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Abstract This paper compares the performance of three
population-based algorithms including particle swarm opti-
mization (PSO), evolutionary programming (EP), and genetic
algorithm (GA) to solve the multi-objective optimal power
flow (OPF) problem. The unattractive characteristics of the
cost-based OPF including loss, voltage profile, and emis-
sion justifies the necessity of multi-objective OPF study. This
study presents the programming results of the nine essential
single-objective and multi-objective functions of OPF prob-
lem. The considered objective functions include cost, active
power loss, voltage stability index, and emission. The multi-
objective oplimizations include cost and active power loss,
cost and voltage stability index, active power loss and volt-
age stability index, cost and emission, and finally cost, active
power loss, and voltage stability index. To solve the multi-
objective OPF problem, Pareto optimal method is used to
form the Pareto optimal set. A fuzzy decision-based mech-
anism is applied to select the best comprised solution. In
this work, to decrease the running time of load flow calcula-
tion, a new approach including combined Newton—Raphson
and Fast-Decouple is conducted. The proposed methods are
tested on IEEE 30-bus test system and the best method for
each objective is determined based on the total cost and the
convergence values of the considered objectives. The pro-
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gramming results indicate that based on the inter-related
nature of the objective functions, a control system cannot
be recommended based on individual optimizations and the
secondary criteria should also be considered.
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algorithm - Multi-objective optimal power flow - Particle
swarm - Pareto optimal method

1 Introduction

Optimal power flow (OPF) was introduced for the first time
by Carpentierin 1962 [ 1] and developed later by Dommel and
Tinney [2]. The aim of OPF is to optimize particular objec-
tive via adjustment of the power system control variables,
while various equality and inequality constraints of the power
system are satisfied. In the past two decades, OPF became
one of the interest areas based on its capability of energy
management. OPF is a large-scale, non-convex, highly con-
strained, and nonlinear problem with continuous and dis-
crete variables [3]. Classical methods like linear program-
ming (LP) [4], nonlinear programming (NLP) [5], quadratic
programming (QP) [6], and interior point method (IM) [7]
have been applied to solve OPF. However, the mentioned
methods have difficulty in handling several local minima due
to the non-convex nature of OPF and sensitivity to the start-
ing point. Gradient-based methods such as Newton method
solve the convergence problem: however, inequality con-
straints may not be satisfied [8]. To overcome the shortcom-
ings of the classical methods, evolutionary methods are intro-
duced including genetic algorithm (GA) [9], evolutionary
programming (EP) [10], particle swarm optimization (PSO)
[11,12], simulated annealing (SA) [13], differential algo-
rithm (DE) [14], shuffle frog leaping algorithm (SFLA) [15],



biogeography-based method [16], and artificial bee colony
(ABC) algorithm [17].

Cost minimization was the primary objective of the
OPF problem, but fuel cost increment and environmen-
tal concerns led to considering new objectives including
active and reactive loss minimization, voltage stability index,
and emission minimization. Therefore, multi-objective OPF
was introduced to optimize a group of objective func-
tions simultaneously [18, 19]. Different multi-objective opti-
mization methods like multi-objective evolutionary algo-
rithm (MOEA) [20], multi-objective stochastic search tech-
nique (MOSST) [21], strength Pareto evolutionary algo-
rithm (SPEA) [22], Niched Pareto genetic algorithm (NPGA)
[23], non-dominated sorting genetic algorithm (NSGA) [24],
multi-objective differential evolution (MODE) [25], and
Tabu search method [26] have been proposed.

Although various multi-objective solutions for OPF prob-
lem have been proposed, there are a few systemalic com-
parisons that only consider limited objective functions [27—
29]. Moreover, most of the conducted studies have been
focused on merely one technique and alternative methods
are copied from the referenced publications. Hence, the pre-
cision of results is vague due to the difference in the CPU
execution time as well as the different level of details in
the variables, constraints, and parameters of the alternative
codes.

