A distributed particle filtering approach for multiple acoustic
source tracking using an acoustic vector sensor network
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Different centralized approaches such as least-squares (LS) and particle filtering (PF)
algorithms have been developed to localize an acoustic source by using a distributed
acoustic vector sensor (AVS) array. However, such algorithms are either not applicable for
multiple sources or rely heavily on sensor-processor communication. In this paper, a
distributed unscented PF (DUPF) approach is proposed for multiple acoustic source
tracking. At each distributed AVS node, the first-order and the second-order statistics of
the local state are estimated by using an unscented information filter (UIF) based PF.
The UIF is employed to approximate the optimum importance function due to its
simplicity, by which the matrix operation is the state information matrix rather than
the covariance matrix of the measurement sequence. These local statistics are then fused
between neighbor nodes and a consensus filter is applied to achieve a global estimation.
In such an architecture, only the state statistics need to be transmitted among the
neighbor nodes. Consequently, the communication cost can be reduced. The distributed
posterior Cramér-Rao bound is also derived. Simulation results show that the perfor-
mance of the DUPF tracking approach is similar to that of centralized PF algorithm and
significantly better than that of LS algorithms.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

combination of multiple hybrid arrays of pressure sensors
can be used. Utilizing the correlation information between

Traditionally, multiple acoustic sources are tracked
using either a single or multiple array setup comprising
of several pressure sensors. In the case of a single array, a
large number of pressure sensors are needed to provide
enough aperture for accurate estimation. Alternatively, a
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pressure measurements recorded from different arrays in
the processing algorithms adds to the complexity of the
multiple array setup. Irrespective of the configuration
used, the pressure measurements obtained from the arrays
are processed using an estimation algorithm such as the
Kalman filter (KF) and particle filter (PF) to track the
acoustic sources. In recent years, acoustic vector sensors
(AVS) [1,2] that have the capability of measuring
both particle vibration velocity and acoustic pressure at
the sensor's location have been widely employed for
acoustic source detection and localization. Accordingly,



several signal processing approaches [3-21] have been
developed for source localization and tracking using AVSs.
These approaches are, however, centralized and based on a
fusion centre. In such a centralized configuration, all pres-
sure measurements have to be communicated to the fusion
centre adding unnecessary latency to the estimation
mechanism. The computational complexity of the central
approaches is also fairly high with all processing completed
at the fusion node. The fusion node is, therefore, critical and
its failure makes the network in-operational. Compared to
the centralized estimation techniques, distributed estima-
tion, where all nodes collaborate in the estimation process
by locally processing the pressure measurements and
combining the local results, offers several advantages,
including scalability, higher immunity to network failure,
and dynamic adaptability to changes in the network
topology. These recent advances in the sensor network
technology motivates the proposed deployment of distrib-
uted sensor network for acoustic source localization [22].
In this paper, we derive a novel multiple acoustic source
tracking algorithm based on the unscented particle filter for
the distributed AVS network and show that its performance
is comparable with the centralized approach.

1.1. Acoustic vector sensor

The AVS employs a co-located sensor structure which
consists of two or three orthogonally oriented velocity
sensors and a pressure sensor [1,2]. Given an AVS with
three velocity components that is located at the origin of
the 3-D (x-, y- and z-coordinates) space, the sensor
manifold uc ®**' has the following form:

1 1
x(ch, ) cos ¢ cos
"— a . (8]
Yich,yr) sin ¢ cos y
z(yr) sin yr

where the first component represents the pressure mea-
surement, and the other three components are the particle
velocities. The 2-D direction of arrival (DOA) ¢ e (—x, 7]
and y e[—x/2, /2] are the azimuth and elevation angles,
respectively. The manifold suggests that the AVS has
following advantages over pressure sensors:

1. It produces both azimuth and elevation angle informa-
tion and enables 2-D DOA estimation with a single AVS.

2. 1t allows elevation angle estimation unambiguously.

