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Price fluctuation of petroleum-based diesel, climate change, emerging mandate

obligations, availability of new feedstock and the upgrading of conversion

technologies are expected to drive biodiesel market to grow robustly in the next

coming 10 years. However, the current bottleneck in biodiesel production is the lack

of economical sustainable conversion technologies. Generally, industrial production

of biodiesel is greatly relied on alkaline homogeneous transesterification reaction.

Limitation of the technology, such as multistep process which incur extra pre-step

for high acid oil treatment and post-step for biodiesel purification and alkali washing

as diminished the economic feasibility and low environmental impact of the entire

biodiesel process. Heterogeneous catalysis offers immense potential to develop

simple transesterification process, including one step reaction, easy separation,

reusability of catalyst, and green reaction. Thus, the aim of this paper is to review

the biodiesel production technologies such as blending, micro-emulsion, pyrolysis,

and transesterification. Furthermore, recent studies on heterogeneous catalyzed

transesterification were presented by discussing the issues such as catalytic

performance on different types of biodiesel feedstock, transesterification reaction

conditions, limitations encountered by heterogeneous catalysts, and reusability of

solid catalysts. The heterogeneous catalysts presented in this review is mainly

focused on solid base catalysts, which include single metal oxides, supported metal

oxide, binary metal oxide, hydrotalcite, and natural waste shell-based catalyst.

Furthermore, current perspectives on application of heterogeneous catalyzed

technology in biodiesel industry were discussed herein. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4919082]

I. INTRODUCTION

The growth of global biodiesel industry is moving into a new phase determined by the policy

of feedstock flexibility, product neutrality, and sustainability. Rising global concerns related to

energy security, climate change, and economic immobilism are driving the rapid growth of renew-

able fuel mandates worldwide. Recently, approximately 38 nations from Europe, America, and

Asia have executed blending mandates (B5 or B10) or aimed to expand the biodiesel market for

transportation sector. This intention was expected to improve production and consumption of clean
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transportation fuels to reduce dependence on imported petroleum oil, while mitigating greenhouse

gas (GHG) emissions, and to drive a cleaner and greener economy. Biodiesel is a potential alterna-

tive to petroleum-based fuels. It can be used in compression-ignition (diesel) engines without

modification, including those in passenger cars, sport utility vehicles, light trucks, buses, ships,

trains, off-road heavy equipment, and mining equipment, as well as for home heating fuel, power

generation, and in two-stroke engines (as a mixing agent). Thus, in long term prospect, biodiesel

usage will radically cover all types of consumer demand in ground transportation, aviation, and

maritime fuel markets.1

Accessibility to inexpensive biodiesel feedstock and simple manufacturing process remains a

challenge to biodiesel production in order to keep pace with new emerging mandates. Many stud-

ies are currently discussed on the intensification of biodiesel production by minimizing the produc-

tion cost, including feedstock, technologies, and conversion pathways to improve competitiveness

of biodiesel to fossil-based diesel.2–5 Typical biodiesel feedstock, such as soybean oil, rapeseed oil,

and palm oil, are the main edible oils, which are projected to underpin growth of biodiesel produc-

tion over next decade. However, they are not fit to be included into the biodiesel feedstock policy

in developing countries due to limited supply and high crop price. Thus, the emergence of low

cost lipid, such as non-food oil (e.g., jatropha oil, algae oil, animal fats, and waste oil) could

unleash considerable production potential of biodiesel throughout the world.6

A. Biodiesel demand in Malaysia and worlds

The demand of biodiesel is affected by global climate change, raise of petroleum-based

fuel price, national economic stability, and awareness of energy conservation. Nevertheless, the

main reason for increase of biodiesel demand is the increase in petroleum-based oil pricesdue

to commodity scarceness.7 Implementation mandatory regulation which requires fuel refinery to

blend 5% biofuel in industrial diesel (also known as B5 regulation) would lead to increase of

biodiesel production. In Malaysia, the B5 blending regulation stated in National Biofuel Policy

(Feburary 2009, Government Vehicles, subsequent nationwide policy).8

Although execution of biofuel mixing policy would further propel biodiesel industry, the

major difficulty in running a biodiesel plant is the cost of feedstock. Biodiesel plants running

on palm oil are facing with fluctuating palm oil prices (averaged 2600 ringgit per tonne at

January 2014) and this shall make the business to be risky and non-profitable. Biodiesel trader

affirmed that biodiesel production will not be lucrative unless crude palm oil comes down to

2250 ringgit and crude petroleum oil is steady at $100. It is not sensible to buy crude palm oil

feedstock at such a high price.9 Therefore, some industry players utilize biodiesel (methyl ester)

as alternative chemical building block which can be transformed to vegetable-based chemical

surfactant such as fatty alcohol and sulphonated methyl ester.10,11 Malaysia has exported

122 779 ton of biodiesel in 2013 according to Malaysian Palm Oil Board. This amount is virtu-

ally five times of the total biodiesel amount sold in 2012. The global demand for biofuel

(palm-based) industry could rise by between 2 � 106 and 2.5 � 106 ton in 2013.181 All the

data indicated the potential of biodiesel/methyl ester’s market and the feasibility of industry

players. Figure 1 shows worldwide biofuel production from year 2000 to 2013 (different vege-

table oils).12

B. Biodiesel production technologies

In the past 100 years, investigation on the usage of neat form vegetable feedstock as non-

conventional transportation fuel including food-based or non-food based in internal combustion

engine testing has been reported. Studies have shown that neat form vegetable feedstock trans-

portation fuels may seem not significantly accepted with direct injection into diesel engines due

to minor unfavorable physical properties. These include:13,14

(1) High viscosity of vegetable oil (about 11–17 times higher than diesel fuel) interfered with

the injection process and led to poor fuel atomization.
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(2) The inefficient mixing of oil with air contributes to incomplete combustion and incorrect

vaporization, leading to high smoke emission.

(3) Coking and trumpet formation on the injectors to an extent that fuel atomization does not

occur properly or even stopped as a result of plugged orifices.

(4) The high flash point attributes to lower volatility characteristics.

(5) Lube oil dilution.

(6) Thickening or gelling of the lubricating oil as a result of contamination by vegetable oil.

(7) High carbon deposits.

(8) Oil ring sticking.

(9) Scuffing of the engine liner.

(10) Injection nozzle failure.

(11) Influence of different types and grade of oil to the local climatic conditions (high cloud and

pour points may cause problems during cold weather).

The high viscosities, low volatilities, and polyunsaturated characteristic of vegetable oil

accompanied by the presence of some contaminant (free fatty acids (FFAs), phospholipids,

sterols, water, odorants, and other impurities) is a problem for direct usage in diesel engines.

Therefore, it was known that vegetable oils (also known as triglycerides (TGs)) cannot be used

directly as a fuel without any reaction modification and refining process. They must be refined

to be compatible with existing vehicle engines (compression-ignition engine). In general,

vegetable oils are consists of triacylglycerol (TAG) or TG, which is comprised of three esters

of fatty acid chain (acyl group) attached to the glycerol backbone (glycerol group). If one and

two acyl groups are replaced by hydroxyl groups (–OH), it is categorized as diacylglycerol

(DAG) or diglyceride (DG) and monoaclyglycerol (MAG) or monoglyceride (MG), respec-

tively. Naturally, the carbon chains of fatty acids are usually range from 10 to 24 carbon

atoms.15 The biodiesel may be affected by unsaturation, oxidative stability, ignition quality

(i.e., cetane number), and cold-flow properties.16 For example, oxidative stability is a critical

parameter for biodiesel because it determines the ability to undergo oxidative degradation

occurring not only during the storage but also during the engine combustion.17 As reported by

Kumar and Sharma, by-products of biodiesel results in the deposition of stable products in fuel

lines and the injectors of diesel engine. As an example, soybean oil has a high content of lino-

leic acid, and a lower level of linolenic acid.15 Although these fatty acids are essential for

humans, they are also the cause of oxidative instability. However the quality of biodiesel is not

only critically affected by the source of the feedstock, the process of producing this biodiesel

also plays an important role.

Four primary biodiesel production techniques have been studied extensively in order to

produce biodiesel with similar properties as of petroleum-based diesel fuel (Table I):18

FIG. 1. Worldwide use of vegetable oil for biofuel production.
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(1) Dilution or blending of vegetable oil with diesel fuel.

(2) Pyrolysis or thermal cracking and micro-emulsions with short chain alcohols.

(3) Esterification.

(4) Transesterification.

Transesterification of triglycerides to produce biodiesel is the most conventional method

among all the proposed techniques. Biodiesel is a mono-alkyl long chain ester that can be syn-

thesized from renewable triglycerides feedstock (such as vegetable oils or animal fats) via trans-

esterification reaction with methanol. According to Feuge and Gros,19 biodiesel manufacturing

industries are located at many countries around the world from Belgium, France, Italy, the

United Kingdom, Portugal, Germany, Brazil, Argentina, Japan to China since year 1920s and

1930s, whereas Germany and France being the largest producers of biodiesel fuels in the world.

Biodiesel fuel is similar to conventional petro-based diesel fuel by looking at its main physical

characteristics.20 For instance, biodiesel can be used in compression–ignition (diesel) engine

with little or no modification. Their physicochemical properties such as energy content, cetane

number, and viscosity are equivalent to those petroleum-based diesel fuels. Furthermore, good

TABLE I. Different techniques for biodiesel production.

Technique Process Advantages Disadvantages

Direct use

and blending

The oil use as diesel fuel or

blend with conventional die-

sel fuel without chemical

process

Liquid nature-portability High viscosity

Heat content (�80% of diesel

fuel)

Lower volatility

Ready available; renewable Low reactivity of unsaturated

hydrocarbon chain

Low cetane number

Micro-emulsion Synthesis of transparent,

thermodynamically stable

colloidal dispersion with

dimensions generally in the

1–150 nm ranges formed

spontaneously from two

immiscible liquids such as

methanol, ethanol and ionic

or non-ionic amphiphiles

Reducing the high viscosity

of oil by alcohol solvent

Injector needle sticking

Performance were similar to

diesel fuel

Carbon deposits

Better spray characteristic

during combustion

Incomplete combustion

Increase lubricating oil’s

viscosity

Pyrolysis Conversion of one substance

into another high value sub-

stance by means of applying

heat with temperature of

450–850 �C without presence

of air or oxygen

Cleavage of chemical bonds

from long hydrocarbon chain

to desired short hydrocarbon

chain with the use of catalyst

Produce fuel similar physico-

chemical properties of diesel

and gasoline

High production cost due to

the intensive energy usage

Oxygen removal from the

process decreases the prod-

ucts benefits of being an oxy-

genated fuel

Transesterification Chemical reaction between

oil and alcohol in the pres-

ence of catalyst to produce

ester and glycerol

Physical properties close to

diesel fuel

Disposal of by-product

(waste water during purifica-

tion steps)Higher cetane number and

combustion efficiency

lower emission as compared

to diesel fuel

Supercritical

process

technology

Under critical point of

30 MPa and 300–500 �C,

supercritical fluid produced

with greatly changes of

thermo-physical properties

(dielectric constant, viscosity,

specific weight, and polarity)

Avoid the use of catalyst Energy intensive, high pro-

duction costAccelerate transesterification

reaction and short reaction

time
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combustibility performance of biodiesel in an unmodified diesel engine which resulted low de-

posit formation is another value adding feature that could make commercialization of biodiesel

more viable.21 Furthermore, surplus of by-product formed (glycerol) during biodiesel production

could make glycerol an added value chemical which definitely promote commercial viability.7

C. Industrial-based biodiesel production via alkaline transesterification

Today, most of the biodiesel is produced by alkali-catalyzed process. The conventional

transesterification process for biodiesel manufacturing process consists of four main principal

steps (Figure 2):7,18

(1) Acid esterification: Crude vegetable oil containing more than 4% of free fatty acids will go

through acid esterification in order to remove the acid content and increase the yield of biodie-

sel. The presence of free fatty acid will generate soap during alkali-catalyzed transesterifica-

tion process which is unfavorable to biodiesel production. Generally, sulfuric acid is used as

acid catalyst for esterification process.

(2) Transesterification reaction: The pretreated oils or fats (less than 4% of free fatty acid) are

reacted with alcohol (normally methanol) to form mono-alkyl esters and its by-product glyc-

erol. The catalyst used for transesterification process is typically potassium hydroxide (KOH).

(3) Alkyl ester (biodiesel) purification: The excess methanol, residual catalyst, glycerol, and soaps

are removed by water washing step. The biodiesel sometimes will further treat under distilla-

tion/evaporation processand later recycled into reactor for next reaction process.

(4) Glycerol purification: The unreacted catalyst and soaps in glycerol phase are neutralized with

acid to produce higher grade glycerol. Approximately 50%–80% of crude glycerol will be

generated after extra water and alcohol was removed. The remaining contaminants such as

unreacted oil (tri-, di-, mono-glycerides) can be further purified, to produce 99% purity glyc-

erol, for pharmaceutical and cosmetic sectors.

D. Opportunities and challenges for biodiesel production

The overall cost of biodiesel included raw material (production and processing), catalyst,

biodiesel processing (energy, consumables, and labor), transportation (raw materials and final

FIG. 2. Conventional continuous-flow process in homogeneous catalyzed transesterification reaction.
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products), and local and national taxes (Figure 3). Currently, the greatest obstacle in biodiesel

commercialization is the production cost, which involved raw material and production cost.

Crude oil feedstock contributed the most in biodiesel production cost, which consisted 75% out

of total operating costs. The raw materials used for biodiesel production generally consist of

methanol and high quality vegetable oils.18,22

Market analysis and researches have been conducted in order to overcome the problem of

high production cost. Therefore, it is suggested that taking concern in raw materials selection

especially to biodiesel feedstock, catalyst, and alcohol. The oil feedstock must be highly available

at the lowest price with good specifications which includes high oil content (>99.5 wt. %), favor-

able fatty acid composition, low agriculture inputs (water, fertilizers, soils, and pesticides), con-

trollable growth and harvesting seasons, consistent seeds maturity rates and potential market for

agricultural by-products.23 The second substrate for the synthesis of biodiesel is acyl-acceptor

(alcohol and acetate). Methanol is the most common acyl-acceptor and it is used in both labora-

tory and industry due to its high availability, suitability, and low cost factor. Third, the potential

catalysts for industrial biodiesel production process should include these characteristics: (1) FFAs

and water content tolerance, (2) resistant to catalyst poisoning and leaching, (3) ability to catalyze

transesterification and esterification, (4) stable, high activity in water and leach proof, (5) low

activation conditions, (6) high selectivity and conversion rate, (7) enhance the availability and

type of active sites (both Lewis acid–base sites and Bronsted acid–base sites have the ability to

catalyze oil transesterification reaction, catalyst activity is closely related to the acid/base

strength), (8) good texture properties (it influences catalyst’s activity, such as specific surface

area, pores size, pore volume, to minimize mass transfer limitations), and (9) high reusability.24

II. HETEROGENEOUS BASE CATALYSTS FOR TRANSESTERIFICATION REACTION

This review paper is mainly focused on the evolution and transformation of solid base cata-

lyst which is highly potential to be employed in transesterification of biodiesel. The common

base heterogeneous catalysts (single metal oxide, supported metal oxide, binary metal oxide,

and hydrotalcite) and the latest green, renewable and natural waste shell base catalyst are

discussed herein. Below is the simplified outline:

FIG. 3. General cost breakdown for biodiesel production.
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Single metal oxide

• Alkaline-earth metal oxide
• Transition metal oxide
• Rare earth metal oxide

Supported metal oxide

• Alumina support
• Silica support
• Aluminosilicate support
• Zeolite support
• Alkaline-earth metal oxide support
• Transition metal oxide support (titanium oxide, zirconium oxide, and zinc oxide)

Binary metal oxide

• Calcium-based mixed metal oxide (calcium-based with alkaline metal oxide, calcium-based

with aluminium oxide, calcium-based with transition metal oxide, calcium-based with lantha-

nide oxide)
• Magnesium-based mixed metal oxide (magnesium-based with transition metal oxide,

magnesium-based with lanthanide oxide, and other mixed metal oxides catalyst)

Hydrotalcite

• Mg/Al hydrotalcite
• Li/Al hydrotalcite
• Zn/Al hydrotalcite
• Ca/Al hydrotalcite

Natural waste shell (quail eggshell, chicken eggshell, oyster eggshell, fly ash, cockle shell,
crab shell, and others).