Therefore, this paper presents a comprehensive compari-
son based on the results of PSO, EP, and GA to solve multi-
objective OPF for nine important objective functions includ-
ing single-objective functions and multi-objective functions.
Pareto optimal method is applied to create a set of solutions
instead of one answer for PSO, EP, and GA. Finally, fuzzy
decision-based mechanism is applied to select the best com-
prised solution of Pareto set for each one of the three meth-
ods. The considered single-objective functions include cost,
active power loss, voltage stability index, and emission. The
multi-objective functions include cost and active power loss,
cost and voltage stability index, active power loss and volt-
age stability index, cost and emission, and finally cost, active
power loss, and voltage stability index. Multi-objective opti-
mal power flow is highly time consuming based on the mul-
tiple executions determined by Pareto-optimal solutions. In
this work to decrease the running time of load flow calcula-
tion, a new approach including combined Newton—Raphson
and Fast-Decouple is conducted. To verify the effectiveness
of the proposed methods, IEEE 30-bus test system is taken as
an example. This study provides a comprehensive compari-
sonamong PSO, EP, and GA to introduce the best method for
solving a multi-objective OPF problem considering various
objective functions. The selection of the optimizing method is
based on the total cost and the convergence values of the con-
sidered objectives. To provide a reliable benchmark, all the
mentioned methods have been programmed by the authors.

Therefore, the results presented in this paper for various
methods are consistent, as the simulation is performed with
the same computer and the level of details in the variables and
constraints are unified. Thus, this paper provides knowledge
for any researcher, graduate student, and practising engineer
to get a good idea regarding the above-mentioned optimiza-
tion methods.

The paper is organized as follows: Sect. 2 describes the
problem constraints, formulation and objective functions;
Sect. 3 demonstrates PSO, EP, and GA methods as well as the
experimental values of parameters; Sect. 4 explains the pro-
posed multi-objective optimization strategy: Sect. 5 presents
the results and discussion; and finally Sect. 6 concludes the
work.

2 Optimal power flow formulation

OPF determines the optimal settings of the power system
network variables in a manner that the equality and inequal-
ity constraints are satisfied. OPF constraints and objective
functions can be formulated as follows:

2.1 Constrains
Active and reactive power generations are defined as:

n
Pyi = Pai +V; D VilGij cos(8; — §)
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where Py; and Q; are the active and reactive power demand,
G and B are the conductance and susceptance from Y-matrix,
V and 4 are the magnitude and angle of the voltage, and n is
the number of buses. The nonlinear and functional operating
constraints of the power flow are mathematically defined as:

g(x,u)=0 3)
hix,u) <0

where g(x,u) is the typical load flow equation; A(x, u) is
the system operating constraints: u is the vector control vari-
able including voltage level, active power generated except
at the slack bus, reactive power injected, and transformer
tap changing; x is the dependant variable vector including
slack bus power, load bus voltage, reactive power generator
outputs, and transmission line loading. In the power system
network, the following constraints should be satisfied:



1. Generator constraints:

P < Py < P &)
05" < Qui < OF 8
Vimin = Vr < Vf_max (6)

max min max min max min
where Pgs s Pgi . Qg; s Qg,- , V1 and V™" are the
maximum and minimum values of the active power gen-
eration, reactive power generation, and voltage.

2. Shunt VAR constraint:
ot < Qu < QI 7

where Q1 and Qf,‘-i“ are the maximum and minimum
shunt VAR compensations.
3. Transformer tap setting constraint:

?-}min <T; < Tr'max (8)

where T™** and T™" are the maximum and minimum
tap values.
4. Security constraints:

MV Af; < MVAfP (9)
Vit < v = Vi (10)

i

where MV Af™ is the maximum rating transmission;
Vs, VM are the maximum and minimum line volt-
ages.

2.2 Objective functions
Case 1: Generation cost objective

Ngen

Fi(x) = > aiPg +biPy +ci $/h (n
i=1

Py is active power generaled; Ngeq is the total number of
generation units; a;, b;, and c; are the cost coefficients.
Case 2: Active power loss objective
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where #nl is the number of transmission lines, #; and #; are
the bus voltage angles at the two ends of the kth line, and V;
and V; are bus voltage amplitude at the two ends of the kth
line.

Case 3: Voltage stability index objective

Voltage stability can be achieved by minimizing the volt-
age stability indicator L-index value for each bus [30]. The
value of L-index varies from O to 1 during no-load to voltage
collapse conditions, respectively.

