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In this article, the capability of discrete wavelet transform (DWT) to discriminate tree
species with different ages using airbome hyperspectral remote sensing is investigated.
The performance of DWT is compared against commonly used traditional methods, i.e.
original reflectance and first and second derivatives. The hyperspectral data are
obtained from Thetford forest of the UK, which contains Corsican and Scots pines
with different ages and broadleaved tree species. The discrimination is performed by
employing three different spectral measurement techniques (SMTs) including Spectral
Angle Mapper (SAM), Spectral Information Divergence (SID), and a combination of
SAM and SID. Five different mother wavelets with a total of 50 different orders are
tested. The wavelet detail coefficient (CD) from each decomposition level and combi-
nation of all CDs plus the approximation coefficient from the final decomposition level
(C-All) are extracted from each mother wavelet. The results show the superiority of
DWT against the reflectance and derivatives for all the three SMTs. In DWT, C-All
provided the highest discrimination accuracy compared to other coefficients. An over-
all accuracy difference of about 20-30% is observed between the finest coefficient and
C-All. Amongst the SMTs, SID provided the highest accuracy, while SAM showed the
lowest accuracy. Using DWT in combination with SID, an overall accuracy up to
around 71.4% is obtained, which is around 13.5%, 14.7%, and 27% higher than the
accuracies achieved with reflectance and first and second derivatives, respectively.

1. Introduction

Tree species identification is a key element in monitoring forest species distribution and
the changes in biodiversity with time for the goal of designing meaningful conservation
strategies. Due to a higher number of spectral bands and spectral resolution, hyperspectral
remote-sensing technology can provide significant enhancement of spectral measurement
capabilities compared with multispectral remote-sensor systems (Ghiyamat and Shafri
2010) and this can be useful for forest tree species identification.

Reflectance spectra (or original reflectance) are the main information obtained
from remote-sensing imagery. So far, researchers have been able to classify tree
species based on airborne hyperspectral reflectance (Dibley, Turner, and Skidmore
1997; Martin et al. 1998; Clark, Roberts, and Clark 2005; Cho et al. 2010). However,
tree species discrimination using reflectance spectra is challenging due to the influence



of environmental factors such as soil characteristics, precipitation, and soil moisture
(Portigal et al. 1997; Lee et al. 2010). These environmental factors can affect chlor-
ophyll content (Zarco-Tejada et al. 2003), water content (Lee et al. 2010), and
transmission properties of leaves and wood, which might lead to increased dissim-
ilarity among individuals of the same species.

The derivative of reflectance spectra is another method commonly used in different
remote-sensing applications to mitigate the influence of background and illumination
effects (Demetriades-Shah, Steven, and Clark 1990; Gong, Pu, and Miller 1992; Xiao-
chen et al. 2008). The capabilities of derivative analysis to recognize different vegetation
types (Yamano, Chen, and Tamura 2003; Kalluri, Prasad, and Bruce 2010), estimation of
leaf area index (LAI) (Xiao-chen et al. 2008; Gong, Pu, and Miller 1992), stress (Smith,
Steven, and Colls 2004), leaf chlorosis (Adams, Philpot, and Norvell 1999), chlorophyll
(Zarco-Tejada et al. 2003), water content (Zhang, Jianjun, and Zhou 2010), red-edge
position (REP) estimation (Shafri et al. 2006), and tree species discrimination (Affendi
et al. 2006) using airbome hyperspectral remote sensing have been reported. Also, airborne
hyperspectral discrimination of tree species with different ages using derivative spectra over
three different classifications has been examined (Ghiyamat et al. 2013). They have shown
that derivative spectra outperformed reflectance spectra in simple classification schemes. In
more challenging classification schemes, however, no advantage has been observed when
using spectral derivative compared to reflectance spectra (Ghiyamat et al. 2013).

Recently, wavelet transform (WT) has been used as an efficient approach for extract-
ing more detailed spectral information at different scales in analysing hyperspectral data.
The fine-scale and large-scale (i.e. the first and the last WT levels/coefficients) informa-
tion of hyperspectral signals can be simultaneously investigated by projecting signals onto
a set of wavelet bases with various scales (Li 2004). WT can provide analysis of signals
either across continuum scales, referred to as continuous WT (CWT), or over a discrete set
of scales, known as discrete WT (DWT).