3. The manifold is independent of the frequency of the
source signal, which makes AVS suitable for wideband
source signal or scenarios where the frequency of the
source signal is unknown a priori.

Due to a number of advantages mentioned above, both the
theoretical aspects and the applications of AVS have been
widely studied during the last decade [3-21]. An intensity
based algorithm and a velocity covariance based algorithm
were firstly presented in [3]. Maximum likelihood based
DOA estimation algorithms are developed in [23,24]. The
beamforming approaches [7] and the subspace based
approaches such as MUSIC [10,15] and ESPRIT [5,8,10,13]

have been developed for 2-D DOA estimation problem.
Tracking the DOA of a single acoustic source has been
recently studied in [25-27]. In the authors’ previous work
[28-31], different particle filtering (PF) approaches are
developed for DOA tracking. Applications of the AVS in room
acoustic signals and underwater acoustic environment are
investigated in [32] and [33,34], respectively. The AVS signal
based source localization in impulsive noise environment
has been considered in [35]. The authors in [36] employ a
towed AVS to track the angles and frequencies of sperm
whales. However, such investigations focus only on the 2-D
DOA estimation, rather than the 3-D position in space.

12. Centralized approaches for 3-D pasition estimation

Recently, an AVS array consisting of a number of
spatially distributed AVSs has been deployed for 3-D posi-
tion estimation problem and, accordingly, different centra-
lized approaches have been developed [13,37,38]. In [13],
least-squares (LS) approaches have been derived for wide-
band acoustic source localization based on the distributed
AVS array. The 2-D DOAs of the source are firstly estimated
at each distributed AVS by using the Capon beamforming
method [7]. The weighted least-squares (WLS) and re-
weighted least squares (RWLS) algorithms are then devel-
oped to obtain the 3-D location parameters at the central
processor (CP) by triangulating the DOAs. Such a centralized
approach is illustrated in Fig. 1(a). The DOAs are estimated
at each local node, and then transmitted to a CP. The
triangulation approaches are implemented in the CP to
estimate the 3-D position of the source. These algorithms
can be categorized into indirect methods since the position
is estimated from the DOA estimates rather than from the
received signals directly. The advantage of indirect methods
is that each AVS needs only to transmit the DOA estimates
to the CP and thus the communication cost can be reduced
significantly. However, such approaches cannot be applied
for multiple source position estimation unless the DOA
estimates can be correctly associated to each source. Also,
the accuracy of the triangulation can seriously degrade due
to the inaccurate DOA estimates at the local AVSs.

In [38,39], a PF approach is developed to track the 3-D
position of multiple sources using the same array config-
uration. It can be referred to as a direct method since all
received signals are directly transmitted to the CP to
estimate the source position. There is no need to prepro-
cess the data to extract the DOA estimates. The advantages
of the proposed approach is that it is able to track dynamic
sources and, in particular, it can be applied to track
multiple wideband acoustic sources. Also, compared to
the indirect approaches, it is able to provide better
estimation accuracy. However, transmitting all received
signals to the CP and processing them can be cumbersome
since both the communication and the computation cost
can be high. It is worth mentioning that in [37], a random
finite set (RFS) approach is developed to jointly detect and
track a time-varying number of multiple sources. Also,
distributed deployment of the sensor components of an
AVS has been studied by considering the acoustic pressure
sensor component placed far away from the velocity-triad
[40] and sparsely located linear AVS array [41].
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Fig. 1. lllustration of different AVS network configurations. (a) Centra-
lized configuration and (b} decentralized configuration.