A. Single metal oxide

1. Alkaline-earth metal oxide

In earlier studies, most of the researchers produced biodiesel via single metal oxide cata-

lyzed transesterification reactions. Among these single metal oxide catalysts (alkaline-earth

metal oxide, transition metal oxide, lanthanide oxide, or rare earth metal oxide), alkaline-earth

metal oxide catalyzed reaction obtained much attention since early 2006 for biodiesel produc-

tion due to the presence of super basicity in Group II metal oxide. Most of the researcher

believed that the basic properties of metal oxide seemed to be a major determinant for the

catalytic transesterification activity. As shown in Table II, the catalytic activity is parallel to

the basic strength of Group II metal oxide catalysts as in the following order: MgO<CaO

<SrO<BaO. According to Hattori,25 the basic strength of alkaline-earth metal oxide is related

to the electronegativity of the conjugated metal cation. By going down Group II elements (Mg,

Ca, Sr to Ba metal cation), increased ionic radius resulted decrement of the element’s electrone-

gativity, which reduced the attractive force of electrons for the conjugated metal cation. This

has improved the basic characteristic of the attaching oxygen anion on the alkaline-earth metal

oxide.25

This fact was proven in several studies. Patil et al.26 investigated the catalytic activity

of alkaline-earth metal oxide by microwave-assisted heating transesterification of Camelina
sativa oil. Their findings showed transesterification activities increased in the order of

MgO<CaO< SrO<BaO. It was found that microwave heating improved the reaction con-

stantly by two orders of magnitude to that of conventional heating method. Furthermore, the

study summarises that BaO and SrO produced higher biodiesel yields, although having lower

surface area. It should be noted that the catalytic order was in reverse sequence to surface areas
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TABLE II. Metal oxide catalysts used for biodiesel production.

Catalyst Feedstock Time (h) Temperature ( �C) Methanol/oil ratio Catalyst amount (wt. %) Yield (%) Reference

Alkaline-earth metal oxide

MgO Camelina sativa 3 100 n/d n/d 22 26

CaO 30

BaO 83

SrO 80

CaOa Palm 1 Reflux and ultrasonic heating 50% 9 3 77.3 27

SrOa 95.2

BaOa 95.2

BaOa Palm <50 min Reflux and ultrasonic heating (70%–80%) 9 2.8 >95 28

SrOa >95

SrO … 0.5 65 12 3 >95 29

Calcium oxide

CaO Sunflower 2 60 6 1 98 30

CaO Sunflower 5.5 80 6 1 91 31

CaO Sunflower 0.17 252 (supercritical condition) 41 3 100 32

CaO Sunflower 100 min 60 13 3 C¼ 94b 33

CaO Waste cooking oil 5.1 mg/KOH/g 2 n/d n/d n/d >99 34

CaO Soybean (2.03% water) 3 65 12 8 >95 36

CaO-acetate Tributyrin … 60 6 0.06 68 38

CaO-carbonate 38

CaO-hydroxide 82

CaO-nitrate <1

CaO-oxalate 60

CaO-CaCO3 Palm olein 1 60 - 7 75.5 39

CaO-hydroxide 1 93.9

CaO-carbonate 1 �0.8c 40

CaO-acetate �0.7c

CaO-oxalate �0.45c

CaO-nitrate �0.05c
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TABLE II. (Continued.)

Catalyst Feedstock Time (h) Temperature ( �C) Methanol/oil ratio Catalyst amount (wt. %) Yield (%) Reference

CaO-hydroxide �0.6c

CaO Jatrophacurcas 2.5 70 9 1.5 C¼ 93c 41

Ca(OCH3)2 Rapeseed 3 60 0.26 mass ratio 0.7 90 42

CaO Soybean 2 Reflux n/d n/d 93 43

Other metal oxide

MgO Soybean 2 215 7:1 2.0 g >70 46

CaO

PbO

PbO2

Pb3O4

Ti2O3

ZnO

ZrO2 Rapeseed 10 min 270, 151 bar 40 1 �60 47

TiO2 >70

ZnO >90

CaO >90

SrO >90

Rare earth oxide

La2O3 Rapeseed 2 200 27.5 10 91 48

CeO2

Pr6O11

Nd2O3

Sm2O3

Y2O3

aUltrasonication heating.
bC is the conversion of oil.
cFAME formation (mol h�1 g�1).
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as a result from this study. This implies that surface area is not akey factor in promoting the

transesterification rate.

Mootabadi et al.27 also reported that ultrasonic-assisted transesterification of palm oil by

using alkaline-earth metal oxide catalysts (CaO, SrO, and BaO) increased biodiesel yield

sharply from conventional heating to within 60 mins. Increment from 5.5% to 77.3% (CaO),

48.2% to 95.2% (SrO), and 67.3% to 95.2% (BaO) was observed during ultrasonication heating.

BaO catalyzed reaction showed the highest activity while CaO catalyzed reaction is the poorest.

The authors concluded that the basic strength of catalyst is the key determinant in the reaction

rate. In addition, Salamatinia et al.28 stated that ultrasonic wave energy greatly influences trans-

esterification reaction. The ultrasonic wave heating improved the reaction by reducing the reac-

tion time to within 60 min. However, findings showed that the effect of ultrasonic wave also

increases the solubility of BaO during reaction which resulted in high amount of residual

elements in biodiesel product, despite the fact that BaO rendered higher activity than SrO.

Although alkaline-earth metal oxide rendered higher activity than other type of metal

oxide, however, some researchers noticed the solubility of active metal cation increased in the

sequence of CaO< SrO<BaO. Although BaO is active in transesterification reaction, however,

it is highly dissolve in methanol compared to CaO and SrO which is less soluble in methanol.

The loss of active component will reduce the catalytic activity of repeated use of Group II

metal oxide and consequently decreases biodiesel production yield.

For SrO catalyst, it capable to deliver high transesterification yield of 95% which is closely

associated with its high basicity and less solubility in methanol. However, the strong basicity of

SrO promoted the reaction between CO2 and water in the air and produced inactive SrCO3 and

Sr(OH)2 phases. Unfortunately, high calcination temperature (>1200 �C) is required to trans-

form SrCO3 to its active oxide form.29

2. Calcium oxide

CaO catalyst is more cost effective, low toxicity, easy in preparation, and highly available.

It would be the most potential solid base catalyst to be utilized in biodiesel synthesis. As a

result, CaO was chosen as a potential heterogeneous catalyst in the biodiesel synthesis research

and it is vital to improve and expand its physicochemical and activity studies.

As shown in Table I, many studies had been conducted by using CaO catalyst for transes-

terification of vegetable oil especially soybean and sunflower. Generally, the CaO catalyzed

transesterification reaction followed the pseudo-first order reaction kinetics, in which the mass

transfer and chemical reaction of triglyceride are main control keys in the process kinetics. The

reaction showed that 98% of biodiesel yield was obtained with the used of CaO in 1 wt. %, 6:1

methanol/oil ratio, 2 h reaction time at 60 �C.30 Another study showed that increment of reac-

tion temperature to 100 �C with the pressure of 100 bar, using 1 wt. % of catalyst loading, 6:1

methanol/oil ratio, and stirring at 200 rpm resulted in an approximate of 91% of biodiesel

yield.31

An optimization study was investigated by Demirbas,32 where they concluded that CaO cat-

alyzed methanolysis of sunflower oil is strongly depend on the reaction temperature and metha-

nol/oil ratio. The study showed that transesterification was completed within 6 min at 252 �C,

41:1 of methanol/oil molar ratio with 3 wt. % catalyst amounts under supercritical condition.

Granados et al.33 also reported that the high activity of CaO (94% of conversion) within

100 min in the transesterification of sunflower oil at 60 �C, 30:1 methanol/oil molar ratio, and

3 wt. % of catalyst content. Besides, CaO maintaining its biodiesel yield at >80% after eight

consecutive reactions. However, the authors implied that the surface of CaO was active in H2O

and CO2 chemisorptions when exposed to the atmosphere. The active surface sites of CaO were

poisoned by both H2O and CO2 in carbonation and hydroxylation processes, in which CaO will

be transformed to Ca(OH)2 and Ca(CO)3. Therefore, the exposure of CaO to the atmosphere

shall be prevented and poisonous species must be removed by using thermal treatment at

calcination temperature >700 �C.
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The effect of hydroxylation and carbonation of CaO was compared with pure CaO by study

the transesterification of soybean oil under reflux within 1 h reaction time. Results showed that

93% of biodiesel yield was obtained from CaO, 12% for Ca(OH)2 and no catalytic activity for

CaCO3 catalyzed reaction. The authors found that CaO is tolerant to low FFA content (5.1 mg

KOH/g of acid value) in waste cooking oil with 99% of biodiesel yield. However, the neutrali-

zation reaction between leached Ca active species and FFA has led to the formation of calcium

soap and deactivation of the catalyst activity.34 This finding was compatible with Gryglewicz’s

study,35 where the catalytic reactivity for transesterification of rapeseed oil were increased in

the order of Ca(OH)2<CaO<Ca(CH3O)2, which corresponding to the order of Lewis basicity

of the catalysts.

Investigation on Ca(OH)2 catalyst was further study by Liu et al.36 They affirmed that the

CaO catalyzed transesterification rate was accelerated by the presence of 2.0% water content in

the oil feedstock. This was due to the generation of Ca(OH)2 phase on the surface of CaO,

which provided active basic sites to drive the formation of methoxide anions for the transesterifi-

cation reaction. However, the authors stated that excessive water content in the oil (2.80%) has

hydrolyzed the biodiesel product to fatty acid and resulted undesirable saponification reaction

when the fatty acid reacted with CaO. Interestingly, CaO in nanocrystalline structure was found

to render superior catalytic activity for transesterification. Venkat Reddy et al.37 discovered high

performance of nano-CaO (>99% of conversion) in the methanolysis of soybean oil or poultry

fat within 24 h at room temperature. In order to further improve characteristic of CaO for

enhance reactivity, different types of calcium sources were used for CaO catalyst synthesis. Cho

et al.38 investigated the catalytic activity of CaO prepared by thermal treatment of different pre-

cursors (calcium acetate, carbonate, hydroxide, nitrate, and oxalate). The finding showed that

calcium hydroxide delivered the highest tributyrin conversion and methyl butyrate yield. This is

due to the presence of high basic strength, formation of large crystal with smooth surface and

generation of nano-sized pores at relatively low calcination temperature compared to other pre-

cursors. Besides, it was found that CaO derived from thermal treatment of Ca(OH)2 (CaO

refluxed with water) is an efficient technique to improve the transesterification of palm olein.39

This result implied that decomposed-hydrated CaO is able to provide more porosity with high

specific surface area, less crystallinity structure and high basicity as compared to CaO derived

from calcium carbonate and commercial CaO. However, both findings from Cho and Yoosok

was in contrast with the Alonso’s study.40 Alonso reported that the activities of CaO derived

from various precursors are in the following order: CaO-carbonate>CaO-acetate>CaO/OH-A

(precipitation of calcium acetate)>CaO-Oxalate>CaO/OH-N (precipitation of hydroxide)

>CaO-nitrate. CaO derived from CaCO3 showed maximum transesterification rate with highest

specific area and exhibited strong basic sites. On the other hand, CaO derived from nitrate pre-

cursor produced lowest reaction rates. These studies indicated that syntheses of CaO via thermal

decomposition of different calcium salts render significant effect in its physicochemical proper-

ties. It should highlight that the parameter of synthesis such as different calcination temperature

for CaO activation influence the surface density of base sites (a combination of surface area and

overall number of base sites). The studies showed straightforward relationship between surface

basicity (directly related to the surface area) and the catalytic activity.

Zhu et al.41 successfully improved the catalytic activity of CaO by chemical treatment, in

which CaO was immersed into ammonium carbonate solution and calcified at 900 �C to produce

superbasic strength in CaO material. The chemical treated CaO showed high catalytic efficiency

when reacted in methanolysis of Jatrophacurcas oil to biodiesel. However, leaching of calcium

ions was observed during the reaction, thus decalcifying agent (water, oxalic acid, citric acid,

and ethylene-diamine-tetra-acetic acid (EDTA)) was used to wash off the leached calcium ion

in biodiesel. Citric acid washing medium produced the highest yield of biodiesel at 95.5%,

followed by EDTA (92.3%), oxalic acid (90.7%), and the least is water (69.5%).

Although CaO showed high catalytic activity in the transesterification reaction, however,

the soluble active substance easily leached away from solid catalyst during reaction. It

was found that the soluble substances were rather active in the transesterification reaction.

This finding is paralleled with Kawashima,42 the author reported that the CaO-methanol and
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CaO-glycerine complex catalyzed transesterification of rapeseed oil exhibited a higher activity

than non-activated CaO. Hence, researchers further investigated the active phase present in

CaO and the leaching of CaO through examination of the active site of used CaO.34,43 It was

found that calcium diglyceroxide was produced during the transesterification reaction, the cal-

cium diglyceroxide was the result of reaction between CaO catalyst with by-product glycerol.

The authors reported that leaching process occurred in two pathways. As shown in Figure 4,

the major leaching route (process 1) attributed to the formation of calcium diglyceroxide

derived from CaO (generation of moisture at the beginning of reaction), which hydrolyzed the

dissolved calcium diglyceroxide and resulted serious leaching of calcium cations and hydroxide

anions. The creations of couple ion improved the catalyst basicity and thus enhanced the forma-

tion of methoxide ion in the transesterification reaction. The minor leaching route (process 2)

was due to the formation of soluble calcium cation from dissociation of CaO during the reac-

tion with methanol.44 This scenario is similar to the finding by Granados et al.,45 the authors

reported that CaO is more soluble in the mixture of glycerol-methanol and biodiesel-glycerol-

methanol medium than in pure methanol medium.

B. Transition metal oxide

Some of the researchers attempted to utilize the metal oxide from transition metal group or

lanthanide group in the production of biodiesel (Table I). Singh and Fernando46 studied the

transesterification of soybean oil with different single metal oxide (MgO, CaO, PbO, PbO2,

Pb3O4, Ti2O3, and ZnO) at different temperatures with high pressure conditions. It was

observed that more than 89% of biodiesel yield was achieved from PbO and PbO2 catalyzed

reaction. In addition, the catalytic activity and solubility of metal oxide (CaO, SrO, ZnO, TiO2,

and ZrO2) were investigated by performing transesterification of rapeseed oil in supercritical or

subcritical methanol condition. The findings showed that ZnO (transition metal oxide) was

selected as the optimum catalyst owing to its excellent activity with minimum weight loss

during transesterification reaction. Approximately 95% of biodiesel yield was achieved by using

1.0 wt. % ZnO catalyst, 40:1 of methanol/oil molar ratio within 10 min of reaction time.

Although CaO and SrO showed high basicity and high catalytic activity in mild conditions,

most of these catalysts were tend to dissolve more in biodiesel and glycerol layers compared to

transition metal oxide (ZnO, TiO2, and ZrO2).47 As refer to the studies of transition metal oxide

catalyzed reaction, it is summarized that high reaction condition are require as compared to

alkaline earth metal oxide catalyst.

C. Rare earth metal oxide

Rare earth elements are not rare and it is not only restricted to lab-scale research. It has

been vastly utilized in researches by scientist in the recent decades. The series of lanthanides

FIG. 4. Process for activation of soluble substance leached away from solid base catalyst.
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group offer the unique opportunity to infinitely tune and optimize the basicity of heterogeneous

catalysts. One of the research groups had studied the rare earth oxides (REO) of the lanthanides

group from La to Sm and Yb for the transesterification of crude and refined palm oil.48 From

their findings, the activity of lantanides oxide series from La to Sm and Yb was decreased

corresponded to the decrement of cation radius and basicity. La2O3 converted refined palm oil

to 90.6% of FAME yield, while crude palm oil (5.0% FFA) at even higher FAME content at

97.2%. However, the results indicated insufficient catalyst stability and a partial homogeneous

catalysis by the formation of basic soaps.