Negen
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where [ Y7 ]and [Y [ ] are sub-matrices of the ¥ bus matrix.
The network equations in terms of the node admittance
matrix are simply written as:

Thus = Ybus Vous (15)

For computing the voltage stability index value, it is neces-
sary to cluster all nodes into two categories that involve load
buses and generator buses as follows:

In | _ | Y Yo || VL
[fc]_[}’ct YGG][VG] (1o

In=YL x Vi +Ye x Vg (7

According to the superposition principle, the voltage VL“ in
the load bus £ can be calculated as:

Ngen

VE= 3 () Yie, x V s
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The L-indexes is computed for all the buses and the maxi-
mum L-index gives the proximity of the system to voltage
collapse. For stable situations, the condition 0 < L; = 1
must not be violated for any of the nodes j. Hence, a global
indicator L that describes the stability of the whole system
is given as:

F3(x)=L =max(L})

Case 4: Emission objective

Fy = Z(ﬂ-’i Ps; + Bi Pgi + vi + & exp(; Pyi)) ton/h
i

(20)

where «;, Bi, i, &, and y; are the emission coefficients.
The multi-objective functions are defined as:

Case 5: Fuel cost and active power loss

Case 6: Fuel cost and voltage stability index

Case 7: Active power loss and voltage stability index

Case 8: Fuel cost and emission

Case 9: fuel cost, active power loss, and voltage stability
index



3 Optimization methods
3.1 Particle swarm optimization

Particle swarm optimization is first proposed by Kennedy and
Eberhart [31]. PSO is developed based on food-searching pat-
tern of swarms like fishes and birds. The main advantages of
PSO over other evolutionary methods are fewer parameter
requirements as well as shorter calculation time. PSO is a
population-based method consisting of particles with chang-
ing position with time in a search space. The position of the
particles changes based on the experience of each particle
and its neighbor particles. Consider the n-dimensional vec-
tors X; = (xj1. X2, ..., Xip) and V; = (vi1, vi2, ..., Vin) @s
the position and velocity of particle i, respectively. Modified
velocity is defined as:

VI = oV +eihg x (PY— XD + ko % (ghey — XD
(2D

where P!f is the best position of particle i, w the inertia weight
parameter, ¢, ¢z the acceleration factors, 4, A7 the random
values between O and 1, and gpeg is the best neighboring
position. The next position of each particle X ;*' is calculated
as follows:

XE'H — X} + V,»H'] (22)

Inertia weight parameter « sets the balance between global
and local search. Its value is calculated as given below:

iter
) + w2 (23)

iterpay —

w = (w *wz)(

iter

where @1, w2, iter, and itermay represent the initial and final
inertia weight, the iteration number, and the maximum num-
ber of iterations, respectively. It is important to set a suitable
value to the maximum velocity of the particle. By adjust-
ing a too large value to it, the previous best position may be
missed, while a small value may lead to incomplete search in
the search space. By adjusting the small values to the acceler-
ation factors, particles may be trapped in a region far from the
target spot, while the large acceleration factors cause sudden
movement to the target region and consequently passing from
the target region. The experimental values of PSO parameters
that are applied in this study are presented in Table 1 [33].

3.2 Evolutionary programming

Evolutionary programming was first proposed in 1960 by
Fogel [32]. It is a random search method that finds the opti-
mum answer by evolving a population with a certain number
of generations. EP highlights the behavior similarity between

Table 1 The values of PSO experimental parameters

PSO parameter Value
c1 2

ca 2

@) 0.9
w3 0.4
iterpay 200
Swarm size 60
Table 2 The values of EP experimental parameters

EP parameter Value
Population size 20
Maximum generation 200
Constant a 0.95

the parents and offsprings. The major steps for evolutionary
programming-based optimal power flow are listed as follows:

e [nitialize the initial population is generated with ran-
dom value in a feasible range based on the information
delivered from the buses data, lines data, generators data,
shunts data, and transformer tap settings data.

Mutation new offspring is generated by applying a
Gaussian random variable with zero mean and standard
deviation added to the existing chromosome.
Competition and selection selection is based on the fitness
value. The best individuals with maximum fitness values
are selected to be parents of the next generation. The
process of creating off-spring and selecting those with
maximum fitness are repeated until there is no apprecia-
ble improvement in the maximum fitness value or it is
repeated up to a pre-specified number of iterations.

