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Cutting force-based adaptive neuro-fuzzy approach for accurate
surface roughness prediction in end milling operation

for intelligent machining

Ibrahem Maher - M. E. H. Eltaib + Ahmed A. D. Sarhan -
R. M. El-Zahry

removal operations encountered in industrial processes. Prod-
uct quality is a critical issue as it plays a vital role in how
products perform and is also a factor with great influence on
manufacturing cost. Surface roughness usually serves as an
indicator of product quality. During cutting, surface roughness
measurement is impossible as the cutting tool is engaged with
the workpiece, chip and cutting fluid. However, cutting force
measurement is easier and could be used as an indirect pa-
rameter to predict surface roughness. In this research work, a
correlation analysis was initially performed to determine the
degree of association between cutting parameters (speed, feed
rate, and depth of cut) and cutting force and surface roughness
using adaptive neuro-fuzzy inference system (ANFIS) model-
ing. Furthermore, the cutting force values were employed to
develop an ANFIS model for accurate surface roughness
prediction in CNC end milling. This model provided good
prediction accuracy (96.65 % average accuracy) of surface
roughness, indicating that the ANFIS model can accurately
predict surface roughness during cutting using the cutting
force signal in the intelligent machining process to achieve
the required product quality and productivity.
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1 Introduction

Machining processes are fundamentally complex, nonlin-
ear, multi variate, and often subjected to various un-
known external disturbances. A machining process is
usually performed by a skilled operator who uses
decision-making capabilities based on the intuition and
rules of thumb gained from experience. This process is
not accurate enough and in many cases product faults
occur. For this reason and to realize highly productive
and flexible machining, a reliable, automated machining
system with intelligent functions (intelligent machining)
is needed [1, 2]. Figure | depicts the concept of an
intelligent CNC machine. Intelligent NC machine tools
have three feedback loop levels for intelligent functions.
Among the intelligent functions, cutting force monitoring
is an important issues, as it can tell the limits of cutting
conditions, workpiece surface quality, and tool wear, as
well as detect and prevent tool breakage and chatter,
compensate tool deflections, and optimize machining
processes through a model-based adaptive control system

and other process information, which are indispensable
for process feedback control [3-6].

In this research work, cutting force is used to predict
surface quality during cutting in an end milling process.
Surface quality plays a vital role in milled surfaces by
significantly improving fatigue strength, corrosion resis-
tance, and creep life. Moreover, surface quality affects
several functional attributes of parts, such as contact
causing surface friction, wear, light reflection, heat trans-
mission, ability of distributing and holding lubricant,
coating, and resisting fatigue [7, 8].
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To achieve higher levels of surface quality, correla-
tion modeling of cufting force and surface roughness is
required [9-11]. Modeling based on cutting force and
surface roughness data is accomplished by soft comput-
ing tools [12-14]. Soft computing techniques are useful
when exact mathematical information is not available
and these differ from conventional computing in that
they are tolerant of imprecision, uncertainty, partial
truth, approximation, and met heuristics [15, 16].
ANFIS is one of the soft computing techniques that
play a significant role in input-output matrix relation-
ship modeling. It is used when subjective knowledge
and expert suggestions are significant to defining objec-
tive function and decision variables. ANFIS is ideal to
predict surface roughness based on input variables due
to the nonlinear condition in the machining process
[17-21].

As a conclusion of the above review, the aim of the
present work is to investigate the use of cutting force-
based ANFIS modeling for accurate surface roughness
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prediction in end milling operation for intelligent
machining.

2 Experimental setup

The experimental setup is shown in Fig. 2. The experiments
were performed using a CNC end milling machine. A high-
speed steel four-flute end milling cutter with a diameter of
7/16 in (11.1 mm) was used for dry machining slots of Brass
(60Cu40Zn) blocks under specific machining conditions, as
shown in Table 1. These machining conditions were selected
based on the tool maker’s recommendations. Brass material
with Vickers hardness of 125 and chemical composition of
60 % Copper and 40 % Zinc was used as workpiece material
with 40 %4020 mm dimensions.