Table II showed the list of metal oxide catalysts for transesterification reaction. As a con-

clusion alkaline-earth metal oxide was observed with highest activity compared to transition

metal oxide, lanthanide oxide, and rare earth oxide. This was due to the presence of high basic-

ity of Group II metal oxide. However, Group II metal oxide exhibited higher solubility amongst

other metal oxides. The active metal cation will leach into the reaction medium and generate

saponification reaction with the presence of water and FFA in oil feedstock.

D. Supported metal oxide

Catalyst support is vital in chemical reaction to minimize mass transfer limitation of heter-

ogeneous catalytic liquid reaction. The standard supports (microporous, mesoporous, metal

oxide support, and aluminosilicate layers) provide high surface area through the presence of

pores where active metal particles anchor for reaction. The support may be inert and it might

as well participate in the catalytic reaction. Different types of supports provide different interac-

tion and stability between active metal and support.49 Thus, catalytic activity varies with even

with the same active metal attached on different type of catalyst supports.

1. Alumina support

Aluminum oxide (Al2O3) is an amphoteric oxide which is commonly referred as alumina.

Porous c-alumina, g�-alumina and nonporous crystalline a-alumina are widely used as a catalyst

support in chemical reaction such as biodiesel synthesis via transesterification reaction. The

superior properties of alumina support such as extreme thermal and mechanical stability, high

specific surface area (as high as 300 m2/g), mesopore size (5–15 nm), high pore volume

(0.6 cm3/g), and its ability to be extruded and pelletized50 which make it a good catalyst support

of active species with high catalytic activity in industrial process.

Alumina support was used as a basic solid catalyst by doping with active metal (alkali

metal and alkaline-earth metal group) in biodiesel production (Table III). Alkali metals are the

metal generally used for super-basicity characteristic and frequently selected as active species

for supported catalysts in biodiesel production.51 Alkali metals like Li, Na, K, and Cs are nor-

mally used in metallic form or in various forms in ionic salts (halide, carbonate, hydroxide, and

nitrate). Some studies reported that different kinds of alkaline salts were applied on the supports

to prepare basic catalysts, such as NaOH,52 LiNO3, NaNO3, and KNO3,53 KOH,54 K2CO3,55

KI,56 KF,57 KNO3,58 LiF, KF, and CsF,59 NaN3,60 and CsF.61 In the case of alkaline-earth

metal (Mg and Ca), the metal salts normally present in the form of acetate or nitrate

(Ca(NO3)2/Al2O3 and Mg(NO3)2/Al2O3).50,53,62

The common method used to produce supported catalyst (alkali metal and alkaline-earth

metal affix on alumina support) is wet impregnation method. In such method, a suspension of

the alumina powder support is treated with aqueous solution of active metal salt, and the result-

ing material is then thermally activated to convert the precursor (often a metal salt) to a more

active state (metal oxide). Rooney et al.61 synthesized sunflower based biodiesel via CsF/a-

Al2O3 catalyzed reaction. The synergy effect between solubilized CsF and a-Al2O3 promotes an

active phase which favors triglyceride transesterification. The research group found that the

oxide surface (probably surface hydroxyl) was the rate-limiting factor as a-Al2O3 has low

surface area (5.48 m2/g). In the other way, the use of high surface area c-Al2O3 (26.0 m2/g)

resulted an even greater reaction rate with FAME productivity of 28 ml h�1 g�1, in which

higher than a-Al2O3 (1.1 ml h�1 g�1). The reusability of CsF/a-Al2O3 catalyst was performed
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using four consecutive runs with 4 h reaction. No catalytic activity was observed after the first

run. The elemental analysis revealed that Cs concentration had decreased from 7.36 wt. % to

0.38 wt. % after utilization, indicating the leaching of Cs into methanol medium. According to

Semwal et al.,63 the catalytic activity for different type of metal salts was depending on the

basic strength of active sites. In comparison of alumina loaded with KI, KF, KOH, K2CO3,

KBr, or KNO3, the order of oil conversion reported by the authors was KI/Al2O3>KF/Al2O3

>KOH/Al2O3>KNO3/Al2O3>K2CO3/Al2O3>KBr/Al2O3.

The effect of different precursor salt in the support interaction towards the basicity and

reactivity has been investigated by a group of scientist.56 It was found that dispersion of Kþ

from halide showed better results than nitrate precursor. The results showed that metal iodide

and metal fluoride gave better catalytic activity and basicity strength than other metal salts. In

the case of alkaline fluoride deposition on alumina surface, the fluoroaluminates and aluminate

species were present in the supported catalyst. Although the basicity of fluorine in catalyst is

smaller than in parent fluoride but with the present of oxygen, which is stronger, the coopera-

tion between fluorine and oxygen has made the active site available.59 As mentioned by several

research groups,64,65 fluoride ions are able to promote methoxide formation by initiating the

deprotonation of alcohol in the transesterification reaction. With the presence of fluoride, the

nucloephilicity of oxygen in alcohol molecules increased through strong hydrogen bonding and

at the same time it also activate carbonyl groups in triglycerides, facilitating reaction comple-

tion. The active metal fluoride/alumina supported catalyst provides lower basicity than parent

alkaline precursor hence higher amount of fluorides is required to compensate the basicity loss

from its original state. After thermal decomposition of the supported catalyst, the surface Al-O-

K groups were exhibited characteristics as the active species for transesterification reaction.59

Although different metal salts influence the interactions between active metals and alumina

supports towards its activities, the type of alkali metal cation remains as the key factor in

generating basicity and to enhance the transesterification activity. Verziu et al.59 examined the

effect of alkali metal cation group (KF, LiF, and CsF/Al2O3) in alumina supported catalysts.

The catalysts were prepared using alkaline fluoride compounds by wet impregnation of basic

TABLE III. Alkali metal and alkaline-earth metal supported alumina catalyst for biodiesel production.

Catalysts Feedstock

Time

(h)

Tempe-rature

( �C)

Methanol/oil

ratio

Catalyst amount

(wt. %)

Yield

(%) Reference

Alkali metal group

K2CO3/c-Al2O3 Sunflower 1 Reflux n/d n/d 99% 55

NaOH/c-Al2O3 Sunflower 4 50 24.10 0.4/20 g 100 52

LiNO3/Al2O3 Palm kernel 3 60 65 10 92 53

NaNO3/Al2O3 25

KNO3/Al2O3 35

NaN3/Al2O3 Sunflower 15 min 60 27 1 g 60 60

KF/nano-c-alumina Canola 8 65 15 3 98 57

CsF/a-Al2O3 Sunflower 5 65 n/d 1 g 100 61

KOH/Al2O3 Palm 2–3 60 15 3 91 54

KNO3/Al2O3 Jatropha 6 70 12 6 C¼ 84 58

KI/Al2O3 Soybean 8 65 15 2.5 C¼ 96 56

LiF/Al2O3 Sunflower 2 Micro-wave heating 4 0.3 g <80 59

KF/Al2O3 <70

CsF/Al2O3 >80

Alkaline-earth metal group

Ca(C2H3O2)2/Al2O3 Palm 5 65 12 6 99 50

Mg(NO3)2/Al2O3 Palm kernel 3 60 65 10 10.4 53

Ca(NO3)2/Al2O3 94.3
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mesoporous MSU-type alumina with high stability surface area. Transesterification at 75 �C,

23 ml sunflower oil, molar ratio methylic alcohol:sunflower oil 4:1, 2 h, 0.25 g of catalyst, the

catalytic activity of the catalyst was in the order of: CsF/Al2O3>KF/Al2O3>LiF/Al2O3. It was

found that CsF-based catalyst showed higher transesterification activity and has more basicity

compared to KF and LiF-based catalysts.

Some findings revealed that alumina supported alkali metal catalysts are facing problem of

active metal leaching during transesterification reaction. Thus, most of these catalysts could

not be reused.57,61 In general, alkali metal oxide groups are water-soluble, thus the catalysis

reaction over alkali metal oxides supported catalyst occurred through a homogeneous pathway

rather than truly heterogeneous route. Oxide phase M-O-Al species (M¼K, Na or Li) on the

surface of the supported catalyst was leached into methanol medium and produced methoxide

ion (CH3O�) which is responsible for the homogeneous reaction route (Figure 5).55

By drawing on this, introduction of alkaline-earth metal as active species into alumina

support was investigated in order to reduce the solubility of active metal in methanol. With

lower basicity in alkaline-earth metal group compared to the former group, high catalytic activ-

ity is still achievable by using suitable preparation methods and transesterification conditions.

Benjapornkulaphong et al.53 compared the catalytic performance of Al2O3-supported alkali

(LiNO3/Al2O3, NaNO3/Al2O3, and KNO3/Al2O3) and Al2O3-supported alkaline-earth metal

(Ca(NO3)2/Al2O3 and Mg(NO3)2/Al2O3) for transesterification of palm kernel and crude coconut

oil with methanol. They found that the supported alkali metal catalysts showed high biodiesel

yield (>93%). However, the reactions were mainly occurred through homogeneous catalysis

pathway with the presence of dissolute alkali oxides. The Ca(NO3)2/Al2O3 catalyst was found

to be the most suitable catalyst for heterogeneously catalyzed reactions exhibiting 94% biodie-

sel yield with low leaching effect, whereas Mg(NO3)2/Al2O3 catalyst showed low catalytic

activity due to the present of inactive magnesium-aluminate phase.

2. Silica support

Catalysts with small pores support (zeolite and metal oxide) are not suitable for biodiesel

production because of the diffusion limitation of the large fatty acid molecules (triglyceride).

The outstanding textural properties of mesoporous solids (relatively large pores which facilitate

mass transfer and high surface area which allows high concentration of active sites per mass of

material) has become an interesting option to be used as catalyst support in the development of

new catalysts with well-dispersed active phases. Thus, the basic mesoporous catalysts normally

obtained by incorporation of alkaline metal, alkaline-earth metal oxides or by anchoring basic

organic molecules on the surface of mesoporous materials.66,67 Silica is a mesoporous materials

which includes SBA-15, MCM-41, fumed silica, and TLT-16 are usually used as a support

catalyst in biodiesel production. Mesoporous SBA-15 is a mesoporous silicate with high surface

area (600–1000 m2/g) and uniform pore size (5–30 nm). This material is formed by a hexagonal

array of uniform tubular channels with tunable pore and thick pore walls (3–6 nm).68 SBA-15

has strong hydrothermal stability, greater than MCM-41, which promises great opportunity for

the application as catalysts or catalytic supports.69 The large pore silica support would facilitate

the diffusion of high molecular weight reactants involved in transesterification reactions to

the active sites within the catalyst prior to the reaction. Thus, the overall reaction would be

accelerated.67

Abdullah et al.67 investigated the catalytic activity of K/SBA-15 for transesterification of

palm oil to biodiesel. K/SBA-15 was prepared by impregnating the mesoporous SBA-15 with

KOH solution. It was found that the basicity of catalyst increased due to the incorporation of

superbasic potassium species into the support and thus increased the transesterification activity.

Besides, the large Brunauer-Emmett-Teller (BET) surface area (539 m2/g) with large pore

FIG. 5. Leaching reaction from alumina supported metal oxide with methanol.
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diameter (5.63 nm) and high pore volume (0.63 cm3/g) provided the high molecular weight reac-

tant a relatively easy diffusion route for the reaction. K/SBA-15 catalyst obtained 87.3% biodie-

sel yield with reaction conditions of 70 �C, 11.6:1 of methanol/oil molar ratio, 3.91 wt. % of

catalyst loading and 5 h of reaction time. Other research groups70,71 had studied the transesterifi-

cation activity of KI/mesoporous silica and CaO/mesoporous silica that prepared via incipient

wetness impregnation method. The authors reported the mesoporous silica catalyst had large sur-

face area and pore volume with uniform pore size. These properties enabled the potassium and

calcium species to disperse well on the silica surface and fill in the pores of the support appro-

priately. Both catalysts yielded >90% of conversion rate using soybean oil at optimum condi-

tions of 60–70 �C, 5 wt. % of catalyst loading, 8 h reaction time, and 16:1 of methanol/oil ratio.

While Albuquerqueet66 compared the transesterification activity of different types of sili-

ceous supports (fumed silica and two mesoporous silica-based materials: MCM-41 and SBA-15

with high surface area) loaded with active CaO species via impregnation method. CaO/SBA-15

showed high stability in its hexagonal support structure after impregnation and thermal activa-

tion steps. However, structure of MCM-41 and fumed silica has collapsed. This indicated that

the interaction between CaO and SBA-15 support was strong and CaO active species was well

distributed and stabilized on the surface of SBA-15. The CaO/SBA-15 showed 95% conversion

rate after 5 h of transesterification using sunflower oil at 60 �C and methanol/oil molar ratio of

12. Rudolph72 also studied the performance of three different mesoporous silicas (MCM-41,

SBA-15, and KIT-6) loaded with MgO. The catalysts were synthesized via two different meth-

ods: (1) in situ coating and (2) impregnation methods. MgO/SBA-15 prepared by impregnation

showed highest activity (96% in 5 h reaction time; 220 �C) compared to other supports with

different synthesis techniques. The surface analysis (X-ray photoelectron spectroscopy (XPS))

showed lower attachment of MgO over the surface of SBA-15 catalyst by in situ coating

method compared to impregnation method. According to Suarez et al.,73 catalytic systems with

Bronsted base or Lewis acid could minimize soap formation during biodiesel production pro-

cess. The use of organic compound with Bronsted base properties (guanidines, amidines, and

triamino-(imino) phosphoranes) showed high reaction activity as comparable to mineral base

(KOH or NaOH) in homogeneous conditions.74,75 Faria76 studied the organic base (tetramethyl-

guanidine) catalyst supported on silica gel for solid base catalyzed transesterification of soybean

oil with methanol. High catalytic efficiency was achieved with 86.73% biodiesel conversion at

3 h of reaction time. The catalyst showed excellent recyclability with nine times reusability

with catalyst efficiency maintained up to 62%. This finding indicated that the covalent bond

between tetramethylguanidine and silica gel enhanced the catalyst’s stability and solved the

organic base leaching problem. Kazemian et al.77 tested a highly ordered mesoporous silicate

catalyst (SBA-15) which was impregnated with cesium in transesterification of canola oil to bio-

diesel. The optimized biodiesel yield of 25.35% was obtained at operating conditions of 135 �C
(pressurized reactor), methanol to oil ratio (40:1), reaction time (5 h), and 2 wt. % of catalyst. It

is found that cesium impregnated silicate catalyst is not a good base catalyst with its low biodie-

sel yield. Table IV shows the list of silica supported catalysts for biodiesel production.

3. Aluminosilicate support

Clay materials are ubiquitous in nature while heterogeneous in composition and particle

size.78,79 Utilization of clay material such as bentonite as catalyst or catalyst support for biodie-

sel preparation is scarce. Bentonite (silicataluminate) is a three-layer clay with a unique layer

consisting of a sheet of octahedral alumina sandwiched between two sheets of tetrahedral

silica.50 Table V showed the list of aluminosilicate-based catalysts for transesterification

process.

Rashtizadeh et al.80 have done some comparison on the catalytic activity of KOH loaded

on aluminosilicate layers (bentonite and kaolinite), microporous materials (zeolite Y and clinop-

tiloite), mesoporous materials (MCM-41 and Al-MCM-41), some oxides (Al2O3 and TiO2), and

silica gel surfaces via reactions of the OH� groups or physical adsorption mechanisms. The

series of KOH/support provides high catalytic activity with >80% oil conversion. The
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exception goes to KOH/SiO2 which showed low reactivity. This may due to insufficient Si-OH

groups available in the silica structure compared to others catalysts. The results showed the cor-

relation between catalyst basic strength and its activity. Partial transformation surfaces of

Si–OH groups to Si–OKþ was observed when potassium (K) species reacted with the supports.