1.3. Proposed distributed tracking approach for AVS network

In this paper, a diffusive estimation scheme where each
node diffuses its local first- and second-order statistics
throughout the network by communicating with its neigh-
bor nodes is developed. Such a diffusive estimation
approach is able to fully exploit the merits of the dis-
tributed AVS array/network, e.g., low energy consumption
and high robustness and scalability. Fig. 1(b) gives an
illustration of the network structure. At each distributed
AVS node, the statistics of the state are estimated by
using an unscented particle filter (UPF). Considering
that a number of measurements are used in acoustic
applications, an unscented information filter (UIF) [42] is
employed to approximate the optimum importance
function due to its simplicity. The UIF needs only to
perform the inversion of a small matrix, i.e., the covariance
matrix of the state noise process, while the UKF requires
the inverse operation of the covariance matrix of the
measurement noise process that can be computationally
very expensive. The estimated statistics are then employed
for formulating an optimum importance function and a PF
is applied to refine the local statistics estimation.

A consensus-based distributed estimation approach is
then proposed for the AVS network to obtain global
position estimates. Basically, consensus filtering is the
process of establishing a consistent value for the statistics
of the state across the network by exchanging relevant
information between the connected neighbor nodes.
In this work, we focus on a distributed implementation
of the UIF in which the global estimates are obtained using
a consensus filter. In such an architecture, the information
that needs to be transmitted among the AVS nodes is only
the first-order and the second-order statistics. Hence, the
communication cost can be reduced. Also, the local states
are estimated directly from the AVS signals.

For sensor selection decisions, the posterior Cramér—
Rao bound (PCRB) has been utilized as an effective
criterion [43-45] since it can be computed predictively
and is independent of estimation mechanism. The need
for computing the PCRB distributively occurs in the
distributed/decentralized sensor networks, where sensor
resource management (sensor selection) issues are often
based on the online computation of the PCRB for the
specific system configuration. Following our work in
[46,47], the PCRB of the distributed estimation (referred
to as the DPCRB) is derived via a distributed factorization
of the posterior distribution. Through simulations, we
show that the proposed bound is a little higher than its
centralized counterpart in both single source and multiple
source scenarios. The justification for this observation is
provided in the experimental section.

The core contribution of this work is that a distributed
tracking algorithm is developed to track multiple acoustic
sources using an AVS network, and the corresponding
DPCRB has also been derived. The rest of this paper is
organized as follows. In Section 2, the AVS signal model
and centralized PF (CPF) method are introduced. Section 3
presents the distributed algorithm development for multi-
ple source tracking. Derivation of the DPCRB is presented
in Section 4. Simulations are organized in Section 5.
Conclusions and future directions of this work are dis-
cussed in Section 6.

2. Problem formulation

This section presents the AVS signal model. The dis-
tributed AVS network and the position estimation problem
are then addressed. Note that general assumptions for the
source signal and the noise process are the same as those
in [13].

2.1. AVS signal model

At discrete time instance k, assume that N AVSs are
deployed at arbitrary distinct 3-D locations xj =[x§,y{,
22" e ¥ forn=1,....N to receive the signals emitted by
M sources located at X, = [xmk,ym_k,zmk]r er®?! form=
1,...,M. According to the sensor-source geometry, the 2-D
DOAs of source signals &, , = [}, 1, " ] & R**" are related
to the source position by

Xm —Xg
P = tan '(),7"1' );
" mk _}"8



1 Zmk—Zy
Vi =X + Vs~ V)

W= tan (2)

where 475",“:,(5 (—m.x) and w7, €[— /2, /2] represent the
azimuth and the elevation angles, respectively, and the
superscript T denotes the transpose. The complex acoustic
source signals sn(k)e C are assumed to be wideband and
independent of each other. Let uf} (k) be the unit direction
vector pointing from the nth sensor toward to the mth
source and given as

€oS Y7, COS Drun
(k)= | cos i, sin g, | 3
sin g,

The received signal model for nth AVS can be written as [3]

¥, ! k k 4
= Smi(k)+en(k),

k mgl ug.l[k) FIT( ) ﬂ[ ) ( )

where en(k)e C**! represents the channel noise including
the pressure and the velocity noise terms. Note that in (4),
the pressure and the velocity measurements are assumed fo
be proportional to the signal amplitude, and we have
normalized the particle velocity terms by multiplying by a
constant term - p,co, where p, and ¢, represent the
ambient density and the propagation speed of the acoustic
wave in the medium, respectively. The noise process €], is a
sequence of complex-valued ii.d. circular Gaussian random
variables with zero mean and covariance matrix I', given as
€} ~CN(0.I'), where CAN(-|u.X) stands for the circular
complex Gaussian distribution with mean g and covariance
X, Also, the noise processes at different AVSs are assumed to
be independent of each other.