The surface roughness (Ra) was measured with a stylus-
based profilometer (Surtronic 3+, accuracy of 99 %). The
average surface roughness was calculated for three different
measurements under the same conditions with a sampling
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Table 1 Cutting parameters

levels Cutting parameters Unit Symbol Level 1 Level 2 Level 3 Level 4 Level 5
Spindle speed pm n 750 1000 1250 1500 1750
Feed rate mm/min I 50 100 150 200 250
Depth of cut mm t 0.3 0.5 0.7

length of Lc=2.5 mm at a specific area of the workpiece. The
measurements’ direction was parallel to the cutting direction
and perpendicular to the lay of surface anomalies. On the other
hand, the cutting forces were measured using a strain gauge-
based analogue dynamometer. The analogue values obtained
from the dynamometer were amplified, filtered with 10 Hz
low bass filter and recorded on a computer using a 12 bit
analogue-to-digital converter.

3 Experimental results and ANFIS modeling

The measured cutting forces and surface roughness
shown in Table 2 were used as the training data set to
build the ANFIS model. Five network layers were used
by ANFIS to perform the following fuzzy inference
steps as shown in Fig. 3: layer 1—input fuzzification,
layer 2—fuzzy set database construction, layer 3—fuzzy
rule base construction, layer 4—decision making, and
layer 5—output defuzzification [22-24].

I'able 2 Measured cutting forces and surface roughness (training data set)

To explain this model simply, two rules and two linguistic
values for each input variable are suggested.

Layer I The output of the node is the degree to which the given
input satisfies the linguistic label associated to this node. Usu-
ally, bell-shaped membership functions are chosen to represent
the linguistic terms because the relationship between the cutting
parameters and surface roughness is not linear (Fig. 4a).

First parameter membership functions

44(x) = exp[=0.5((v=an)/bu)’] )
Second parameter membership functions
Bi(y) = ew|-05((-az)/bo)’] b))

where a1, ai, bi, and b, are the parameter set.
As the values of these parameters change, the bell-shaped
functions vary accordingly, as shown in Fig. 4b, thus

n (rpm) 750 1000 1250 1500 1750
fmmmin)  t(mm)  F(N) Ra(um)  F(N) Ra(um) F(N) Ra(um) F(N) Ra(um) F(N) Ra (pum)
50 0.3 25.61 1.1 15.26 0.96 10.63 1.18 11.31 0.6 7.21 0.84
0.5 39.81 1.36 30.53 1.12 14.87 1.6 19.80 0.82 12.04 0.82
0.7 50.61 19 37.54 1.36 22.63 1.08 27.59 1.02 12.73 154
100 0.3 33.42 1.28 17.03 1.02 10.82 1.18 1487 0.86 20.52 0.98
0.5 64.88 2.06 44.05 1.44 21.21 13 3048 1.02 4545 1.16
0.7 106.83 222 62.94 1.78 25.50 1.14 40.61 1.24 7336 1.22
150 0.3 3114 1.42 21.21 1.54 18.44 1.24 20,52 1.32 3162 1.1
0.5 81.84 2.63 50.22 1.54 22.80 1.34 37.01 1.36 70.04 1.26
0.7 113.81 2.96 78.49 224 3253 1.22 52.40 1.38 92.44 1.62
200 0.3 30.41 1.54 18.38 1.16 22.63 1.26 25.24 1.56 39.56 132
0.5 78.77 35 61.62 228 30.41 15 49.24 1.56 86.56 1.62
0.7 144.90 3.52 102.53 2.64 42.64 1.44 56.82 14 104.24 1.6
250 0.3 70.21 1.82 23.02 1.58 25.50 1.66 3547 1.32 56.65 1.48
0.5 58.67 25 61.59 296 28.32 1.38 54.08 1.26 106.96 1.74
0.7 190.80 5.5 106.78 314 38.18 1.62 49.52 1.42 107.94 1.56




Fig. 3 ANFIS architecture for a
two-input Sugeno fuzzy model

exhibiting various forms of membership functions on linguis-
tic labels 4; and B;. The parameters in this layer are referred to
as principle parameters.