Potassium species exchanges with hydrogen of Si–OH groups available on support surfaces and

produces some basic OKþ sites. These basic sites promotemethoxide formation via deprotona-

tion of CH3OH, which was then increased the rate of transesterification process. The stability

of active potassium metal with its support was performed in this study,80 where potassium

desorption trend for used catalyst was in the order of MCM-41 (5.64%)> silica gel (1.26%)

> clinoptiloite (1.17%)> zeolite Y (1.00%)>Al2O3 (0.71%)> bentonite (0.66%)> kaolinite

(0.60%)>Al-MCM-41 (0.46%)>TiO2 (0.08%). Such behavior is contributed by leaching of

basic sites on the support if potassium ions are not grafted to the support surface. Among other

catalyst supports, bentonite and kaolinite as natural materials which is cheaper, higher catalytic

activity (85% and 95% of oil conversion, respectively), and strong stability (potassium desorp-

tion of 0.66% and 0.60%, respectively) seem to be as good as solid supports with the optimized

heterogenized characteristics.

Soetaredjo et al.81 utilized bentonite clay as a catalyst support for biodiesel production

because of its availability. The chemical composition in bentonite is Al 38.93%, Si 46.81%, Fe

3.24%, Ca 3.15%, Mg 0.41%, K 0.17%, Na 0.42%, and Mn 0.03%. The bentonite support from

Pacitan was loaded with KOH via impregnation method. In transesterification conditions of

60 �C, 3 h reaction time, 3 wt. % of catalyst loading, and 6:1 of methanol/oil molar ratio, a total

of 90.7% of biodiesel product was yielded. The reusability of KOH/bentonite catalyst was

examined for at least four times, the biodiesel yield decreased gradually and was found less

than 85% for second and third cycles. The authors suggested that the loss of activity was prob-

ably due to the poisoning of basic sites during the transesterification reactions.

TABLE IV. Silica supported catalyst for biodiesel production.

Catalyst Feedstock

Time

(h)

Temperature

( �C)

Methanol/oil

ratio

Catalyst

amount (wt. %)

Yield

(%) Reference

Alkali metal

KOH/SBA Palm 5 70 11.61 3.91 93 67

KI/SiO2 Soybean 8 70 16 5 90 70

CsNO3/SBA-15 Canola oil 5 135 40 2 25 77

Alkaline-earth metal

CaO/SBA-15 Sunflower 5 60 12 1 95 66

Castor 1 66

CaO/mesoporuous silica Soybean 8 60 16 5 95 71

MgO/SBA-15 Blended

vegetable oil

5 220 n/d n/d C¼ 96a 72

Other

TMG/SiO2 (tetramethylguanidine

supported on silica gel)

Soybean oil 80 3 1.5/10 n/d 86.7 76

aC is the oil conversion.

TABLE V. Aluminosilicate supported catalyst for biodiesel production.

Catalysts Feedstock Time (h)

Temperature

( �C)

Methanol/oil

ratio

Catalyst

amount (wt. %) Yield (%) Reference

KOH/aluminosilicate layers

Bentonite Soybean 2.25 65 70 6.5 C¼ 85 80

Kaolinite C¼ 96

KOH/Bentonite Palm 3 60 6 3 91 81
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4. Zeolite support

Zeolites are microporous crystalline solids with well-defined edge structure. Generally, they

are aluminosilicate minerals which are commonly used as catalyst supports for active species

due to their unique pore system, high surface area, and high stability. The various chemical

composition, pore size distribution, and ion-exchange abilities caused zeolite to carry varying

catalytic properties. Different types of zeolites with different Si/Al ratio and ion-exchange cat-

ion technique were used to control the acid-base properties of zeolite. In order to study transes-

terification reaction with basic zeolite catalyst, the basicity of zeolite can be enhanced via ion-

exchange with alkali metal ions or impregnation of basic components on the inner surface of

the zeolite pores. The base strength of the zeolite can be improved by using alkali metal cation

exchange technique or occlusion of alkali metal salts via impregnation technique.82 Hattori83

stated the impregnation method produces relatively strong basic sites rather than the ion-

exchange method. The chemical composition and the nature of the interaction of the zeolite

framework play a crucial role to influence its active sites. According to Ramos et al.,84 the

compensation of alkali metal cation into the negative charge framework of zeolite will enhance

the electron density of the oxygen atom and thus act as basic active site.

Zeolite-(mordenite, beta and X), titanosilicates (ETS-4 and 10), and mesoporous zeolites

(mesoporous silicates) are mostly used as catalyst support in biodiesel synthesis among zeolite

family. NaX faujasites (FAU) zeolite (Na82.8K1.8Al85.8Si106.2O384) is an aluminosilicate material

with rigid framework structure which is remarkably stable with large void space amount about

50 vol. % of the dehydrated crystal.82,85 ETS-10 (Engelhard titanosilicate structure (ETS) series

zeolites) with chemical formula of Na21.9K7.5Ti16.5Si77.5O208 has gained much interest in biodie-

sel synthesis due to the strong basic character than Na–X,86 high cation-exchange capacity, and

unique large pore structure.82

Most of the active metal used for the zeolite support is alkali metal with higher electro-

positivity characteristic such as sodium, potassium, and cesium. Suppes82 studied the perform-

ance of zeolite loaded with alkali metal in biodiesel synthesis. Comparison between potassium

and cesium-exchanged zeolite faujasite NaX and ETS-10 zeolite with impregnated sodium ace-

tate or sodium azide inNaX zeolite cage has been done. ETS-10 catalysts (67.4%–71.9%) pro-

vided higher conversion than the Zeolite-X type catalysts (8.6%–10.3%). Philippou86 reported

that parent ETS-10 catalyst is approximately four times more basic than NaX zeolite.

Nevertheless, the increased conversions were attributed to the higher basicity of ETS-10 zeo-

lites and larger pore structures that improved intra-particle diffusion. The authors found that

using impregnation method will improve the basicity instead of ion exchange method.

Incorporation of occluded sodium species in zeolite-X catalyst (82%–84.2%) also helps to

enhance the activity to the levels similar to ETS-10.

Ramos et al.84 studied the catalytic effect of different zeolites: mordenite, beta, and X in

transesterification of sunflower oil. It is found that the methyl ester content (wt. %) yielded by

mordenite (12.7%) and beta zeolites (65.4%) was lower than those obtained with zeolite X

(95.1%). The presence of super-basic sites in sodium acetate supported zeolite X which were

not present in other zeolites has explained the superior performance of this catalyst. Metal

incorporation technique was studied by using both impregnation and ion-exchange methods.

Ion-exchanged catalyst showed lower catalytic activity compared to catalyst produced through

impregnation method in transesterification reaction. The reusability test was performed for

sodium acetate/NaX. The catalyst showed a significant drop from 95.1% to 4.7% in the third

cycle. The author suggested that sodium acetate/NaX catalyzed reaction had occurred in con-

ventional homogeneous pathway in which the sodium oxide has leached out into the reaction

medium during transesterification.

The catalytic activity of NaX zeolite loaded with KOH reacted with soybean oil was stud-

ied. The conversion obtained from the reaction was 85.6% at 65 �C within 8 h reaction time.87

The methyl ester content decreased to 48.7% for the second run has confirmed the leachate of

KOH species from the supported catalyst as mentioned in other experiment.84 Furthermore, the

transesterification of palm oil using active KOH supported on NaY Zeolite via impregnation
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method was also performed.54 The NaY Zeolite is composed of aluminosilicate materials with

FAU structure together with its large pore openings and high surface area. The researchers

stated that NaY has higher crystal stability than NaX with different Si/Al ratio. Biodiesel yield

of 91.07% was achieved in the reaction conditions of 60 �C, 6 wt. % of catalyst, 3 h reaction

time, and 15:1 methanol/oil ratio. The leaching test for KOH/NaY was studied and compared

with KOH/Al2O3 for its reusability. The leached potassium species from alumina support was

higher compared to that of zeolite Y support catalyst indicating that K in the NaY zeolite is

strongly bound to the zeolite matrix. Supamathanon et al.88 also synthesized the potassium sup-

ported on NaY zeolite and this catalyst was prepared via impregnation method using a buffer

solution of CH3COOK/CH3COOH (as a potassium source) to prevent collapse of NaY structure.

Biodiesel yield of 73.4% was obtained in the transesterification of jatropha seed oil with metha-

nol under mild conditions. Recently, report showed that CaO/NaY exhibited the best perform-

ance among the supported catalysts of NaY, KL, and NaZSM-5 zeolites with CaO. 95% of bio-

diesel yield was achieved by using the CaO/NaY catalyst (30 wt. % of CaO loading on NaY

zeolite catalyst by microwave radiation followed by calcination at a high temperature in air).89

The transesterification was conducted at methanol/soybean oil molar ratio of 9, reaction temper-

ature at 65 �C, reaction time of 3.0 h, and catalyst/oil mass ratio of 3%. The improved catalytic

activity was attributed to the increase of BET values and the concomitant increase of basic

strength and basicity after CaO was dispersed on NaY zeolite by using microwave irradiation

during catalyst preparation.

Other studies67 have reported that zeolite supported catalysts present severe limitation in

transesterification reaction which involving large reactant molecules of vegetable oil. The zeo-

lite catalyst with small pores (microporous structure) is not suitable for biodiesel production

due to the mass transfer limitation of large sized triglyceride in oils. Hence, many efforts have

been done by researchers to utilize mesoporous materials in instead of zeolites to be applied as

the catalyst support to overcome this limitation. Table VI indicates the summary of Zeolite sup-

ported catalysts for biodiesel production.

5. Alkaline-earth metal oxide support

Some researchers have been showing strong interest in utilizing alkaline-earth metal oxide

as a support that consists of basic properties to improve transesterification activity. Table VII

depicted the list of alkaline-earth metal oxide support in biodiesel production. Wen et al.90

TABLE VI. Zeolite supported catalysts for biodiesel production.

Catalyst Feedstock

Time

(h)

Temperature

( �C)

Methanol/oil

ratio

Catalyst

amount (wt. %)

Yield

(%) Reference

KOH/NaY Palm 3 60 15 6 g 91 54

Faujasite NaX Soybean 24 60 6 n/d 10.3 82

KX FFA¼ 2.6% 7.3

CsX 8.6

(Cs,K)X Titanosilicate-10

ETS-10 71.9

Cs-ETS10 67.4

(Cs,K)-ETS-10

K/NaY Jatropha 3 65 16 0.04 73 88

KOH/NaX Soybean 8 65 10 3 86 87

Na/NaX Sunflower 7 70 n/d 95 84

Na/NaMa 7 70 n/d 13

Na/NaBa Soybean 7 70 9 3 65 89

CaO/NaY 3 65 >95

aM is the modernite and B is the beta.
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prepared KF doped CaO support via impregnation method. The performance of KF/CaO was

studied by transesterification of Chinese tallow seed oil with methanol. The results showed

great catalytic activity (96% of biodiesel yield) and stability for the catalyst. The formation of

porous structure with average pore size of 97 nm provided a good mixing contact between reac-

tants and catalytic surface. On the other hand, formation of KCaF3 active phase increased the

catalytic effectiveness of KF/CaO. Fluorine has higher electronegativity than oxygen resulting

Ca2þ ions in KCaF3 (acting as Lewis acid) to form stronger attraction with CH3O� ion in meth-

anol molecules during transesterification reaction. Besides, F� ions (acted as Lewis base)

formed attraction with Hþ in methanol easily. Hence, KF/CaO makes the deprotonation of

methanol route easier and leads further increment of transesterification efficiency. The leaching

test for bulk CaO and KF/CaO showed the presence of 150 mg and 31.6 mg of dissolved Ca2þ

in the biodiesel product, respectively, indicating the existence of KCaF3 phase has enhanced the

stability of KF/CaO interaction system compared to CaO. Besides, the KF/CaO catalyst pos-

sesses a good anti-acidic ability and tolerance to fatty acid poisoning with improved saponifica-

tion resistance than that of CaO. More than 80% of biodiesel content was yielded from acid oil

(<7 mg KOH g�1) using this catalyst. Therefore, the catalytic activity of KF/CaO for transester-

ification has been proved to be better than CaO.

According to MacLeod et al.,91 a series of alkali metal (LiNO3, NaNO3, KNO3) doped

CaO and MgO support catalysts were prepared and evaluated for catalytic effectiveness in

the transesterification of rapeseed oil to biodiesel. Among the catalysts tested, LiNO3/CaO,

NaNO3/CaO, KNO3/CaO, and LiNO3/MgO exhibited >90% conversion in 3 h reaction time.

These catalysts provided great catalytic effectiveness albeit low surface areas (1–2 m2/g). The

authors stated that it is useless to increase surface area by increasing porosity as the large size

triglycerides are unable to diffuse into the pore structures, unless a mesoporous support was

used. Furthermore, Meher et al.92 reported that the basicity has more influence on the catalytic

activity of solid base catalysts than the surface area. The finding showed clear correlation

between the catalyst’s basic strength and the catalytic activity. Formation of active O� centre

through the substitution of Mþ ions into the alkaline earth oxide lattice has enhanced the basic

strength of the oxide. The catalysts have shown good reusability while maintaining the conver-

sion rate of oil for five continuous cycles (with percentage of mass triglycerides in range of

0.1%–1.9%). However, the leaching of Ca2þ and Mg2þ has occurred and contributed to some

of the activities in the reaction medium (14%–54% in biodiesel mass). Hence, these catalysts

did not react in a truly heterogeneous pathway as the dissolved metals contributed actively in

reaction.

Mutreja et al.93 evaluated the effectiveness of KOH/MgO in transesterification of mutton

fat with methanol. The reaction produced >98% conversion in the transesterification conditions

of reflux temperature, methanol/oil ratio of 22:1 within 20 min of reaction time. The KOH/MgO

was found to tolerate with 1 wt. % of moisture content and free fatty acids in the mutton fat.

From this overall studies of alkaline-earth metal oxide supports, it is found that the alkali metal

doped CaO or MgO basic metal oxide provide great catalytic activity in the transesterification.

This is due to the enhancement of basicity and basic strength of the metal oxide support by

TABLE VII. Alkaline-earth metal supported catalysts for biodiesel production.

Catalyst Feedstock Time (h) Temperature ( �C) Methanol/oil ratio Catalyst amount Yield (%) Reference

Alkali metal

KF/CaO Chinese tallow seed 2.5 65 12 4 96.8 90

LiNO3/CaO Rapeseed 3 60 6 0.2 g 99 91

NaNO3/CaO 100

KNO3/CaO 100

LiNaO3/MgO 100

KOH/MgO Mutton fat 20 min 65 22 4 >98 93
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promotion of alkali-metal species. However, CaO and MgO supports are less stable and are

prone to leaching problem. This drawback would need to be resolved before mass production

of biodiesel can be done.

6. Titanium oxide support

A series of K-compound/TiO2 catalysts were prepared by impregnation method. The catalytic

activity of different types of potassium compounds (KI, C4H4O6HK, K2CO3, KCl, C4H4O6

KNa4H2O, KBrO3, or C8H5O4K) loaded on TiO2 support was studied in the soybean oil transester-

ification reaction. The catalytic activity was in the following order: C4H4O6HK/TiO2>C4H4O6

KNa4H2O/TiO2>K2CO3/TiO2>C8H5O4K/TiO2�KBrO3/TiO2�KCl/TiO2�KI/TiO2>TiO2. No

catalytic activity was observed for the free potassium loaded TiO2. However, promotion of active

potassium species on TiO2 support has increased the catalytic activity in the transesterification

reaction. The presence of strong basic strength in C4H4O6HK/TiO2has made the catalyst to show

distinctive transesterification activity (86%) compared to other catalysts.94

7. Zirconium oxide support

Qiu et al.94 compared the catalytic effect of different supports (Al2O3, ZnO, SiO2, ZrO2,

and TiO2) loaded with potassium species (C4H4O6HK). Although the basic strength of

C4H4O6HK doped with different types of support was nearly the same, however, the activity of

the catalyst has significant different. C4H4O6HK/ZrO2 was found to be the most active catalyst

with 89.95% of conversion. This might due to the vacant site on the surface of ZrO2 which the

cations were easy inserted. Furthermore, ZrO2 consists of granular and porous structures with

particle sizes ranging from 10 to 40 nm, which is suitable to be used as a catalyst support.

C4H4O6HK/ZrO2 catalyzed reaction is able to maintain biodiesel yield for five cycles with

potassium leached from 15 to 4 ppm for the fresh and fifth used catalyst, respectively.