At each time step, a frame of signal that consists of a
number of snapshots are employed to estimate the posi-
tion. For the AVS data structure (4), each snapshot contains
4 x 1 samples. Assume that T, snapshots are employed at
each time step. When T, is small, the source can be
assumed to be stationary during each measurement frame.
Eq. (4) can thus be written in a matrix form as

Yy = A" (Xp)Si +€5, (5
where Y} e C**™ and €7 e C**™, and

AK) =[a"(Xy ), -, A" ()] € TN, (6)
Sk =[St Suil €Yo, )

T
with a"(X;) = [1,(u"m[k))r] ec*'. In [13], a two step

method has been developed for 3-D localization. The AVS
signal model (4) is employed to obtain DOA measurements
by using the Capon beamforming method. The DOAs are
then regarded as measurements and employed to trian-
gulate the 3-D source position by using a WLS approach or
an RWLS approach. However, these approaches are limited
to the single source scenario. Although the DOAs of multi-
ple sources can be found by obtaining multiple peaks in
the Capon beamforming response, achieving a 3-D posi-
tion estimation is not a trivial task since a sophisticated

data association technique is required to assign the DOAs
to each source.

2.2. Centralized particle filtering

Eq. (5) shows a direct relationship between the mea-
surements and the 3-D position states. Hence, it is possible
to estimate the 3-D position of the source directly given by
the signals collected from all sensors, i.e., Yk:[(Y,l)T‘..“
(Y’Z")T]T. Given a signal sequence Y =[Yy, ..., Y;] obtained
until time step k, the state to be estimated is X, (e.g.,
Xy = [x],.....xJ;,]"). The posterior distribution of the state
p(xk|Y|:}() can be obtained via a Bayesian recursive estima-
tion, given as [48]

® Predict:

DXk Y1 1)=fP(xk\xk DPXy 1Y 1) dXg 13 (8)

® Update:

PYRIX)p (X Y1k 1)

9
P(YrlY1k-1) ©

P(XylY ) =

In this recursion, p(X;,_[Y4_ ) is the posterior distribution
estimated at the last time step, and p(XpXi_1)=
P(Xp|Xy 1.Yq4 1) is the state transition probability density
function (PDF) for the current time step. The Bayesian
recursion states that given the transition PDF and the like-
lihood (which can usually be obtained according to the
system models), the current state PDF can be estimated
recursively from the state PDF at the previous time step k— 1.

Although the Kalman filter can be used to solve the
Bayesian recursion in (8) and (9), its use is limited to the case
of linear and Gaussian system models. Since the measure-
ment function is nonlinear, the PF [49] that provides an
excellent solution to the nonlinear problem is employed. The
core idea of the PF is that it uses a set of particles and
importance weights of these particles to approximate the
posterior distribution. Assuming that L particles are used to
approximate the above Bayesian recursion, the PDF p(X,|

Y .) is represented by (X, w}"’ }i _ - The entire procedure
of PF processing can be summarized as follows. At time step

k, the particles are sampled according to an importance
function, given as

x(kf} — q(x(kf}lx(f’}

10 Y 1k)- (10

The importance weights of the particles are then evaluated
by
o POGIXpa” Xy )

W = w (11)
T eI Y

Usually, the optimal importance function, ie. g(X{"|X{",.
Y =pX7 X" .Yy, is able to provide the minimum
estimation variance. After the resampling scheme, the



posterior distribution of the state is thus approximated by

L
PXYi0 & 3 WG (X)), (12)
£=1 k

where §(-) is a Dirac-delta function, and W}’ is a normalized
weight. The centralized PF approach has been developed for
AVS based acoustic source tracking in [50,31,38]. It has been
shown that PF tracking approach is able to provide better
accuracy of source position estimation than that provided by
the WLS and RWLS based localization approaches [38].