Several case studies have been reported in the literature that applied WT on hyper-
spectral data for forest monitoring purposes, including chlorophyll quantification
(Blackburn and Ferwerda 2008), denoising (Chen and Qian 2011), and forest LAI
estimation (Banskota, Wynne, Serbin, et al. 2013; Banskota, Wynne, Thomas, et al.
2013). The performance of WT in different applications has also been compared against
several traditional methods. Misman, Shafii, and Ahmad (2010) used the support vector
machine (SVM) algorithm to compare the performance of spectral reflectance against
DWT, CWT, and the first derivative in discriminating five land-cover classes, namely
water, rooftop, road, concrete, and vegetation, using airborne hyperspectral data. In that
study, the highest and the lowest discrimination accuracies were obtained using DWT and
first derivative analysis, respectively. Pu and Gong (2004) assessed the performance of
DWT against band selection and principal component analysis (PCA) in mapping the
forest crown closure and leaf area index using satellite hyperspectral data. Li (2004) has
shown that the abundance estimation deviation can be reduced by 30% to 50% on average
by using DWT-based features compared to using conventional PCA- and discrete-cosine-
transform-based features or the original hyperspectral signals. The results of these studies
demonstrate the capability of WT to analyse hyperspectral data for different applications.
However, only a few studies have employed WT for species discrimination using airborne
hyperspectral data. Zhang et al. (2006) investigated within and between tropical tree
species variations measured by the Spectral Angle Mapper (SAM) over airbome hyper-
spectral data. They showed that by using DWT, the spectral separability between tree
species can be increased compared to the reflectance and first derivative spectra.



Banskota, Wynne, and Kayastha (2011) applied DWT with linear discriminant analysis
(LDA) on original reflectance to discriminate three pine species (loblolly pine, Virginia
pine, and shortleaf pine) utilizing airbome visible/infrared imaging spectrometer (AVIRIS)
data. Their results showed the outperformance of DWT by 7.5% higher accuracy com-
pared to the original reflectance in pine tree species discrimination. The capability of
DWT to discriminate tree species has been emphasized by both Zhang et al. (2006) and
Banskota, Wynne, and Kayastha (2011). However, further study is required to examine
the capability of different wavelet families for different tree species.

Discriminating tree species with different ages has been shown to be quite challenging
(Ghiyamat et al. 2013) due to the high similarity or small spectral difference between
species from the same age category. Since DWT is a frequency sensitive technique, it can
enlarge small spectral variations using different mother wavelets and/or in different
wavelet coefficients. This study aims to investigate whether DWT can be useful in
highlighting the small spectral differences in such tree species.

For discriminating different spectral signatures, a good spectral measurement techni-
que (SMT) is required to determine spectral similarity and dissimilarity. The spectral angle
mapper (SAM) is one of the most commonly used SMTs in remote-sensing applications
(Yuhas, Goetz, and Boardmann 1992; Chang 2000; Cho et al. 2010; Vyas et al. 2011;
Hillnhutter et al. 2011; Dudeni et al. 2009; Baoxin, Levesque, and Ardouin 2008; Zhang
et al. 2006; Mundt et al. 2005). In addition, spectral information divergence (SID) (Chang
2000) and the combination of SID and SAM (Du et al. 2004) are the other SMTs that have
been proposed to improve the performance of SAM.

The work presented in this article is a continuation of our recent study reported by
Ghiyamat et al. (2013). In that article, it was shown that the performance of original
reflectance in discriminating tree species with different ages can be improved by using
multiple endmembers (MEMs). In this study, the main aim is to test the ability of DWT to
discriminate tree species with different ages. The study was carried out in Thetford Forest, a
planted forest in eastern England. The first objective of this study is to investigate how DWT
with different mother wavelets can be discriminated among six vegetation cover types in the
study area, namely three tree species (Corsican pines, Scot pines, and broadleaved species)
with three age classes. The second objective is to examine the suitability of the three SMTs
(SAM, SID, and a combination of SAM with SID) with DWT for discriminating tree species
with different ages. Since the use of reflectance and first and second derivatives in discrimi-
nating vegetation types is frequently reported in the literature, they are considered to be the
benchmark against which DWT is compared in this study. For this purpose, the performances
of five different mother wavelets with a total of 50 different orders are compared against
reflectance, first, and second derivative spectra using the three SMTs.

2. Methodology

2.1.  Study site and data

The study was conducted in the Thetford Forest in East Anglia (0° 41" 40.89" to 0" 43’ 50.96"
N and 52° 26" 40.43" to 52" 25' 14.72" E). It is a cojpservation forest, considered to be the
largest man-made lowland pine forest in Britain, which occupies an area of approximately
22,000 ha. The forest area consists mainly of planted and managed Corsican and Scots pines
of different age classes. There are six different vegetation covers including old Scots pine
(OSP), young Scots pine (YSP), mature Corsican pine (MCP), young Corsican pine (YCP),



old Corsican pine (OCP), and broadleaved (BL), where the young, mature, and old trees had
ages of around 16, 34, and 70 years, respectively.

