, as presented in Fig. 3. A
centroid of the circle shows the current state, and the radius of
the circle represents the next velocity of the current state. These
three elements oceur in each dimension for each agent. The
updating velocity and position in form of state in the RBMSGSA
are performed after the inertial mass M and acceleration o are
calculated.

In the RBMSGSA once the velocity is updated, the
process of updating the current state to the next state for
each dimension of each particle is executed. We define the
current state as a centroid and the updated velocity as a
radius, thus creating a circle. Any state that is located in
the area of the circle is defined as a member of the inner
states (IS) group.

A member of
inner state (IS)

Given a set of j IS members, Li(t,d) = (1, ((z.d). ...,
I;,(t.d))).. Any state that is located outside of the area of the
circle is then defined as a member of the outer states (OS) group.
Given a set of / OS group members, O,(7,d)=
(0, (2,d), ..., 0;(t,d)), and a set of & selected states (SS)
group members is described by 8i(r,d)=(S;(t.d),....
S;, (2.d)). The SS group is defined as a group consisting of states
that have been selected as the next states from the IS and OS
groups. All members of the SS are not allowed to be selected as
the next state because these states have been selected in previous
selections.

Based on the current state and the updated velocity of the
current state, the next state can be selected as:

xi(t+1,d)
random (L-(;, d)- ((1,-@, it d))))
if I(t,d)~ ((I,-(t, a8, d)));ész
random (o‘ (t.d)- ((0,@, Qs d))))
if 1,(t,d)~ ((I‘-{t: a8, d))) -

(14)

where &J is an empty set.

\’Q/H

Fig. 4 Example of a precedence diagram

Table 1 Precedence
matrix (PM) based on
Fig.2

Component a Component b

4 L2 b2
—

3.2 Force formulation in the RBMSGSA

A subtraction operation, as presented by Eq. 11, is executed to
calculate the difference of the vector value between the posi-
tions of two agents x;(1,d) and x,(t,d) for each vector and
iteration, resulting in a numerical value. However, in the
RBMSGSA, each vector’s position of each agent is represent-
ed as a state. Because a state is not associated with any value,
the subtraction operation in Eq. 11 cannot be used to find the

Generate initial population

!

Load PM, coefficient table, and
actual assembly time

!

Evaluate fitness for each agent

.

Update G, the best and the worst
of the population

|

Calculate M and a for each agent ‘

}

Update velocity and position

.

Evolve the updated assembly
sequence of each agent to feasible
assembly sequence

Is termination
condition met?

Report best solution

Fig. 5 Outline of the proposed approach

Link to full text articles :

o s

ONONORORONORORONO,

—
Components that are free to be assembled

Fig. 6 Assembly precedence diagram for the case study

difference between these two positions. To accommodate the
calculation of force, Fy(z,d) in the RBMSGSA, a cost function
C(.) 1s introduced and incorporated into the force formulation
as follows:

Fyd) - GO) 09

Cost may be defined as the distance and time for the ASP
and TSP, respectively [23, 31]. The cost between the two
states is a positive number given by C(x(z,d),x(z,d)). In this
force formulation, R;(r) is the difference in fitness between
agents i and /. Let us say agents 7 and j can be represented into
two sequences: 2-1-4-3-5 and 1-3-2-5-4. The fitmess values of
the first and second sequences are 4.5 and 5.6. The difference
in fitness is 1.1, resulting from the absolute value of the sub-
traction between these two fitness values.

4 ASP

The primary objective of the ASP is to generate a feasible
assembly sequence in which it will take less time to assemble,
thereby reducing assembly costs. The most important factor in
reducing assembly time and costs include setup time, which
includes transfer time, the number of tool changes, and proper
fixture selection.

In this paper, assumptions for the ASP include the
following:

1. The setup time and the actual assembly time for each part
and component are given.

2. The transfer time between workstations is included in the
setup time.

3. The downtime of machines and workstations is
negligible.

L2l s [v][5] 4]

Fig. 7 Example of an assembly sequence represented by an agent

http://link.springer.com/article/10.1007/s00170-015-6857-0

http://link.springer.com/article/10.1007/s00170-015-6857-0