2.3. Distributed AVS network

In the centralized PF approach, all collected signals are
needed to be transmitted to the central processor. This is
cumbersome since both the communication and the com-
putation cost of the system can be very high. In this paper,
we consider a sensor network comprising of N nodes.
Following the AVS signal model (4) in Section 2.1, each
node makes a measurement Y}, at discrete time instants k.
The global measurement vector is given by

Yi A' (%) €
= : +1 &, (13)
Y} Ay | | e

where €} is the uncertainty in the local measurement
models. The nodes of the network are modeled as vertices
of the graph G = (v, £), namely as the elements of the node
set ¥ ={1,...,N}. The edge set £<=wv x v represents the
network's communication constraints, i.e., if node n can
send information to node u then (n,u) € £. For graph G, the
maximum degree 4; = max, D", where D™ is the num-
ber of neighbor nodes for the node n.

Assume that the local observations made at different
sensor nodes conditioned on the state variables are inde-
pendent among each other. According to the Bayesian
update equation (9), the posterior distribution of the
global state estimates X;,, can be written as

H{:I= lp[Y:|XU

Xy Yip) = = 1k oY ). 14
P(XqkYik) POYeY1e 1) (X9l Y14 1) (14)

where p(XyYy4 1) =PXy Xy )P(Xqg11Y14 1) Further,
we assume that the statistics or the state can be estimated
at the local nodes, ie., the posterior distribution is avail-
able at each local node. According to Bayes' rule, the
likelihood at each node p(Y}|Xy) can thus be obtained as

P(YiXi) =P (YilXe, Yig 1)

_ PGlYig)

= POXIYT,, (Yel¥ig 1) (15)

Hence, the posterior distribution of global estimates can be
written as

I8 1 P(Xil Y

Pl Yig 1)
HPXpel Xy P K1 Y1) (16)
The distributed estimation approach differs from the

centralized approach in that the local posteriors of the
states are estimated (distributively) at each local node.

PXxlYip) =

These posterior distributions are then fused together to
obtain a global estimation.

It is worth mentioning that since dynamic sources are
considered, the source is usually assumed to be at a
position X} and moving with a velocity X{. The new state
X is thus constructed by cascading the position part with
the velocity part, given as

Xpe = (XD, X)) (17)

The constant velocity (CV) model [51,29,30] is employed
here to model the source dynamics, given as

Xy =FXy 1 +GVp (18)

The coefficient matrix F and G are defined respectively as
I; ATl é{i]a

F=1 . G=1 19

M @ {l} I :|, M ® ATI, . (19)

where I; denotes the gth-order identity matrix, and AT
represents the time period in seconds between the previous
and the current time steps, and & denotes the Kronecker
product. Vj, is a zero-mean Gaussian process that describes
the turbulence in modeling the source velocity and assumed
to have a variance matrix X,. In the next section, a distributed
unscented particle filter approach is developed to estimate the
positions of multiple sources.

3. Distributed tracking algorithm for AVS network

In this section, a distributed unscented particle filtering
(DUPF) approach is proposed for 3-D source position
tracking. First, at each AVS node, an unscented information
filter (UIF) based PF is implemented to obtain a local state
estimation. A consensus filter is then employed to fuse the
local posteriors to derive the global estimates.

3.1. Unscented information filter at local nodes

Assume that at time step k—1, the global estimates of
the source state X, _, and the covariance P,_, are available.