The HyMap (Hyperspectral Mapper) image data as shown in Figure 1 were acquired on
17 June 2000 using the HyMap sensor as part of the Synthetic Aperture Radar and
Hyperspectral Airborne campaign run by the Natural Environment Research Council and
the British National Space Centre. The hyperspectral data have a spatial resolution of 5 m and
an average spectral resolution of 15 nm, consisting of 126 bands from 0.45 pm to 2.48 pm.
Detailed spectral characteristics of the HyMap data are shown in Table 1. The imagery was
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Figure 1. Hyperspectral data acquired from Thetford forest of the UK (red, 1647.8 nm; green,
829.2 nm; blue, 661.7).

Figure 1. Hyperspectral data acquired from Thetford forest of the UK (red, 1647.8 nm; green,
829.2 nm; blue, 661.7).

Table 1. Spectral characteristics of the HyMap sensor.

Spectral configuration

Average spectral sampling interval or

Module Spectral range (pm) No. of bands spectral resolution (nm)
VIS 0.45-0.89 31 15
NIR 0.89-1.35 31 15
SWIRI 1.40-1.80 32 13

SWIR2 1.95-2.48 32 17




atmospherically corrected by using the hyperspectral correction algorithm. The overlapping
scenes were also georectified, mosaicked, and normalized to minimize the effect ofthe sensor
look angle. The HyMap sensor provides an excellent image quality with a signal-to-noise ratio
(SNR) of =500:1. The SNR analysis was conducted for removing noisy atmospheric water
absorption bands from the original data set (Patenaude et al. 2008).

For the Thetford hyperspectral data, ground reference data generated from the UK
Forestry Commission’s geographical information system (GIS) vector data and stock
map are available, in which the scanned image of the digitized and vectorized ground
reference data is shown in Figure 2. Each vegetation cover in the hyperspectral data is
accordingly labelled in the ground reference data. As mentioned in the introduction,
there are six different vegetation covers in the ground reference data, namely OSP,
YSP, MCP, YCP, OCP, and BL. Several groups of pixels in the form of the region of
interest (ROI) were selected from each vegetation cover. Since the individual tree
crowns in the hyperspectral image are not distinguishable due to the low spatial
resolution (5 m), each ROI might contain pixels from more than one tree in the
same vegetation cover. Therefore, the analysis in this study is based on pixel detec-
tion. The number of ROIs and the total number of pixels per vegetation cover that are
used in this study are shown in Table 2. Each ROI in this study contains about 50
pixels. The selected ROIs for each vegetation cover are presented in Figure 2. For
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I Mature Corsican Pine (MCP)
B Young Corsican Pine (YCP)
B Old Corsican Pine (OCP)
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The white colour areas are the
sample data selected from
different vegetation covers

Figure 2. Ground reference image of the hyperspectral data. The selected ROIs for this study are
presented in the ground reference image.

Table 2. The number of ROIs and total pixels per tree species selected from hyperspectral data.

Species BL MCP ocp YCP OoSsp YSP
No. of ROIs 6 6 6 6 6 4
Total no. of pixels 321 308 306 318 328 216

No. of testing pixels 231 218 216 228 238 156




comparison purposes, the same sets of ROIs used in our previous research (Ghiyamat
et al. 2013) are used in the present study. This can be helpful for comparing the
performance of WT with MEMs in discriminating the same sets of data with similar
sample pixels.

2.2, Wavelet-transform

In the past two decades, WT has been developed as a powerful analytical tool for signal
processing and is now being used in remote-sensing applications (Bradshaw and Spies
1992; Bruce, Li, and Huang 2002; Koger et al. 2003). Bruce and Li (2001) indicated that
the wavelet-based method 1s feasible and practical for the analysis of hyperspectral
signatures, and specifically for computing scale-space images and spectral fingerprints.

As noted above, with CWT, multidimensional signals such as image cubes can be
analysed across a continuum of scales. DWT, on the other hand, analyses signals over a
discrete set of scales, and typically contains log; n segments of various transforming
lengths 2" (2", n = 1, 2, 3, ...). DWT has an advantage over the CWT, where it can be
implemented using a variety of fast algorithms, and thus has fewer computational
requirements (Bruce, Morgan, and Larsen 2001).

The WT decomposes the hyperspectral signal into sets of coefficients. Each set is
associated with a spectral scale and each element in a set associated with a particular
wavelength location. A set of wavelet basis functions, {i, ;(4)}, can be formed from the
mother wavelet, (1), by a series of scaling and shifting operations using:
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where a and b are real numbers in which the variable a is greater than 0, and it indicates
the scale (or width) of a particular basis function, and the variable b specifies its shifted
position. The wavelet coefficients for the DWT, denoted by W;, are defined by the scalar
product of the hyperspectral signal as a function fi1) and the scaling function (i.e. the
wavelet basis function or mother wavelet) y(4), which can be obtained by