Georgogianni et al.95 reported the production of soybean-based biodiesel with KNO3/meso-

porous ZrO2 which was prepared by impregnation method. The transesterification was

performed with mechanical stirring and frequency ulrasonification. 89% of biodiesel content

was yielded by mechanical stirring within 24 h reaction time, whereas 83% yield achieved in

5 h reaction time with ultrasonication. The ultrasonic energy has led to the collapse of captiva-

tion bubbles which resulted in the formation of emulsion from the disrupted liquid phase

boundary. This condition shall improve the mixing contact between reactant and catalyst for

better catalytic efficiency. It is important to mention that the catalyst activity of ZrO2 in the

reaction also increased as it was enriched with the basicity enhanced active potassium cations.

At the same time, Hamad et al.96 synthesized the alkaline metal cation (cesium ion) with

zirconia support (ZrOCs) via cationic exchange technique. The ZrOCs catalyst was prepared by

cationic exchange of zirconium hydroxide with Cs cations (form cesium carbonate) in a basic

medium. The catalyst preparation method differs from that reported by Georgogianni95 who

prepared KNO3/mesoporous ZrO2 by impregnation, or by Sree97 who synthesized the Mg-Zr by

co-precipitation method. The ZrOCs catalyst showed high catalytic activity for methanolysis

and ethanolysis of rapeseed oil in mild conditions (99.5% and 91% of biodiesel content, respec-

tively), while no catalytic activity was observed for the non-loaded ZrO2 catalyst. In order to

prevent lixiviation of Cs species in the reaction medium, the weakly bonded Cs species were

washed with two hot ethanol-leaching processes to ensure the exclusive contribution of hetero-

geneous basic catalysis.

ZrO2 supported La2O3 catalyst for transesterification of sunflower oil was prepared via

impregnation method. Sun et al.98 reported that La3þ species has partially entered the ZrO2

phase which resulted in the formation of La2O3-ZrO2 solid solution phase. According to Sato,99

REOs have similar basicity as CaO and thus La2O3 possess strong basic strength from the

TPD-CO2 analysis. As a result, presence of stronger basic strength in La2O3/ZrO2 was due to

the basic property of loaded La2O3 which has facilitated the synergy reaction between ZrO2

and La2O3. The catalyst showed optimum biodiesel yield (85%) at reaction temperature of
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200 �C. Table VIII illustrates summary of zirconia and titania supported catalysts for biodiesel

production.

8. Zinc oxide support

Zinc oxide is a cheap, stable, re-usable, commercially available, and environmentally

friendly catalyst which is used in many catalytic reactions. It has been reported that zinc oxide

is widely used as catalyst support. Zinc oxide possesses basic properties, which makes impreg-

nation with alkaline metals and alkaline-earth metals on ZnO support to promote a good basic

solid characteristic which eventually improves the transesterification of vegetable oils.100 Xie

and Huang101 loaded alkali metal salt on ZnO support for biodiesel production. The transesteri-

fication activities of different potassium precursor (KF, KOH, and K2CO3) on ZnO support

were studied. It was found that the basicity of ZnO supported catalyst has increased signifi-

cantly with the attachment of basic alkali metal. The transesterification activity of the catalysts

was in the order of KF/ZnO�KOH/ZnO>K2CO3/ZnO. Both ZnO supported KF and KOH

species exhibited more than 80% of conversion which is higher than K2CO3/ZnO (74%). The

finding suggested a correlation effect between catalytic activity and catalyst’s basicity in trans-

esterification reaction. Higher catalyst basicity will directly improve the activity of the catalyst.

According to some researchers,102,103 O2� species and coordinatively unsaturated F� ions have

major contributions in the catalytic activity of KF/Al2O3. The high activity of KF-type precur-

sor loaded on ZnO support implied that association of F� ion between the potassium and ZnO

support showed better basicity than O2� ion interaction.

The performance test of KF/ZnO also has been done by Hameed et al.104 in the optimiza-

tion study of palm oil transesterification reaction using response surface methodology (RSM)

tool. RSM software provided more information per experiment than unplanned approaches and

showed the interactions among the experimental variables within the studied ranges. Biodiesel

yielded by the optimum transesterification was 89.23% at the conditions of 9.72 h of reaction

time, 11.43:1 of methanol/oil ratio, and 5.52 wt. % of catalyst loading. A preliminary study was

done by Yang and Xie105 in the production of biodiesel using alkaline metal-doped zinc oxide

catalyst. The catalytic efficiency of the catalyst was studied in terms of the conversion of

soybean oil to methyl esters. The finding showed that ZnO does not contribute to any catalytic

activity in the reaction. However, the addition of alkaline-earth metal species on ZnO support

TABLE VIII. Zirconia and titania supported catalyst for biodiesel production.

Catalysts Feedstock

Time

(h)

Temperature

( �C)

Methanol/oil

ratio

catalyst amount

(wt. %)

Yield

(%) Reference

ZrO2 Support

C4H4O6HK/ZrO2 Soybean 2 60 12 6 86.65 94

Cs/ZrO2 (cation exchange technique) 96

Ethanololysis Rapeseed 5 79 18 4 91

Methanolysis 5 60 18 4 99.5

KNO3/ZrO Soybean 24 60 250 10 89 95

La2O3/ZrO2 Sunflower 5 200 30 5 84.9 98

TiO2 Support

TiO2 Soybean 2 60 12 6 0 94

KI/TiO2 <10

KCl/TiO2 <10

KBrO3/TiO2 <10

C8H5O4K/TiO2 <10

K2CO3/TiO2 25.15

C4H4O6KNa�4H2O/TiO2 52.48

C4H4HK/TiO2 86.65
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exhibited high transesterification activity due to increase of basic strength on active sites. The

catalytic efficiency of the catalysts was in the following the order: Sr(NO3)2/ZnO>Ba(NO3)2/

ZnO>Mg(NO3)2/ZnO>Ca(NO3)2/ZnO. Sr(NO3)2/ZnO and Ba(NO3)2/ZnO rendered highest

conversion (>90%) with the presence of higher basicity than Mg(NO3)2/ZnO and Ca(NO3)2/

ZnO catalysts. However, Sr(NO3)2/ZnO catalyst showed weak reusability with only 15.4% con-

version in the second run. Further study on calcination temperatures and doped Ba amounts on

the efficiency of the catalysts for Ba(NO3)2/ZnO in the transesterification reaction of soybean

oil was reported.106 The basicity of the catalyst was studied in different calcinations tempera-

tures ranging from 400 to 800 �C. It was found that the catalyst showed highest basicity with

improvement of catalytic activity at 600 �C. The presence of BaCO3 and BaO phase in this tem-

perature was expected to be the main catalytically active sites. However, the drop of basicity

was observed above calcination temperature of 600 �C, it is due to the presence of perovskite

BaZnO2 phase which inhibited the activity of catalyst. The effect of different loading of Ba

species on ZnO was studied. The authors found that increase of Ba loading above 2.5 mmol/g

will lead to the drop of basicity. The culprit of reduced basicity and conversion was the over-

coverage of ZnO support by monolayer of active component. The stability of Ba-ZnO was low

as the catalyst provided low catalytic activity (43.2% of conversion) in the second cycle. A dec-

rement in catalytic activity of the used catalyst may probably due to the leaching problem of

Ba active species into the reaction medium.

Two types of ZnO (prepared via precipitation step and commercial scale) were used as a

support for active phase CaO to catalyze transesterification reaction. The incorporation of CaO

was carried out by impregnated calcium acetate aqueous solutions on ZnO support. Alba-

Rubio’s100 study showed that the structural and textural properties of commercial ZnO (ZnO-

com) and synthesized ZnO (ZnO-synt) were totally different. Although ZnO is a non-porous

solid in both cases, small crystallite of ZnO-synt possesses higher specific surface area (24.1

m2/g), pore volume (0.162 cm3 g�1), and large average pore diameter (23.5 nm in mesoporous

region), thus improving the dispersion of active phase, while ZnO-com only consisted of micro-

pores structure. The conversion of ethyl butyrate for CaO/ZnO-synt was found higher (41.2%)

than CaO/ZnO-com with only 28.2%. Besides, the authors proved that the high stability of

CaO/ZnO-synt with the absence of lixiviation in the reaction medium. This can be explained by

the incorporation of CaO active particles into the mesopores and stabilized the CaO species on

the support. The finding concluded that an alternative to stabilize these basic oxides against

leaching is by using supports to facilitate the dispersion. The support-active phase interaction

could prevent leaching. Table IX shows the list of ZnO supported catalysts for transesterifica-

tion of oil with methanol:

E. Binary metal oxide

Studies on utilizing the alkali and alkaline-earth metal oxides that were unsupported over

materials (alumina, magnesia, zirconia, and titania) to produce thermal activated hydrotalcites

(Mg–Al, Ca–Al) or other binary metal oxides (Mg–Ca, Ca-Zr, Ca-Ti) has been done by

researchers. The purpose is to improve the catalytic efficiency and basicity of the bulk metal

oxide or undoped support in biodiesel production. Puna et al.107 stated that catalytic behavior

of triglycerides methanolysis can be enhanced by incorporating alkali metals and alkaline-earth

metals in the sample composition, especially K, Li, Ca, and Sr. Mixed metal oxide catalyst is

getting attention as potential solid catalyst for biodiesel synthesis. Mixed metal oxide is a com-

bination of several metal or binary metal into mixed oxide forms via co-precipitation, solid

state, or sol-gel techniques. These catalysts differ from the supported catalysts which are pro-

duced using wet-impregnation technique. As reported by other researchers, high loading of

active components cannot be easily obtained using a wet impregnation method.108,109 The phys-

ical mixing technique can produce mixed metal oxide catalysts with high loading of active

components. However, the catalyst from physical mixing results in low specific surface area

and low crystallinity which would reduce individual catalytic activity.108,110,111 The preparation

of binary metal oxide catalysts via co-precipitation and sol-gel method for transesterification
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has been studied by scientists. Some findings showed that the co-precipitation method is capa-

ble of increasing the concentration of catalyst active catalytic sites.97,112

1. Calcium-based with alkaline metal oxide

Ngamcharussrivichai et al.113 performed a heterogeneously catalyzed transesterification of

palm kernel oil (PKO) with methanol over metal doped dolomites and parent dolomite. The

active metal doped dolomite was prepared by conventional precipitation method with alkaline-

earth metal nitrate salts (Mg, Ca, and Ba) or trivalent metal nitrate salts (Al and La). The cata-

lytic activity of the catalysts in reflux condition were as follows: DM-800 (parent

dolomite)>Ca/DM-800>Ba/DM-800>Al/DM-800>Mg/DM-800>La/DM-800. The results

showed that parent dolomite yielded the highest FAME (96.1%) followed by 95.0% (Ca-dolo-

mite) and 89.2% (Ba-dolomite), other catalysts yield was less than 80%. This indicated that the

amount of accessible CaO sites in the parent dolomiteis is the main key to improve the catalytic

activity. The durability test revealed that Ca-dolomite survived three consequent cycles while

maintaining the FAME content over 95%. The reduction of FAME content after 3rd run was

due to the leaching of active species (9.3 wt. % loss of CaO species for fifth run catalysts).

The biodiesel synthesis via methanolysis of ethyl butyrate and sunflower oil using MgCa

oxides was investigated. The MgCa mixed oxides was synthesized using co-precipitation

method followed by thermal activation to obtain the corresponding metal oxides. Under opti-

mum conditions, 45% of conversion for ethyl butyrate and 92% of FAME yield were achieved.

The results showed the mixed metal oxide exhibited stronger basicity and resulted in better per-

formance as compared to pure MgO and CaO.114 In this study, isopropanol conversion test was

applied to determine the acid and basic sites of the catalyst. The formation of propylene (from

dehydration of isopropanol) or acetone (from dehydrogenation) provides information on the

presence of acid and basic (or redox) centers. The formation of propylene is attributed to acid

centers, whereas the formation of acetone is related to the presence of basic centers. From the

results, MgCaO showed high selectivity towards acetone formation, indicating the presence of

strong basicity in the catalyst.114,115 Albuquerque et al.115 continued the study on lixiviation of

MgO/CaO in the transesterification process. The findings showed that MgCa catalyst exhibited

high stability against lixiviation.

According to Wang et al.,116 nano-catalyst with mesoporous structure exhibits larger sur-

face area, pore size, and simple product-catalyst separation compared to conventional nano-size

catalysts. The authors prepared a mesoporous nano-sized KF/CaO-MgO solid-base catalyst via

TABLE IX. Zinc oxide supported catalysts for biodiesel production.

Catalysts Feedstock

Time

(h)

Temperature

( �C)

Methanol/oil

ratio

Catalyst

amount (wt. %)

Yield

(%) Reference

Alkali metal

KF/ZnO Palm oil 9.72 65 11.43 5.52 89.23 104

KF/ZnO Soybean oil 9 65 10 n/d C¼ 87a 101

KOH/ZnO C¼ 82a

K2CO3/ZnO C¼ 82a

Alkali-earth metal

CaO/ZnO Ethyl butyrate sunflower 2 60 12 1.2 90 100

2 60 12 1.3 90

Mg(NO3)2/ZnO Soybean oil 5 65 12 5 25 105

Ca(NO3)2/ZnO 2

Sr(NO3)2/ZnO 94

Ba(NO3)2/ZnO 90

Ba(NO3)2/ZnO Soybean 1 65 12 6 C¼ 95a 106

aC is the conversion of oil.
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co-precipitation method. The as-synthesized catalyst exhibited higher catalytic activity (95% of

biodiesel yield) than pure CaO. The presence of newly formed KCaF3 and KMgF3 phases has

improved catalytic activity, increased resistance to saponification and improved anti-poisoning

of the catalyst. It is found that >80% of biodiesel was yielded when acid value in the oil

feedstock was <10 mg KOH/g oil by using KF/CaO–MgO catalyst. Besides, KF/CaO-MgO is

capable to maintain >90% of biodiesel yield for six cycles with low leachate.

Lee et al.117 studied the optimization study of CaO-MgO catalyzed transesterification of

jatropha oil by using response surface methodology technique. The reaction model statistically

showed that the optimum biodiesel yield was 93.6% under best reaction condition of: (1) meth-

anol/oil molar ratio: 38.67, (2) reaction time: 3.44 h, (3) catalyst amount: 3.70 wt. %, and (4)

reaction temperature: 115.87 �C. In addition, the intensification of transesterification was due to

the presence of synergetic effect of basicity between CaO and MgO which was shown in the

physicochemical analysis.118

2. Calcium-based with aluminium oxide

The authors119 synthesized mixed alkaline-earth metal with alumina oxide using single step

sol-gel method. The catalytic activity of MgO/Al2O3 and CaO/Al2O3 was studied using transes-

terification of yellow green algae oil, Nannochloropsis oculata (preferred due to its high fatty

acid content) to biodiesel. Among the mixed oxide catalysts, CaO/Al2O3 showed the highest

activity in the transesterification reaction. The authors found that basic density (the number of

basic sites per square meter) and basic strength generated during the sol-gel method has

improved the activity of catalysts. Although the basic site density of pure CaO and MgO is

higher than mixed oxides, it is believed that not only the basic site density but also the basic

strength is very crucial in biodiesel yield. Besides, the increment in methanol amount has also

contributed in the improvement of biodiesel yield from 23% to 97.5%. The CaO/Al2O3 mixed

oxides showed high reusability with consistent biodiesel yield for second cycles, indicating that

there was no coke formation or any other adverse effects of possible poisons on the catalyst

activity.

3. Calcium-based with transition metal oxide

Kawashima et al.120 initiated a study on the catalytic efficiency of solid base mixed metal

oxides in transesterification process. The mixed oxide catalyst was prepared in A-B-O type

metal oxides with A is an alkaline-earth metal (also known as alkaline metal/rare earth metal)

and B is a transition metal which includes metal oxides of calcium, barium, magnesium, or lan-

thanum. The catalysts were prepared via conventional solid-state reaction (physical mixing),

which involved mixing of metal oxides in desired proportions followed by calcination. The

calcium-based catalyst showed higher activities (>90%) than Ba-, Mg-, and La-based catalysts

(<1%) at the reaction condition of 60 �C, 6:1 of methanol to oil molar ratio, 10 wt. % of cata-

lyst amount, and 10 h of reaction time. The impressive performance of Ca-based mixed metal

oxides was due to the presence of stronger basic strength than other metals. Among other

Ca-based catalysts, CaZrO3 and CaO-CeO2 rendered strongest catalytic durability, which is able

to provide methyl ester yields greater than 80% for five times and seven times, respectively.