At each AVS node n, rather than updating Xy 1 and Py,
based on the local measurements, the UIF updates the

Fisher information matrix Z;, ; and the information state
vector Z;_,. These two information terms are defined as

Iy .2 (ﬁ: ol (20)
Zp 21y li: 1- (21)
The core steps of the UIF can be summarized as follows [42]:

1. Calculate a set of (2n,+ 1) deterministic samples (sigma
. i as 2n,

points) S = (W, A, ]}jio where n, denotes the num-

ber of state variables, based on the following scheme:

; - = i
Xy, =X: 1 i{\j (nx+K)P: 1} s (22)
=)/
where term {\f“[nxﬂc)]’k ]} corresponds to the jth

column of the square root of matrix (ny +x)ﬁ: 1 and the
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. Propagate X"

initial condition is given by XED =)7{': 1- The corre-
sponding weights for the sigma points {W}f:‘, are given
by W/ = 1/(2(n, +x)), where k is a scaling parameter and

the initial condition for the sigma points is W=
K/(Ny +K).

. Generate the predicted sigma points

Xy =FxyY 4Gy, forj=0,..2n, (23)

wik_1 through the measurement function
(5) to generate the predicted observation sigma points

Vil =AML, Sy, fori=0,....2n, 24)

where S, is a maximum likelihood estimation of the
source signal, given as

i mnj H n nj
5k=((}\"(3’kﬁ( 1)) A [X!q{( 1))

< (A" ) YL 25)

. Estimate the predicted source state Xy, ,, the error

covariance matrix F!:nc 1» and the predicted measure-
n .
ment sequence Yy, ; as follows:

- e
xiqk 1= ,anka 14 (26)
j=

=il 2ny d i vl
Piqk 1= .Zow(fkfk lfx!qk 1)
j=

< (X~ Kigge ) (27)
2n, o

ygnc 1=.anykfk 1 (28)
j=

. The cross-covariance F:IFI between the predicted mea-

surement and the predicted state estimates is computed as
) 2n,
=1V X i i =
Pk|k 1= .ZOWU""HJ;( 1_xk|k )
j=

<OV Y. 29)

. The predicted information matrix and the state vector are

- 1
T:\k 1= (P:H( 1) . (30)
E;n( 1 :f:m lfiqk 1- (31)

The information contribution equations are given as

ki = (HY) (R]) T (EE+HIXG ). (32
= (H)' (RY) 'HL. (33)
where

7 =i .y
(HkJT:(Pklk I) Pelys (34)

E=Yi —An(Tkm 1)5%. (35)
Here S, is obtained according to (25) by replacing
i . =
Xieoq WIth Xy .
8. Update the Fisher information matrix and the informa-
tion state vector

j::g;"’fikm 1 (36)
Z =K+ Zg 1 37

9. Finally, the statistics estimated at the nth local node can
be obtained as

Pi = (}) "

Xy =P, 2.

(38)

(39

The UIF can only provide a coarse estimation of the
posterior. A PF is then applied to obtain a more accurate
state estimation. After implementing the UIF, the optimum
importance function at the local node can be approxi-

mated by
QXEIXE L YD) =N (X, BY). (40)

The particles are thus drawn according to (40), given as

X~ qOXEIXg 1. Y- @1
The importance weight is calculated as

Y XAy )L L)
w:_(r’} _ w?(r’]}p( 1 X TP X, |)‘ @2)

a6 71X, Vi)

The detailed expression of transition density p(X;*” X))
and likelihood p(YE|X:-“”) in (42) will be given in
Section 3.3. After resampling, the local statistics are
estimated by

L
Xp= ¥ wioxpo; @3)
=1
L ]
P,= ¥ “/‘k.(t’}(x;(f’} 7?:)(){:.(?} SX. (44)
=1

In the next section, a consensus filter will be introduced to
fuse these local statistics to obtain a global estimation of
the source state and the covariance matrix.