Pﬂ'._k = <f(’1), wj__k (’1)> s (2)
where the wavelet basis function (1) can be calculated by

wix(A) =27y (270 — k), (3)
where j is the jth decomposition level or step and & is the Ath wavelet coefficient at the jth
level. The scales of DWTare a =2, 4, 8, ..., 2, ..., 27, where p indicates the maximum
decomposition level. Theoretically, the maximum level of decomposition is referred to a
level such that the set of detailed coefficients corresponding to this level consists of only
one element. Therefore, if the initial signal length is N, then the maximum level of
decomposition cannot exceed log>(N). In practice, however, the maximum number of
decomposition levels also depends on the choice of the mother wavelet (Bruce, Morgan,
and Larsen 2001), which can be calculated as



p = fix(log,(N) — log,(M — 1)), “)

where M is the length of the mother wavelet, which depends on the type and order of
mother wavelet, and fix(.) is to round the value in the parentheses to the nearest integers
towards zero. For example, the maximum decomposition level for a signal with a length
of N =21 and the mother wavelet of Daubechies-3, which has a length of 6, is equal to 2.

The DWT has been extensively used in the development of fast wavelet algorithms.
The most common implementation of DWT is the well-known dyadic filter tree algorithm
developed by Mallat (1989). The term dyadic refers to the resolution between two scales
of WT, which is decreased by a factor of two. Figure 3 illustrates the dyadic filter tree
algorithm for implementing DWT. The input to the filter tree, f{4), is the hyperspectral
signal (e.g. reflectance spectra), and the signal is then passed through a series of high-pass
and low-pass filters (HPF and LPF). After passing the input signal through the filters in
each scale, the signal length is degraded by a factor of two. The outputs of the HPF and
LPF at scale a are called the wavelet coefficient detail and approximation (CD, and CA,),
respectively. At each scale or stage, the wavelet approximation coefficients from the
previous scale are used as the input to the next stage.

The final result of the DWT decomposition of a spectrum is a set of wavelet
coefficients that are represented as a vector: W = [CA,, CD,, CD,_,, ..., CD,, CD],
where p is the coarsest decomposition level. At a particular scale, each wavelet
coefficient is directly related to the amount of energy in the signal. It should be
noted that W is dependent on the selection of the type and order of mother wavelet
(Zhang et al. 2006).

A variety of parameters can be computed from the DWT decomposition, such as
the wavelet coefficients, their energy, and any combination of the two. While the
wavelet energy feature represents the energy distribution of the original spectrum
across different scales, the wavelet detail coefficient reveals the spectral information
in hyperspectral signals at a specific spectral scale. In this study, each wavelet CD at
different decomposition levels individually, and W (combination of all CDs plus the
last approximate coefficient (hereafter denoted C-All)) are used as the main features
for discriminating tree species. In addition, five different wavelet families such as
Haar, Daubechies (db), Coiflet (coif), Symlet (sym), and Biorthogonal (bior) with
different orders are used in this study. These five common mother wavelets are used
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Figure 3. Dyadic filter tree algorithm for DWT implementation.



Table 3. The maximum number of decomposition levels for different mother
wavelets and orders.

Maximum decomposition levels based
Wavelet family and orders on 128 bands

Haar

db 2

db3to db 4
db5todb8

db 9 to dblé
sym 2

sym 3 to sym 4
sym 5 to sym 8
sym 9 to sym 16
coif 1

coif 2

coif 3 to coif 5
bior 1.3

bior 1.5

bior 2.2

bior 2.4 and 2.6
bior 2.8

bior 3.1

bior 3.3

bior 3.5 and 3.7
bior 3.9

bior 4.4 and 5.5
bior 6.8
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in this study as examples to represent how DWT can be helpful in discriminating tree
species with different ages.

To apply WT, the sample data (here that are reflectance spectra) were directly used for
wavelet analysis using Matlab software. Since 126 spectral bands are available in the
hyperspectral data, two artificial bands were added into the end of each of the sample
spectra to have the maximum possible decomposition level of seven (27 = 128) rather than
six. The reflectance value for the new (or artificial) bands was assigned by calculating the
average of bands 123 and 124, and 125 and 126. In this study, the maximum decomposi-
tion levels for the five different wavelet families and different orders were determined
using Equation (4) as shown in Table 3.

From the five different wavelet families, a total of 50 different orders and 195
coefficients (as shown in Table 3) are used for discriminating tree species. Since dbl,
syml, and biorl.1 are the same as Haar, they are not considered in this study. Except for
the detail coefficient in the seventh decomposition level in the Haar mother wavelet,
which has only one sample, all other detail coefficients from different mother wavelets
and orders are considered. As mentioned above, in addition to all CDs per wavelet order,
C-All is also used for discriminating tree species.

2.3.  Classification approaches
SMTs are useful tools for discriminating different spectral signatures. As mentioned in
Section 1, three different SMTs, namely SAM, SID, and a combination of SID with a
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