Layer 2 Each node computes the firing strength of the asso-
ciated rule. The nodes of this layer are called rule nodes. The
outputs of the top and bottom neurons are as follows:

Top neuron

o =Ai(x) x Bi(y) 3)
Bottom neuron

¥y = Ag{x) x Bg(_}f) (4)

Layer 3 Every node in this layer is labeled by N to indicate the
normalization of the firing levels. The output of the top and
bottom neurons is normalized as follows:

Top neuron

By = /(e + ) (5)

Bottom neuron

B = az/(a1 + ) (6)
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Layer 4 The output of the top and bottom neurons is the
product of the normalized firing level and the individual rule
output of the first rule and second rule, respectively.

Top neuron

Byzi = Bilawx + byy) (7)

Bottom neuron

Byzo = Fy(asx + bay) (8)

Layer 5 The single node in this layer computes the overall
system output as the sum of all incoming signals, i.e.,

z=Bz1 + foza 9)

If a crisp training set (", ), k=1, . . . k) is given, then the
parameters of the hybrid neural net (which determine the
shape of the membership functions of the premises) can be
learned by descent-type methods. The error function for pat-
tern k can be given by:

E = (o)’ (10)
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Fig. 4 Initial and final membership function of speed. a Initial membership function of speed. b Final membership function of speed



Surface roughness (pum)

Feed rate (mm/min)

50 800

a) Variation of surface roughness with cutting parameters

g force (N)

Cuttin
g 3

Feed rate (mm/min) 100~ 1000

Speed (rpm)

b) Variation of cutting force with cutting parameters

Fig. 5 The variation of surface roughness and cutting force with spindle speed and feed rate at 0.3-mm depth of cut. a Variation of surface roughness

with cutting parameters. b Variation of cutting force with cutting parameters

where * is the desired output and o* is the computed
output by the hybrid neural net [24].

4 ANFIS prediction model results and discussion

Figures 5, 6, 7, and 8 show the effects of the machining
parameters on surface roughness and cutting force. In Fig. 5
at low depth of cut level (0.3 mm), it can be seen that the
surface roughness decreases with increasing spindle speed
and decreasing feed rate (Fig. 5a). This is because surface
roughness is defined as the machining marks on the work-
piece surface related to the geometry of the tool edge (Fig. 6
and Eq. 11) which is proportional to the feed rate [25, 26].

2

a = m (f.<2tsin(y))

(11)

Figure 5b shows that the resultant cutting force decreases
with increasing rotational speed at a low feed rate range (50
to 100 mm/min) for all ranges of cutting speed. But at feed
rate ranging from 100 to 250 mm/min, the cutting force
decreases with increasing rotational speed for speed rang-
ing from 750 to 1350 rpm and then the cutting force in-
creases with increasing rotational speed for speed ranging
from 1350 to 1750 rpm. This is mainly attributed to built-up
edge formed at low speed, where the chip parts become a
stationary body of highly deformed material attached to the
cutting edge. The growth and rapid breakage of the
built-up edge cause a rough surface on the machined
part [27-29].

Link to Full-Text Articles :

At medium and high depth of cut levels from 0.5 to
0.7 mm and feed rate ranging from 50 to 100 mm/min, the
surface roughness and cutting force decrease with increas-
ing rotational speed for all cutting speed ranges. At feed
rate ranging from 100 to 250 mm/min, the surface rough-
ness and cutting force decrease with increasing rotational
speed for speed ranging from 750 to 1350 rpm; then the
surface roughness and cutting force increase with increas-
ing rotational speed for speed ranging from 1350 to
1750 rpm as shown in Figs. 7 and 8.

From the above analysis, it can be seen that the cutting
parameters against the cutting force show the same trend as
the relations between cutting parameters and surface rough-
ness. This has led to the conclusion that there is a strong
correlation between the surface roughness and cutting force.
Hence, it is possible to predict the curve trend of surface
roughness from the cutting force.

Figure 9 shows the correlation between the cutting force
and surface roughness. This figure indicates that surface
roughness increases with increasing cutting force and vice
versa. It is also clear that the trend of surface roughness change
is steady at low cutting force ranging from 7 to 120 N.
However, for cutting ranges of more than 120 N, surface
roughness rapidly changes.
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Fig. 6 Geometry of the tool edge in an end-milling
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