Experimental values of EP’ parameters that are used for pro-
gramming in this paper are presented in Table 2 [33].

3.3 Genetic algorithm

Genetic algorithm is a general optimization algorithm,
inspired from phenomena found in nature. The GA uses
Darwin’s principles to find the optimal formula for predic-
tion or pattern matching. At each generation, a new set of
approximations is created by applying a selection method
to individuals based on their fitness level. The new genera-
tions are created by using crossover and mutation operators
[34,35]. The GA consists of a population of strings trans-
formed by the three genetic operators: selection, crossover
and mutation. The only difference between EP and GA is
the crossover step which is the main genetic operator and



Table 3 The values of GA experimental parameters

GA parameter Value
Crossover probability 0.9
Mutation probability 0.01
Population size 20
Maximum generation 200
String length 41

consists of swapping chromosome parts between individu-
als. Crossover is not performed on each pair of individuals
and it is frequently controlled by the crossover probability
[36]. In crossover, the exchange of parents” information pro-
duces an offspring. As opposed to mutation, crossover is a
rare process that resembles a sudden change to an offspring.
This is performed via random selection of one chromosome
from the population and then arbitrarily changing a part of
its information. The benefit of mutation is that it randomly
introduces new genetic material to the evolutionary process,
perhaps thereby avoiding stagnation around the local min-
ima. Experimental values of GA parameters are presented in
Table 3 [33].

4 Multi-objective solution

Multi-objective optimization is developed to simultaneously
optimize a set of objective functions while the governing con-
straints and equations are satisfied. Pareto optimal method
using PSO, EP. and GA methods are developed to optimize
multi-objective optimization including cost and active power
loss, cost and voltage stability index, active power loss and
voltage stability index, cost and emission, and finally cost,
active power loss, and voltage stability index objectives. The
process of multi-objective OPF is described as follows:

4.1 Fuzzy model

Firstly, the fuzzy model is applied to normalize the objec-
tives of the multi-objective problem by applying membership
functions. Membership function is determined considering
upper and lower boundary values as:

1 if F,(X) < Ffmin
)\.;'(X) - % if Fimin < Ft(X] < Ffmax
0 if Fi(X) = Fm

(24)

F{.“‘i“, F™ are delivered based on the optimization of each
objective function. The maximum value of F(X) for the
multi-objective problem is considered the optimum value,
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while F(X) is calculated as:
F(X) =min [A(X), A2(X). A3(X). ....] (25)
4.2 Pareto optimal method

The next step is to apply Pareto optimal method to create a
set of solutions instead of one answer for the multi-objective
OPF problem. This method is based on the dominance con-
cept that vector X; dominates vector X, while the following
conditions are satisfied:

Vi ={12..... P} Fi(X)) = Fi(X2)
dj e (1.2,..., P} F;(X1) < F;(X2) (26)
where P is the number of control variables. Fuzzy method

should be applied whenever objective functions are not in the
same range.

4.3 Fuzzy decision maker

Finally, fuzzy decision maker is used to save non-dominated
solutions in each iteration. It is defined as [37]:
No .
o Brox k()
>0 2k B ()

Ny = @7

where £, is the weight factor for the kth objective functions
which is selected by the operator based on the importance of
Lhe objective functions. Nyy,; is the number of objective func-
tion, and o is the number of non-dominated solutions. The
optimum solution is the one with the maximum membership
function N ;.

Figure 1 shows the flowchart of the overall multi-objective
OPF applied in this paper. The application of each evolution-
ary method is independent and the simulation is executed for
PSO, EP and GA, separately.

5 Results and discussion

The proposed multi-objective algorithms using PSO, EP, and
GA are tested on IEEE 30-bus test system. The single-line
diagram of the IEEE 30-bus system is presented in the appen-
dix. The values of the fuel cost coefficients and emission
coefficients are listed in Table 4. To provide a systematic
comparison, the base values of cost, loss, voltage stability
index, and emission presented in Table 5 are considered [15].
The proposed work was implemented in MATLAB R2011,
a computing environment with Intel(R) Xeon(R), 3.10 GHz
computer with 8 GB RAM.

The problem is initially solved as a single-objective opti-
mization using PSO, EP, and GA methods. To decrease
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