Ngamcharussrivichai et al.121 produced biodiesel via transesterification of palm kernel oil

with methanol using mixed CaO-ZnO oxides catalyst. The CaO-ZnO catalyst was prepared via

conventional co-precipitation of the corresponding metal nitrate solution. This catalyst showed

high catalytic activity (FAME yield> 94%) under optimum conditions of 60 �C, 10 wt. % of

catalyst amount, 30:1 of methanol/oil ratio, and 1 h reaction time. The authors compared the

catalytic activity of CaO-ZnO catalysts prepared using different type of precipitant agent

(Na2CO3, (NH4)2CO3 and urea hydrolysis). The finding showed that using Na2CO3 as the pre-

cipitant agent has resulted in more active CaO-ZnO catalyst with 93.5% FAME yield, which is

higher than (NH4)2CO3 (73.9%) and urea hydrolysis (27.6%). The low activity of CaO-ZnO

using (NH4)2CO3 and urea hydrolysis may due to incomplete precipitation between metal ions

and CO3
2� and thus led to the formation of mixed hydroxide.122,123 This fact was in agreement
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with Ngamcharussrivichai’s previous study in which CaO-ZnO derived from carbonate precur-

sor rendered higher transesterification activity than that prepared through thermal dehydroxyla-

tion.113 The catalyst can be reused for three times while maintaining the FAME yield >90% by

washing the catalyst with mixture of methanol and 5 M NH4OH solution after each cycle.

Lee et al.124,125 studied the catalytic performance of CaZnO mixed thru transesterification

of non-edible oil (Jatropha curcas oil) with methanol. Under reflux condition, the catalyst con-

verted >80% of Jatropha oil to biodiesel product with catalyst amount (4 wt. %), methanol/oil

molar ratio (15:1), and reaction time (6 h). According to Lee et al., the bulk CaO contribute

partial homogeneous catalytic pathway in the biodiesel synthesis in which the active Ca species

leached into the reaction medium. The as-prepared mixed calcium-based oxide (CaZnO) was

intended to stabilize the active phase to avoid the leaching process. The CaZnO catalyst is

capable of maintaining biodiesel yield >80% for four cycles with low leaching of Ca species

compared to CaO.

4. Calcium-based with lanthanide oxide

Yan et al.126 have developed a calcium-lanthanum mixed oxide catalyst with high tolerance

to water and FFA in oil feedstocks, unrefined oils and waste oils. The effect of FFA, water, and

CO2 on catalyst structure and catalytic activity was investigated. Under optimal conditions of

58 �C, 20:1 of methanol/refined soybean oil ratio, 5% of catalyst amount, and the FAME yield

reached 94.3% within 60 min. Besides, CaO-La2O3 catalyst converted oils (crude palm oil, crude

soybean oil, waste cooking oil, diluted crude palm oil, diluted crude soybean oil, and diluted

waste cooking oil) which are high in water and FFA to 96% of biodiesel within 3 h. This has

proven the ability of catalyst to tolerate high water and FFA content. CaO-La2O3 mixed oxide

catalyst possessed mixture of Bronsted bases [Ca(OH)2 and La(OH)3 phases] and Lewis bases

(CaO and La2O3 phases), which showed stronger base strength than bulk CaO and La2O3.

Hence, the FAME yield was found to follow the trend of basicity: CaO-La2O3>CaO>La2O3.

As reported by Lee et al., La2O3 contributed both base and acid properties in the binary

catalyst system. For metal oxides (like La3þ-O2�), the surface lattice oxygen was attributed to

Lewis base sites (favor for transesterification) whereas the metal ions are Lewis acid sites

(favor for esterification). Integration of metal-metal oxide between Ca and La capable to

enhance the catalytic activity for transesterification reaction due to well dispersion of CaO on

composite surface and lead to increased of surface acidic and basic sites as compared to that of

bulk CaO and La2O3 metal oxide.127,128

Since CaO-La2O3 mixed oxide catalyst provides a great potential to simplify the oil with

high acid value and water content in transesterification reaction, Yan et al. have further studied

the properties of this catalyst and its preparation method. Yan et al. have developed a multistep

precipitation process to prepare CaO–La2O3 catalyst. This precipitation method utilized ammonia

solution (as base precipitant), carbon dioxide (as acid precipitant), and ethanol (as neutral precipi-

tant) in catalyst synthesis to facilitate a complete and uniform precipitation process and to

improve the specific surface area, base strength, and basicity, which subsequently resulted in high

transesterification activity. The calcium-based mixed oxide catalyst prepared by this novel method

was compared with conventional techniques (physical mixing, impregnation, and co-precipitation

methods). The Ca3La1 (multistep precipitation) showed highest FAME yield (95.3%) within

60 min, which is higher than CaO/La2O3 (wet impregnation), CaO–La2O3 (physical mixing), and

La2O3�CaO (coprecipitation). This result was parallel with the study of catalyst’s basicity fol-

lowed the order of: Ca3La1>CaO/La2O3>CaO–La2O3>La2O3�CaO. Ca3La1 has higher reus-

ability within three cycles in batch reactor, but the activity dropped in the fourth cycle with less

than 80% of FAME yield. In continuous fix bed reactor, FAME yield maintained at >92% for

14 days.129 The list of calcium-based mixed metal oxide catalysts was depicted in Table X.

5. Magnesium-based with transition metal oxide

Mg/Zr mixed oxide catalyst (prepared via co-precipitation method) for the transesterifica-

tion of both edible (sunflower, soybean, rice bran) and non-edible oils (Jatropha) to biodiesel at
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TABLE X. Calcium-based mixed metal oxide catalysts for biodiesel production.

Catalyst Feedstock Time (h) Temperature ( �C) Methanol/oil ratio Catalyst amount (wt. %) Yield (%) Reference

With alkaline metal group

Dolomite

DM-800 Refined palm kernel 3 60 50 10 96 113

Mg/Dm-800 <80

Ca/DM-800 95

Ba/DM-800 89

Al-DM-800 <80

La/DM-800 <80

Mg:Ca(3.8) Ehtyl butyrate 1 60 4 62 mg C¼ 45a 114

Sunflower 180 min 12 2.5 C¼ 92a

MgCa15 Ethyl butyrate 1 60 4 62 mg C¼ 20a 115

MgCa9 C¼ 32a

MgCa3 C¼ 44a

KF/CaOMgO Rapeseed oil 3 70 12 3 95 116

With alumina group

MgO-Al2O3 Lipid of yellow green microalgae,

(Nannochloropsis oculata)
N/D 6 N/D 16 108

CaO-Al2O3 23

With transition metal group

Solid state mixing effect

CaTiO3 Rapeseed oil 10 60 6 10 79 120

CaMnO3 92

Ca2Fe2O5 92

CaZrO3 88

CaCeO3 89

Coprecipitation method

CaO�ZnO (coprecipitation with Na2CO3) Palm kernel 1 60 30 10 94 121

CaO�ZnO (coprecipitation with (NH4)2CO3) 74

CaO�ZnO (Urea hydrolysis) 28

0
3
2
7
0
1
-2

7
L
e
e

e
t
a
l.

J.
R

e
n
e
w

a
b
le

S
u
s
ta

in
a
b
le

E
n
e
rg

y
7
,
0
3
2
7
0
1

(2
0
1
5
)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  103.18.0.18 On: Thu, 01 Oct 2015 06:25:06



TABLE X. (Continued.)

Catalyst Feedstock Time (h) Temperature ( �C) Methanol/oil ratio Catalyst amount (wt. %) Yield (%) Reference

CaZnO Jatropha curcas 6 65 15 4 C¼ 83a 113

With lanthanide group

Ca3La1 (ammonia–ethanol–carbon

dioxide precipitation method)

Soybean oil 60 min 65 7.6 g met/10 g oil 5 95.3 129

CaO-La2O3 (physical mixing method) �13

CaO/La2O3 wet impregnation method) �35

La2O3�CaO (coprecipitation method) <10

aC is the conversion of oil.
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room temperature and reflux condition was reported.97 The catalyst showed high activity for

both edible and non-edible oil within 1 h of reaction time. The performance of Mg/Zr mixed

oxide was due to the presence of synergistic effect between basic sites of MgO and amphoteric

nature sites of ZrO2. The strong interaction between MgO and ZrO2 has led to the transfer of

electrons from metal oxide support (MgO) to ZrO2 which results in strong basic strength.130

The catalyst showed high reusability with maintained the FAME yield within four cycles.

Zirconia with amphoteric propertiesis now gaining popularity among researchers to produce

supported catalyst which exposes both acid and basic sites. Another research group used basic

mixed oxides of magnesium and zirconium for transesterification of tributyrin with methanol, a

model reaction for biodiesel synthesis. Kozlowski et al.131 evaluated the catalytic activity of

Mg:Zr mixed oxide with different synthesis method (co-precipitation and sol-gel method). The

co-precipitated mixed oxide (Mg:Zr-P) showed the presence of pure oxides crystal for both

periclase MgO and tetragonal ZrO2 phases. On the other hand, sol-gel synthesis (Mg:Zr-SG)

showed better mix at atomic level with the absence of crystalline phase of ZrO2 and low inten-

sity of MgO phase. This indicated that no crystallization of the individual oxides has occurred

during the synthesis. The catalytic activity of these catalysts was examined by determining the

rate constant of tributyrin consumption (K1). Mg:Zr-P showed higher activity than Mg:Zr-SG

with the rate constant k1¼ 0.50 � 106 and 0.32 � 106 mol�1 m�2 s�1, respectively. Mg:Zr-P

was able to maintain the activity at 85% and 75% at its original activity and second cycles,

respectively, with small amount of leaching occurred.

Wen et al.132 studied the behavior of TiO2–MgO mixed oxides catalyst (by sol-gel method)

for biodiesel synthesis from waste cooking oil (WCO). The pure MgO showed higher catalytic

activity than mixed oxides. The authors stated the high activity of MgO (89.6%) was due to the

leaching of Mg2þ content (198 ppm) whereas no leaching was found for the TiO2. This finding

indicated that the high activity of MgO is likely attributed to the homogeneous magnesium

methoxide from the metal leaching. The presence of MgTiO3 mixed oxide phase showed the

substitution behavior of Ti for Mg ions in the magnesia lattice, and this condition was found

similar to the observations reported by Lopez et al.133 The addition of Ti resulted in the forma-

tion of vacancies and induced defects on the catalyst surface that can improve the stability

while maintaining an acceptable catalytic activity.134 The TiO2-MgO has tolerated highwater

content in waste cooking oil for up to 1.9 wt. % with 85.3% of FAME yield. Further increment

of water content shall lead to hydrolysis of methyl ester, thus reduced the FAME yield. The

high stability of mixed oxides has maintained the FAME yield >80% for four cycles.

Olutoye et al.135 studied the optimization conditions of transesterification of palm oil with

methanol using KMgZnO heterogeneous catalyst. The mixed oxide KMgZnO catalyst (synthe-

sized via co-precipitation method) showed the presence of synergetic effect of both MgO and

ZnO which complimented each other to produce higher activity than its separate oxides. The

interaction between the metal ions has led to the modification of electronic properties and thus

resulted in synergetic effect. The same research groups136 showed that increased Mg/Zn ratio

formed more porous structure on the catalyst. The porous structure is believed to be induced by

Mg2þ that formed MgO clusters surrounding the MgZnO complex. Under optimum conditions,

87% of FAME content was achieved by KMgZnO catalyzed reaction whereas the bulk MgO

and ZnO produced lower FAME yield at 56% and 26%, respectively. Furthermore, Lee et al.137

showed that MgO-ZnO mixed metal oxide catalysts are capable of performing in transesterifica-

tion of high acid jatropha oil, which 83% of jatropha biodiesel was produced under 120 �C,

25:1 methanol:oil ratio, 3 wt. % of catalyst within 3 h.

6. Magnesium-based with lanthanide oxide

Mg/La-mixed oxide catalyst was prepared via co-precipitation method. Catalytic behavior

of this catalyst was investigated using transesterification of edible (soybean and rice bran) and

non-edible (jatropha) oils to biodiesel at two different reaction conditions, namely room temper-

ature and reflux condition. All vegetable oils were completely converted to FAME under reflux

condition within 20–30 min irrespective to the nature of the oil. The conversion of oil in room
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temperature took longer reaction time (120–140 min) to complete. The excellent performance of

Mg/La mixed oxide is due to the presence of high basicity. The formation of La2MgOx solid

solution phase resulted strong interaction between these oxides, thus creating strong basic sites

on the catalyst. Besides, the presence of lanthanum hydroxide/carbonate species might be re-

sponsible for strong basic sites. Babu and his co-researchers found that the transesterification

rate of edible oils was relatively higher than non-edible oil. Thus, this can be concluded that

the reaction temperature, catalyst, and oil type greatly influence transesterification activity. This

finding showed that the catalyst is tolerable to 10 wt. % of water content and 5 wt. % of FFA

with 90% of conversion within 6 h reaction time. The reusability efficacy of the catalyst is

tested up to five cycles with consistent activity together with marginal variation of conversion

less than 5%.138 Summary of magnesium-based mixed metal oxide catalysts for biodiesel pro-

duction is shown in Table XI.

7. Other mixed metal oxides catalyst

Guo et al.139 stated that sodium silicate (Na2O�nSiO2) showed high catalytic activity in the

transesterification of soybean oil to biodiesel. This catalyst possessed similar characteristic as

supported-solid base catalysts. Almost 100% of biodiesel was yielded at the conditions of

60 �C, 3 wt. % of catalyst, and 7.5:1 methanol/oil ratio within 60 min of reaction time. Besides,

catalyst tolerance experiment was conducted tooil contained 4.0 wt. % of water and 2.5 wt. %

of FFA and interestingly conversion of 98% biodiesel was obtained. The tolerance of

Na2O�nSiO2 to water is related to its special crystal and porous structure. The presence of water

would hydrolyzed the Si–O–Si bridges of Na2O�nSiO2 and produce H4SiO4 monomers.140 This

catalyst can be reused for five cycles while maintaining biodiesel yield at 94%.

Yan et al.141 developed a new class of mixed oxides catalyst ZnO-La2O3 (prepared by

homogeneous-co-precipitation method) for the study of single-step biodiesel production from

unrefined oil or waste oil. The ZnO-La2O3 was found to simultaneously catalyze the oil transes-

terification and fatty acid esterification reaction. Biodiesel yielded from waste cooking oil

and unrefined oil (with high acid content) was 96% within 3 h reaction time at 200 �C. The

ZnO-La2O3 consists of strong interaction between Zn-La species which are able to enhance the

dispersion of ZnO on La2O3. This increased the surface amounts of acid and basic sites and

thus improved the catalyst ability in both esterification and transesterification reactions.

TABLE XI. Magnesium-based mixed metal oxide catalysts for biodiesel production.

Catalyst Feedstock Time (h)

Temperature

( �C)

Methanol/oil

ratio

Catalyst

amount (wt. %) Yield (%) Reference

Magnesium-based with transition metal oxide

TiO2-MgO Waste cooking oil 6 150 30 5 80 132

Mg/Zr Sunflower 45–75 min 65 2.5 ml/1g 0.1 g >90 97

Jatropha >90

Soybean >90

Ricebran >90

Mg:Zr (coprecipitate) Tributyrin n/d 60 30 0.5–1 g 0.5 � 106 a 131

Mg:Zr (solgel) 0.32 � 106 a

KMgZnO Palm oil 5 188 16 2.3 87 135

Magnesium-based with lantanide oxide

Mg/La Sunflower 30 min 65 2.5 mL/1 goil 0.05 g >90 138

Jatropha or

Soybean 120–140 min RT

Ricebran

aRate constant, k1¼ 0.5 � 106 (mol�1 m�2 s�1).
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The same research group142 further reported on the transesterification activity of ZnO-

La2O3 by using several types of inexpensive oils in different reactors (batch and continuous).