3.2. Consensus filter for global estimation

In the distributed estimation, the local particles and
their associated weights are based only on the local
observations Y. This results in inconsistent state esti-
mates E(X,[Y}) across the network. A consensus step is
introduced to provide the consistency of the local esti-
mates. Based on the model described in Section 2.1, we
model the local posterior with a Gaussian distribution and
develop a consensus-based distributed counterpart of the
optimal decentralized fusion rule. We go one step further
and use such Gaussian approximations in the context of



local UIF as the proposal distribution. At time instant k—1,
all nodes are assumed to have reached a consensus with a
single set of global estimates X, _; and P, _, across the
network. A new measurement Y} is now available at the
local node n, for 1<n=<N. Based on Egs. (43) and (44),
the node n computes the state X, and its corresponding
error covariance ?: (local statistics).

The second step is the fusion step used to compute a
consistent set of values for the global statistics X, and P,
at time k from the local statistics. To combine the local

o N .
statistics {X},,Py),_, into a common set of global statis-

tics, X, and P, across the network, based on the Chong-
Mori-Chang track-fusion theorem [52], the following rules
are derived:

F}k] I=T:\k ]+n§|{[]_):] ]_T:n( 1}2 (45)
Pcrw}

- -~ L N —=n] “l—n  —n

xk:[Pk] = 1+n§l{[]’k} Xy = Zuk 1} - 46)

Ke(oo)

In Egs. (45) and (46), {Xc(=c), Pd(c)} are obtained by
iterating the following average consensus equations:

XU+ H=X{(O+e ¥ (XO-XI0) (47)
j

Pl(t+1)=Pl0)+e ¥ (PLt)—PL(D), (48)
jene

until they converge to (Xc(oc), Pe(n0)], where € € (0,1/4g).
The initial conditions are

=i -1 _—a
Pﬂ(t=0)=[]}k] ~Tyk-1; (49)
n —n] “ 1o —a
X(t=0)= [Pk} Xy —Zyp-1- (50

Note that the consensus approach in Eqs. (47) and (48) is a
distributed algorithm where each node communicates
only with its neighbor nodes. Convergence of the con-
sensus algorithms has been extensively studied [53], e.g,,
it has been shown [53] that achieving consensus in a finite
number of iterations is possible even for time-invariant
topologies. In this paper, we consider the case where it is
possible to communicate sufficiently fast so that consensus
is reached between two successive observations. This is a
common practice in consensus-based distributed imple-
mentation of the PF. See [46] for extension to the scenario
where the consensus is not reached within two consecu-
tive time iterations.

3.3. Tracking algorithm

The transition density p(X;|X; ;) and the likelihood
p(YIX}) in (42) can be obtained from the state dynamic
model (18) and the measurement model (4), respectively.
Note that the particle indices are dropped off without any
ambiguity in this section. Also, ignoring the node indices,

the transition PDF can be written as
PXil Xy 1) = pOXLXPIXE . XY )
=POXEIXE 1, Xi_ DPXLIXE 1), (51)
where p(XPIX} |.Xy_ ;) and p(X{|X{_,) can be, respec-
tively, given by
POXEIXE 1. X 1)
=N XP_ +ATX; ;AT /4Q); (52)

PG XE )= NXE:XE . AT Q). (53)

According to [3], the concentrated likelihood function can
be written as

PYRIX) = (1~ T )exp(—4T)

det(TPALIT + 321130 T, (54)
where
IT; = A, (D) (AL (XD)ALXD) A (XP); (55)
0 =1-Im; (56)
5 :4_1Mtr(l'l"k=°x”i:); (57
—n 1
A =V, (58)

where the superscript H denotes the conjugate transpose.
The transition density p(X;[X;_;) and the likelihood
p(Y}1X}) at the nth local node can be derived by replacing
their counterparts in (51) and (54), respectively with X}
and X} ;.

For the first time step in implementing the distributed
tracking algorithm, the positions are initialized by using a
maximum likelihood estimation of the total likelihood
given as

. N
X, =arg max 1 PO, (59)

The velocity part of the state is initialized around the
ground truth velocity and an initial covariance Xq is given
to describe the errors in the position and velocity state
estimation.