Crude algae oil, corn oil, crude palm oil, crude soybean oil, crude coconut oil, waste cooking

oil, food-grade soybean oil, and food-grade soybean oil with 3% water and 5% FFA addition

were used for biodiesel synthesis. The ZnO-La2O3 successfully converted the oils into FAME

within 3 h. In the durability test, the modified catalysts were reused for 17 times in batch stirred

reactor with FAME yield maintained at 93.7%. Furthermore, the catalysts were also used con-

tinuously for 70 days in a fix bed continuous reactor with average FAME yield of 92.3%. Both

reusability tests were performed without catalyst regeneration or washing steps. The findings

concluded that ZnO-La2O3 possesses characteristics such as high catalytic activity, water and

FFA content tolerance, long catalyst life and high stability with low leaching in biodiesel

production.

Jin et al.143 confirmed catalytic activity of ZnO/La2O2CO3 heterogeneous catalyst are high

with>95% biodiesel yield within 5 min in microwave heating and 20 min in conventional heat-

ing under mild reaction conditions (<100 �C). The catalyst with in situ precipitation method

showed the presence of mixture of ZnO (zincite) and type II La2O2CO3 layered structure,

resulting in increase of strong basic sites of La2O2CO3 material instead of weak basic site from

ZnO. The catalyst can be reused for 3 times with biodiesel yield maintained >90%. The author

found that transesterification reaction with microwave heating completed within a very short

reaction time. This may due to the selective heating which took place on the internal and exter-

nal surface of solid catalyst which could have accelerated the reaction.144,145 Ding et al.146 pre-

pared a series of zirconia-based mixed oxide catalysts (M/Zr, with M¼Li, Na, K, Mg, Ca)

using sol-gel method. The catalytic activities of these mesoporous mixed oxide catalysts were

evaluated using transesterification of soybean oil with methanol. Among the catalysts, alkali

metal mixed with zirconia (Li- and K-modified ZrO2) showed the highest yield with the pres-

ence of strong basic sites. On the other hand, formation of MgO–ZrO2 and CaO–ZrO2 solid so-

lution phase was found in Mg–ZrO2 and Ca–ZrO2 catalysts with the presence of weak basic

site thus reduce the catalytic activity. Li-ZrO2 catalyst with the highest activity (98.2%) per-

formed with 78.6% and 10.5% yield at second and third cycle, respectively, which is a symp-

tom of Li leached into the reaction medium.

Kondamudi et al.147 studied the behavior of Quintinite-3T (Q-3T) by performing transester-

ification reaction of soy, canola, coffee, and waste vegetable oil. Quintinite-3T

(Mg4Al2(OH)12CO3�3H2O) is a natural mineral categorized in the layer double hydroxides

(LDHs) group and this catalyst was prepared via co-precipitation method. Quinitnite consists of

higher Al/Mg ratio (0.5) which makes it more suitable for acid catalyzed reaction than base cat-

alyzed reaction. The catalyst showed the presence of BrØnsted acid sites (attributed to the pres-

ence of Mg–OH–Al bonds and Al–OH groups) and Lewis acidic sties (account for Al3þ). The

introduction of alumina induced Lewis acid properties of the catalyst and accelerated the esteri-

fication process. From the findings, the catalyst showed excellent performance in converting

FFA and triglyceride to >96% biodiesel. The catalysts showed high reusability with maintained

yield of 95% for five cycles with structural integrity remained intact. Table XII summarizes the

mixed metal oxide catalysts for biodiesel production.

F. Hydrotalcite

1. Mg/Al hydrotalcite

LDHs are gaining attention as a catalyst for vegetable oil transesterification. LDHs with

general formula [Mg0.75Al0.25(OH)2](CO3)0.125�0.5H2O is the most well-known lamellar mixed

hydroxides, which is also known as hydrotalcite (HT).148,149 Hydrotalcite is a family of anionic

clays with a brucite-like hydroxide layers (Mg(OH)2) in which excess of positive charge origi-

nated from replacement of some Mg2þ ions by Al3þ ions in the octahedral sites of hydroxide

sheets. Hydrotalcite’s neutrality is attained by compensating negative charge of anions (CO3
2�)

situated in the interlayer space.148 The most interesting properties of hydrotalcite in LDHs
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TABLE XII. Others mixed metal oxide catalysts for biodiesel production.

Catalyst Feedstock Time (h) Temperature ( �C) Methanol/oil ratio Catalyst amount (wt. %) Yield (%) Reference

Sodium silicate Soybean 60 min 60 7.5 3 >95 139

Na2O�nSiO2

Zn3La1 Soybean 3 h 200 �C, 500 psi 1.42 mass ratio 2.4 94 142

Coconut 91

Zn3La1 (ammonia–ethanol–carbon

dioxide precipitation method)

Refined soybean 60 min 58 20 5 94.30 126

Crude palm oil 3 h >80

Crude Soybean 3 h >80

Waste Cooking Oil 3 h >80

Zn3La1 (homogeneous-coprecipitation) Refined soybean 60 min 200 1.42 mass ratio 3g >90 141

Crude palm oil 3 h >90

Crude soybean 3 h >90

Waste cooking oil 3 h >90

Li/ZrO Soybean 3 65 13 3 98.2 146

Na/ZrO 32.8

K/ZrO 52

Mg/ZrO 5

Ca/ZrO 3.5

ZnO-La2O2CO3

(microwave heating)

Canola 5 min 85 n/d 5 99 143

ZnO-La2O2CO3 (conventional heating) 20 min 65 95

Quinitine-3T Waste vegetable oil (15% FFA) 6 n/d 12 10 97.72 147

Coffee oil (33% FFA) 4 96.6

Canola 2 97.28
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group is the tunable basicity (acid/base property could be easily controlled by varying their

chemical compositions) and high surface area with well-dispersed mixed metal-oxides.150,151

In the past few years, several studies the usage of mixed oxides derived from hydrotalcite

in biodiesel synthesis have been conducted.114,152 Most of the researchers prepared hydrotalcite

using co-precipitation method which involved sodium/ammonium bases or potassium salts as

precipitant agent. Besides, other studies showed the relationship between composition and cata-

lytic activity,153,154 and the optimum ratio for desirable activity is Al/(MgþAl)¼ 0.25.155

Table XIII shows the list of different hydrotalcite catalyst for biodiesel production.

Cantrell et al.155 utilized calcined hydrotalcites in promoting the transesterification of glyc-

eryl tributyrate in methanol. 74.8% of oil conversion was obtained with 30:1 methanol/oil molar

ratio at 60 �C in a 3 h reaction. The reaction rate increased steadily with Mg content and the

most active Al/(MgþAl) ratio was 0.25, in which was more active than MgO. Xie153 also

obtained a maximum soybean oil conversion to biodiesel (67%) from calcined Mg/Al hydrotal-

cite catalyzed reaction with 7.5% catalyst dosage, 15:1 of methanol/oil molar ratio within 9 h.

Besides, this group reported that the hydrotalcites, in the absence of calcinations, present no

catalytic activity for transesterification reaction. Chen156 employed the same catalyst under

reaction condition of 230 �C, 12:1 methanol/oil molar ratio, and 2% catalyst dosage to achieve

>90% FAME yield in 3 h reaction time. Xi and Davis157 reported high catalytic activity in

calcined Mg–Al hydrotalcite (Mg/Al molar ratio¼ 4) transesterification of tributyrin with meth-

anol. The authors suggested that the activity of catalyst was mostly depended on the catalyst

structure and CO2 adsorption capacity with different pretreatment temperature. Trakarnpruk158

improved the performance of calcined Mg-Al hydrotalcite by adding active species of potas-

sium. The K loaded calcined Mg-Al hydrotalcite obtained 96.9% biodiesel yield in the condi-

tions of 100 �C, 7 wt. % catalyst amount, 30:1 methanol/oil ratio in 6 h reaction time.

The effect of Mg/Al ratio in the methanolysis of soybean oil and catalytic activity of

catalysts with different Al/(MgþAl) molar ratios of 0.20, 0.25, and 0.33 were studied.159 It

was found that >90% of biodiesel was yielded from catalyst with Al/(MgþAl) ratio of 0.33 in

the presence of medium basic strength. The hydrotalcite catalyst showed low reusability with

biodiesel yield reduced from 90.7% to 64% in the third cycle. Other than that, 85% of biodiesel

yielded from crude oil (with acidity¼ 9.5%) indicated that this catalyst is active for both trans-

esterification of triglycerides and esterification of free fatty acids. This activity is closely related

to Lewis acid sites generated from calcination of hydrotalcites. The OH� group of hydrotalcite

is attributed to the weak basic sites, whereas both Mg2þ–O2� and Al3þ–O2� pairs were related

to medium basic strength and isolated O2� anion is corresponded to strong basic sites.

Generally, Al is more electronegative than Mg; thus, the increase in Al/(MgþAl) ratio has led

to the increase of catalyst electronegativity. Reduction of electron density in oxygen atoms

directly reduced the total basicity of the catalyst by generating Lewis acid sites.

Study on doping of trivalent cations (such as transition metals) with hydrotalcite was tested

in the transesterification of triacetin and soybean oil.160 The incorporation of Fe3þ into Mg/Al

layered double hydroxide lattice has created a catalyst with tunable basicity and high surface

area with porous structure. The results showed that Fe-Mg/Al catalyst showed higher activity in

shorter reaction time compared to Ga-Mg/Al catalyst. Fe-Mg/Al catalyst was repeatedly regen-

erated and consequently no degradation of catalyst performance was observed.

A new type of hydrotalcite with the presence of polymer membrane (poly(vinyl alcohol))

as a solid base catalyst was developed.161 The catalyst was prepared by dispersing hydrotalcite

in polymer solution to form a membrane and applied as a catalyst for transesterification of

soybean oil with methanol to produce biodiesel. The effect of hydrophobic/hydrophilic proper-

ties of the membranes on the catalytic activity was investigated. The findings showed that the

poly(vinyl alcohol) membranes loaded with hydrotalcite catalyst presented high catalytic activ-

ity for and it is 20 times higher than unsupported hydrotalcite catalysts. This is due to the pres-

ence of most hydrophililic membrane that has promoted the reaction with methanol to form

methoxide which aids in transesterification of soybean oil. The poly(vinyl) membranes with a

poly(vinyl alcohol) matrix is capable of totally or partially acetylated in order to increase
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TABLE XIII. Hydrotalcite catalysts for biodiesel production.

Catalyst Feedstock Calcination temperature ( �C) Time (h) Temperature ( �C) Methanol/oil ratio Catalyst amount (wt. %) Yield (%) Reference

Mg/Al hydrotalcite

Mg/Al hydrotalcite Glyceryl tributyrate 450 3 60 30 n/d C¼ 75a 155

Mg/Al HT Soybean 450–500 9 n/d 15 7.5 C¼ 65a 153

Mg/Al Cotton seed 3 230 12 2 >90 156

Mg-Al HT Refined soybean oil 400 1 230 13 5 90 159

Degummed soybean oil (9.5% acidity) 85

Mg-Al/Ga Triacetin 460 60 min 60 6 1 80 160

Mg-Al/Fe 40 min >90

PVA membrane

loaded Mg-Al HT

Soybean 450 n/d 60 30 n/d >80 161

Li/Al hydrotalcite

Li-Ca HT Soybean 450–500 1 65 15 1 53 162

Mg-Al HT 3 <3

Li-Ca HT Glyceryl tributyrate 450 2 65 15 1 >98 163

Mg-Al HT 32

Mg-Fe HT 23.9

Zn/Al hydrotalcite

Zn/Al Rapeseed 450 180 min 200, 2.5 MPa 42 2 84.53 167

KF/Zn-Al HT N/D 500 3 65 6 3 95 168

Ca/Al hydrotalcite

KF/Ca-Al HT Palm 550 5 65 12 5 96 169

Ca-Al HT 8

KF/Mg-Al HT 89

aC is the oil conversion.
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hydrophobicity or treated with succinic anhydride in order to increase hydrophilicity. This cata-

lyst can be reused for several runs without any further reactivation.

2. Li/Al hydrotalcite

Shumaker et al.162 revealed that Li-Al catalyzed reaction exhibited better activity than Mg-

Al catalyst by achieving 53% biodiesel yield in 1 h compared to <3% by Mg-Al catalyst.

Calcined Li–Al LDH produced from calcinations of [Al2Li(OH)6](CO3)0.5�mH2O showed the

presence of LiAlO2 and LiAl5O8 phases which resulted in formation of Lewis basic sites and

strong Bronsted base sites. Catalyst recycling studies showed that the catalyst maintained a

high level of activity over several cycles, albeit analyses indicated that a small degree of lith-

ium leaching (3.6% of Li) from the catalyst. The findings suggested that catalytic activity of

Li–Al catalyst was largely heterogeneous in nature. The same group163 further expanded the

study by comparing the activity of calcined Li–Al, Mg–Al, and Mg–Fe LDHs in transesterifica-

tion reactions. Li-Al catalyst showed higher concentration of strong basic sites than other cata-

lysts and this explained the higher performance of Li-Al catalyst compared to Mg–Al and

Mg–Fe catalysts.

3. Zn/Al hydrotalcite

The mixed oxide of Zn and Al heterogeneous catalysts has been used as a heterogeneous

catalyst in industrialized biodiesel manufacturing. French Institute of Petroleum (IFP) developed

the only heterogeneous catalyzed biodiesel process—Esterfip-H process, which is capable of

processing 160 000 t/year/plants in France and Sweden. This process involved the use of hetero-

geneous catalyst (Zn/Al mixed oxide) with high reaction conditions (higher temperature and

pressure, with an excess of methanol).164–166

Furthermore, Jiang et al.167 investigated the high transesterification activity of Zn/Al com-

plex oxide (calcined hyldrotalcite like precursor [Zn1�xAlx(OH)2]x
þ(CO3)x/2n�mH2O) with

84.25% of oil conversion under methanol sub-critical condition (200 �C, 2.5 MPa) in 90 min.

The activity was higher than Mg/Al complex oxide. The strong alkalinity of Zn/Al complex ox-

ide also aided in high catalytic activity of the transesterification reaction. Although alumina is

weak acid and ZnO is weak base, the Zn/Al complex oxide catalyst exhibited higher alkalinity

and tolerance to FFA (6%) and water (10%) content with >80% of oil conversion. However,

the reusability of Zn/Al complex oxide catalyst was low, although there was no leaking of Zn

and Al components. Further investigation is required since the basic strength and alkalinity of

reused-catalyst decreased sharply over cycle.

Xu168 synthesized the Zn-Al hydrotalcite-like compounds and doped with high alkaline

active KF salt to improve the catalytic activity of unsupported Zn-Al complex oxide catalyst.

KF/Zn(Al)O showed more excellent activity than Zn(Al)O with >95% of biodiesel produced

under reflux condition, 6:1 methanol/oil ratio, 3 wt. % catalyst loading in 3 h reaction time. The

high catalytic activity was due to the formation of new phase KF and KOH and enhanced alka-

linity of Zn(Al)O support.

4. Ca/Al hydrotalcite

Other than Zn/Al hydrotalcite compound, another new catalyst with similar structure to

Mg-Al HT was synthesized by Gao169 for biodiesel synthesis. He explained that the incorpora-

tion of KF with Ca-Al mixed oxide has improved the catalytic activity of the palm oil transes-

terification reaction (95.6% FAME yield). KF/Ca-Al HT consisted of KCaF3, KCaCO3F, and

CaAl-F4(OH) phases which created high basicity and better catalytic efficiency during transes-

terification process. During reusability test, the active species of KF/Ca-Al HT remained intact

which has indicated its ability to be recycled. The catalyst maintained biodiesel yield at 95%

for second use after post-treatment.
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G. Natural waste shell

Researchers are focusing on reducing biodiesel manufacturing cost so it could compete

with petroleum diesel. By drawing on this, researchers have made attempts to seek for cost-

effective and eco-friendly catalyst for transesterification reaction. Using industrial waste, i.e.,

fly ash and natural calcium source from municipal waste, i.e., egg-shell, mollusk, bone, etc., as

raw material for catalyst preparation would eliminate waste and simultaneously developed new

low cost, highly efficient supported catalyst and alternative CaO source for sustainable green

energy. In order to create an effective waste valorization avenue, preparation of a novel low

cost heterogeneous catalyst from industrial and municipal wastes is a must to synthesis fuel

grade biodiesel. Table XIV shows the natural waste shell used as solid catalyst for transesterifi-

cation reaction.

For instance, the waste scale of Rohu fish (Labeo rohita) as a low-cost solid base catalyst

was used to synthesis biodiesel from soybean oil.170 Labeo rohita was found to be the largest

fishery production which accounted for 23.9% of the total fish production in India.171

Hydroxyapatite is abundantly available in the fish scale and it is widely available in fish farm

waste. Under optimum transesterification condition, 97.73% of FAME yield was obtained at

6.27:1 methanol/oil molar ratio and 1 wt. % catalyst loading. The presence of b-Ca3(PO4)2 as

main active component after thermal activation made up the transesterification activity. The cat-

alyst could be reused in 5 h reaction for six consecutive runs, creating a potentially applicable

avenue in biodiesel synthesis.

Eggshell is another solid waste produced from food processing and manufacturing plants.

Most of this natural waste shell is disposed in landfills without any pretreatment because it was

traditionally useless. The chemical component in eggshell mainly attributed to calcium carbon-

ate (CaCO3) (94%), and other elements such as magnesium carbonate (1%), calcium phosphate

(1%), and organic matter (4%).172 The calcified eggshell build up intrinsic pore structure and

formation of CaO phase make it an active heterogeneous base catalyst for transesterification

reaction. Hence, Wei et al.173 studied the viability of waste eggshell derived CaO in soybean

oil transesterification reaction. The authors confirmed the presence of CaCO3 phase of eggshell

and the appearance of CaO after thermal treatment (>700 �C). The eggshell-derived catalyst

showed high activity with >95% of biodiesel content was yielded using 9:1 methanol/oil molar

ratio, 3 wt. % catalyst amount, 65 �C reaction temperature in 3 h. The waste shell derived cata-

lyst was reused for 17 times and degradation of catalyst’s activity occurred after 17th run. This

was due to the structural change of CaO phase to Ca(OH)2 during the reaction with reactants

(methanol and soybean oil) which consists of H2O and CO2.

On the other hand, Cho174 also used quail eggshell derived catalyst for transesterification

of palm oil with methanol. According to some researchers,175–177 quail eggshell consisted of

three layers: a thin cuticle outer layer, a thick palisade middle layer, and a thin mammillary

inner layer. Majority of large pores are contained in the palisade layer. Cho found that using

weak acid treatment followed by calcination at 800 �C to remove the dense cuticle layer from

the eggshell had led to the generation of porous layer and strong basic sites in the quail egg-

shell derived catalyst. The porous structure has accelerated the diffusion of large oil molecule

while the strong basic site improved the catalytic activity of the catalyst. From the results, quail

eggshell derived catalyst showed higher catalytic activity compared to chicken eggshell derived

catalyst. The quail eggshell catalyst is capable to be reused for five consecutive runs while

maintained oil conversion rate at over 98%.

Boey et al.178 discovered the new CaO source from waste mud crab shell (Scylla serrata)

for the biodiesel synthesis. The mud crab, also known as mangrove crab or black crab, is com-

monly found in mangrove swamps nearby intertidal and subtidal muddy habitat. A recent rising

trend in mud crab (Scylla serrata) aquaculture activities has intensified the supply of waste crab

shell which is feasible to be used as a heterogeneous catalyst for transesterification reaction. In

this preliminary study, mud crab shell derived catalyst exhibited high catalytic activity with

>90% biodiesel yield and high reusability for up to 11 times in reflux condition, 0.5:1 methanol

mass ratio, and 4 wt. % catalyst amount in 2 h reaction time. They179 found that the
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TABLE XIV. List of natural shell used as a catalyst for biodiesel production.

Catalysts Feedstock Time (h) Temperature ( �C) Methanol/oil ratio Catalyst amount (wt. %) Yield (%) Reference

Quail eggshell Palm 2 65 12 1.5 C¼ 89 174

Chicken eggshell C¼ 40

CaO derived waste egg shell loaded on fly ash Soybean 5 70 6.9 N/D 97 181

Combusted oyster shell Soybean 5 70 6 25 98 186

KNO3/flyash Sunflower 8 170 15 15 C¼ 88 182

Eggshell Plam olein oil 2 60 18 10 >90 183

Golden apple snail shell >90

Meretrix venus shell >90

Limestone calcite Refined bleached deodorized PKO 3 60 30 6 46.8 190

Cuttle bone 24.1

Dolomite 98.6

Hydroxyapatite 2.6

Dicalcium phosphate 1.3

Cockle shell Refined Palm 3 N/D 0.54a 4.9 97 187

Mixed crab and cockle shell Chicken fat 3 Reflux 0.55a 4.9 98 188

Crab shell (schlla serrata) Palm olein N/D 65 0.5 5 97 179

Crab shell (schlla serrata) Palm olein 2.5 65 0.5a 4 >90 178

Waste Rohu fish (Labeo rohita) scale Soybean 5 70 6.27 1.01 98 170

Eggshell Soybean 3 65 9 3 >95 173

Shrimp shell Rapeseed 3 9 2.5 C¼ 89 184

Cocoa pod husks Soybean 2 60 6 1 98.7 191

aMethanol/oil mass ratio.
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non-calcined crab composed mainly of calcite-magnesia (CaCO3–MgO). Thus, generation of

active component (CaO and MgO) after thermal activation is feasible. Besides, the statistical

analysis coupled with central composite design has been used to evaluate the effectiveness and

interaction parameters in the basis of biodiesel purity.

Fly ash is one of the inorganic industrial residues from coal-based thermal power plant (via

coal combustion processes). The chemical composition of fly ash is mainly composed of

55.19% SiO2 and 30.01% Al2O3, while others corresponded to 4.58% Fe2O3, 2.12% Na2O,

0.77% CaO, 1.91%MgO, 2.74% TiO2, 1.28% BaO, and 1.40% K2O.180 This waste is potentially

selected as low cost catalyst support due to the high amount of large pore silica and alumina.

In view of this, an effort has been made to develop a fly ash-based heterogeneous catalyst for

triglyceride transesterification to biodiesel.181 Kotwal et al.182 evaluated the catalytic activity of

fly ash loaded with KNO3 usingtransesterification of sunflower oil with methanol. The active

species of K2O derived from KNO3 improved the basicity and catalytic efficiency of fly ash-

based catalyst with maximum oil conversion of 87.5% at 170 �C, 15:1 methanol/oil molar ratio,

8 h reaction time, and 15% catalyst loading. However, the deposition of reactants/product with

the loss of the active sites during the reaction resulted in low reusability for this catalyst.

Additionally, an active CaO derived from waste eggshell was loaded on waste fly ash sup-

port for the transesterification of soybean oil to biodiesel. A total of 96.97% biodiesel was

yielded from the fly ash supported catalyst. This synthesized catalyst showed higher reusability

characteristic (16 times repeated runs) and superior catalytic activity compared to bulk CaO cata-

lyst derived from egg shell. This was due to the presence of mesoporous structure in the fly ash

framework and intensified basicity from the interaction between CaO and fly ash components.181

Viriya-empikul et al.183 compared the activity of waste mollusk shells (golden apple snail

shell and Meretrix venus shell) with waste eggshell in the biodiesel synthesis. The findings

showed that the catalytic activity was in the following order: eggshell> golden apple snail

shell>Meretrix venus shell. The result was parallel to the descending order of Ca content in

the catalyst, in which the highest Ca content was eggshell (99.21%) followed by golden apple

snail shell (99.05%) and the last was Meretriz venus shell (98.59%). Hence, the highest biodie-

sel yield from eggshell catalyzed reaction was due to the highest Ca content, high surface area

with smallest particle size of the catalyst.

The performance of shrimp shell supported KF catalyst for the transesterification of rape-

seed oil to biodiesel was also reported.184 Within 3 h reaction time, 89.1% of oil conversion

was obtained at reflux condition with 2.5 wt. % catalyst and 9:1 methanol/oil molar ratio. The

high catalytic activity of the prepared catalyst was due to the porous framework structure from

shrimp shell with active sites formed by the incomplete carbonization of shrimp shell loaded

with KF during activation process. The oyster production is one of the major marine aquacul-

tures activities in Japan. However, due to the high demand of oyster, disposal of untreated

oyster shell waste has created some environmental issues. Oyster shell is one of the selected

low cost catalysts for the calcium oxide source. This is due to the dominant component of

CaCO3 (95%) or calcite in oyster shell,185 and it is easy to transform to CaO by calcinations at

high temperature (>700 �C). While other researchers186 reported 95% of biodiesel content was

yielded in 5 h transesterification of soybean oil with methanol.

The plentiful supply of cockles as protein source led to the abundant generation of cockles

shell waste in Malaysia. Boey et al.187 tried to utilize the cockles shell derived catalyst for the

transesterification of palm olein. It was found that the cockles shell catalyst rendered high con-

tent of biodiesel yield (96.5%) under the optimized conditions of 4.9 wt. % catalyst loading and

0.54:1 methanol/oil mass ratio. The present findings of Boey et al. indicated that the high cata-

lytic activity from crab shell and cockle shell derived catalyst in biodiesel synthesis. In the

further study, they188 compared the effectiveness of mixed crab and cockle derived shell with

both individual crab and cockle shell catalysts in the transesterification of low FFA chicken fat

(2.1% FFA as oleic acid and 0.14% moisture content). It was found that mixed shells per-

formed equally in the reaction, as compared to individual shells. Furthermore, high availability

of clamshell in Malaysia has led to another interesting material for CaO synthesis. Natural short

necked clam shell was utilized as calcium oxide (CaO) source for transesterification of
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non-edible Jatropha curcas oil to biodiesel. 93% of biodiesel was successfully produced within

6 h of reaction with methanol in reflux temperature.189

Ngamcharussrivichai190 investigated the catalytic activity of different type of natural

calcium including calcite (CaCO3), cuttlebone, dolomite (CaMg(CO3)2), hydroxyapatite

(Ca10(PO4)6(OH)2), and dicalcium phosphate(CaHPO4)) in the methanolysis of palm kernel oil.

Dolomite is naturally abundant carbonate rock which mainly composed of CaCO3 and MgCO3.

The calcite is known as high purity CaCO3 whereas hydroxyapatite and dicalcium phosphate

are also natural calcium compounds. Among the natural calcium, activated dolomite with the

presence of synergetic effect between CaO and MgO showed highest activity at 98% of ester

content with 6 wt. % catalyst loading, 30:1 methanol/oil ratio, and 3 h reaction time.

Besides, the possibility of using potash from cocoa pod husks (CPHs) in transesterification

of soybean oil into biodiesel was investigated.191 Both supported (CPH/MgO) and unsupported

(CPH ash) catalysts were tested. The yield obtained for CPH/MgO-catalyzed reaction with

oil/methanol ratio of 1:6, 60 �C, 60 min, 1 wt. % of MgO doped CPH ash catalyst was 98.7%;

and 91.4% of biodiesel yield achieved for CPH-catalyzed reaction at 60 �C, oil/methanol ratio

of 1:6, 120 min, 1 wt. % of CPH ash. CPH is major agricultural wastes from the cocoa indus-

tries and has been found as a rich source of potassium carbonate therefore it will be another

potential alternative catalyst source.

III. HETEROGENEOUS CATALYST IN BIODIESEL PLANT

Studies has been conducted to investigate acid or base solid catalysts that could be

equipped in biodiesel manufacturing plant due to increase in biodiesel demands.192,193

However, majority of biodiesel plant in Malaysia is using homogenous catalyzed technology

(wet washing method) in producing biodiesel. Therefore, process modification is required in

order to facilitate heterogeneous-catalyzed reaction technology.

For continuous solid catalyst catalyzed reaction process, biodiesel converted from vegetable

oils without losing catalyst in a reactor (solid catalyst was loaded in reactor column with proper

tray basket). Figure 6 shows an example of solid catalyst catalyzed reaction process flow dia-

gram.11,194 Generally, reaction could be carried out at lower pressure and temperature compared

to those with a homogeneous catalysis. Excessive methanol usage and frequent catalyst loading

FIG. 6. Simplified process flow diagram for heterogeneous catalysed process.
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is required because solid catalyst is only managed to survive in shorter reaction time while

maintaining its reactivity.

The catalysis section consisted of two fixed bed reactors which are fed with vegetable oil

and methanol in the given proportions (normally methanol in excess). The excessive methanol

is removed after each reaction by partial evaporation and being fed into reactor 2 for reaction.

Decanter was used to separate esters and glycerol. From the schematic, biodiesel was fed into

the two successive reaction column and glycerol separation occurred in the decanter. The

methyl ester purification section (outlet from decanter 2) vaporized of the methanol in vacuum

followed by final purification step in an absorber to remove soluble glycerol. There is no mas-

sive waste water and soluble soap being generated in solid catalyzed process which eases in

operation at lower production cost.195

To date, it is uncommon to make use of heterogeneous catalyzed process technology in

biodiesel plant. However, several leading technology companies have started their plant com-

missioning. For example, Benefuel, Inc. has built an industrial-scale biodiesel refinery by using

novel solid catalyst located in Seymour, U.S.196 Besides, Axen has built the first solid catalyst

plant in 2006 which is located in Sete, France (capacity is 160 000 tons per annum). Catilin

Inc. introduced T300 solid catalyst to the biodiesel industry in year 2009 and it is anticipated

that lower operating costs, ease of use and better safety to be achieved by the technology.197

While in Malaysia, Biofuel, Ltd. (a wholly owned subsidiary of Green Energy Group, Ltd.)

cooperated with Incbio (a leading Portuguese engineering company) to build a 8000MT per

annum Biodiesel plant in Kuala Lumpur which consisted of ultrasonic reactors and solid

catalyst acid esterification technology in 2013. Incbio, Ltd., stated that the catalysts can stay in

column up to 3 years.198 Texas BioDiesel reported that a 30 � 106-gal-a-year continuous flow

solid-catalytic biodiesel process plants built was in Texas and was brought into production in

2006.199

IV. CONCLUSION AND FUTURE WORKS

Although several country (Brazil, the U.S., and the European Union) had successfully dem-

onstrate the viability of conventional technology for biodiesel manufacturing process, the bio-

diesel industry is entering a new era of feedstock flexibility, product neutrality, and advanced

conversion pathways. Thus, intensification of transesterification process by transforming from

homogeneous catalyst to heterogeneous route is the current focus in biodiesel technology. In

conventional process, homogeneous catalysts (NaOH or KOH) are unable to fit into biodiesel

feedstock with high acidity such as non-edible based acid oil, which is a highly available

feedstock for developing country. While strong acid (H2SO4) catalyzed reaction will lead to

environmental issues and corrosiveness to reactor in long term usage. Transformation of homo-

geneous route to heterogeneous technology is a viable choice in biodiesel industry. The use of

heterogeneous catalyst may require mild modification of existing biodiesel plant, which reduce

the overall production cost, while improve the productivity and reusability of transesterification

process. Heterogeneous base catalyst is the potential transesterification catalyst which emerged

with high reactivity under mild reaction conditions, versatility to various types of biodiesel

feedstock and lower catalyst cost. Main criteria of good transesterification catalyst are high

surface area with large porous system together with high basicity and strong basic strength on

the active sites. Furthermore, a catalyst with hydrophobic surface is important to improve the

adsorption of feedstock and to prevent the deactivation of catalytic sites by the strong adsorp-

tion of polar by-products such as water and glycerol. Intensification of transesterification pro-

cess can be manipulated by reaction temperature, reaction time, methanol/oil ratio, catalyst

loading, stirring rate, reaction pressure, and physical treatment (ultrasonication, microwave heat-

ing, and supercritical condition) is another criterion for a good heterogenous catalyst. Most of

the industry players are still using conventional step for biodiesel production, albeit researchers

has proved that solid catalyst may render more profit in long term operation. More biodiesel

workshop needed to be organized in order to provide more information on advantages of

heterogeneous catalyzed system to biodiesel manufacturer.
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