34. Analysis of the communication and computational cost

The complete tracking algorithm is summarized in
Algorithm 1. The centralized particle filtering approach is
an optimal one since it makes full use of correlations
between the signals received at different AVSs. However,
it requires the transmission of all raw data to a central
processor either directly or indirectly via multi-hop relay.
Such a centralized scheme is not practical in terms of
communication cost since for wideband acoustic signal, a
frame of signal is processed at each time step. For example,
assume that the frame length is T,. That means 4T,
signal samples have to be transmitted from each AVS at
each time step. Consider an AVS network with N sensors.
The central processor has to receive 4NT, samples at
each iteration of the filter. Such a high data rate is not



achievable in applications with low or intermittent band-
width connectivity. Also, synchronization among different
AVSs is not a trivial task. The proposed approach needs
only to transmit the first- and the second-order statistics
among connected neighboring sensors rather than trans-
mitting all raw measurements to the CP. The number of
real values needed to be transmitted at each local node can
be expressed as (ky+k2)IM, where I is the number of
consensus iterations, M is the number of sources, and ky is
the dimension of the state for each source. In this paper,
since the state is the 3-D position and the corresponding
velocity, we have x,=6. In contrast to the CPF, the data
that needs to be transmitted does not depend on the
dimensions of the measurements. Hence, the proposed
DUPF approach is particularly favorable for the case of
high-dimensional measurements.

Algorithm 1. DUPF tracking algorithm.

each time step is aligned as a vector with dimensions of
4Ty = 1, e, f: = Vec(Y}) with Vec(-) denoting the vector
transformation. Consequently, the dimensionality of the
covariance matrix associated with measurement process is
large. Directly applying the UKF will result in high com-
putational complexity since an inverse operation of a large
covariance matrix is involved in the update equations. The
UIF introduced in this work can be regarded as a special
member of the UKF family that propagates the inverse of
the state variance matrix rather than the state variance
matrix itself. While it requiring the inverse of the state
variance only, the UKF needs to calculate the inverse of
the measurement variance matrix with a dimension of
4Tp = 4Tp. Hence, the size of the matrix to be inverted
can be restricted to 6M x 6M where M is the number of

Initialization: estimate X[ according to (59) and let g = X, = 0.01Taar;

for £ =1,.. ., L, draw particles X\ ~ N(Xq, Bo);

set the initial weight 11?({1& =1/L;

Compute the inverse of covariance matrix R} and Qi
for k+ 1 to K do

for n < 1 to V do

for £+ 1to L do
2) draw samples according to (41);

and (54) respectively;

end

5) normalise the weight ﬁif) = w,(:)/ E;’_l wf:};

)
6) resample the particles according to the weights;
)

end

8) estimate the global statistics using consensus filter.

end

The analysis of the computational complexity in terms
of consensus filter can be found in the literature [53].
Usually, the consensus for global statistics can be reached
after a small number of iterations, for which the computa-
tion cost is trivial and can be ignored. The main computa-
tion cost arises from the filtering process at each local
node. In the PF algorithm, the unscented Kalman filter
(UKF) is often employed to approximate the optimum
sampling. When T, snapshots are used to estimate the
source position, the measurement at each node and at
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4) compute the importance weight according to (42);

7) calculate the local statistics according to (43) and {44);

1) implement UIF according to step 1) to step 9) in Section 3.1;

3) compute the transition and likelihood densities according to (51)

sources. Usually, 6M < 4T,. Compared to the extended
Kalman filter, calculation of the Hessian matrix and the
nonlinear approximation error due to higher order trunca-
tion can, therefore, be avoided.

In the state-space model, the noise variances are
usually assumed to be constants, e.g., noise process in
source dynamics w,~A(0,X) and in measurement
ey ~N(0,I'). Hence, (Ry) '—T"" can be calculated at
the beginning of the implementation. It is not necessary to
calculate R} at each iteration. Note that, the equations
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