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Thin-walled cylindrical shells are susceptible to buckling failures caused by the axial com-
pressive loading. During the design process or the buckling failure evaluation of axially-
compressed cylindrical shells, initial geometric and loading imperfections are of important
parameters for the analyses. Therefore, the engineers/designers are expected to well
understand the physical behaviours of shell buckling to prevent unexpected serious failure
in structures. In particular, it is widely reported that no efficient guidelines for modelling
imperfections in composite structures are available. Knowledge obtained from the relevant
works is open for updates and highly sought. In this work, we study the influence of imper-
fections on the critical buckling of axially compressed cylindrical shells for different
geometries and composite materials (Glass Fibre Reinforced Polymer (GFRP), Carbon
Fibre Reinforced Polymer (CFRP)) and aluminium using the finite element (FE) analysis.
Two different imperfection techniques called eigenmode-affine method and single pertur-
bation load approach (SPLA) were adopted. Validations of the present results with the pub-
lished experimental data were presented. The use of the SPLA for introducing an
imperfection in axially compressed composite cylindrical shells seemed to be desirable
in a preliminary design process and an investigation of a buckling failure. The knockdown
factors produced by the SPLA were becoming attractive to account for uncertainties in the
structure.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled cylindrical structures have been widely used in many industrial applications. However, thin cylindrical shells
are vulnerable to buckling failures caused by the induced compressive loading. Too thin cylindrical shells and larger design
loads may make the structures more prone to buckling failure. Real case studies on buckling failures of pressurized vessels
have been reported by Jones [1]. Next, Teng and Zhao [2] deployed state-of-the-art finite element analyses on the failed pres-
sure vessels reported by Jones [1]. Teng and Zhao [2] examined the validity of the formulations for evaluating real vessels
with geometric imperfections through a comparison of theoretical predictions with experimental results, which established
the limited sensitivity of the buckling load to initial imperfections. Indeed, initial geometric and loading imperfections are of
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important parameters for analyzing axially compressed cylindrical shells. Iwicki et al. [3] carried out a failure analysis on
cylindrical silo shells by performing linear and non-linear buckling analyses with different initial geometric imperfections.
To avert unexpected catastrophic failure of structures of which thin cylindrical shells are essential components, the design-
ers and engineers shall acquire sufficient knowledge on the physical behaviours of shell buckling.

Nowadays, rapid developments in the industrial manufacturing technology encourage the engineers/designers to seek
more suitable candidate materials that demonstrate excellent gains in weight, stiffness and stability. Advanced composite
materials have been extensively developed to offer an outstanding ability in reducing the structural weight while increasing
its strength. The composite materials are particularly desirable in the aerospace structures that have been known to have
operational nature under compressive load during service. Various approaches have been adopted to predict the reasonable
buckling load for shell structure through experimental works and finite element analyses. Since experimentations on com-
posite materials are time consuming and require high cost and complex experimental setup, numerical modelling is always
sought to support a design process.

In particular, with regard to the aerospace structures, prediction of knockdown factor p remains highly dependent on the
empirical guideline from NASA SP-8007 [4] that uses the conservative lower bound curve. Furthermore, the guideline is
mainly intended to the isotropic materials, and less information corresponding to the composite material is described.
The approach stated in the guideline excessively led to conservative designs on estimating cylinder buckling load as high-
lighted by researchers [5-8]. The NASA SP-8007 [4] also does not take into account of the full potential of materials on
knockdown factor [9]. In particular, Arbelo et al. [10] reported the use of NASA SP-8007 [4] in the design of the European
Ariane-5 rocket launcher. Even though the rocket has an outstanding performance, the structural design seemed to be
considerably conservative, resulting in high costs in the production and operation [11,12]. The EU project DESICOS has been
launched in 2012 and is underway to propose a new design guideline for designing imperfection in composite launcher
structures [13]. A new efficient design approach is expected to come up with possibilities for reducing the design cost
and structural weight.

The eigenmode-affine method is one of the techniques for introducing imperfections on the structural model subjected to
compressive loading. The method that uses the eigenmode shapes together with specifying scaling factor of the imperfection
amplitude has been extensively employed by researchers [3,11,12,14-18]. However, the range of the scaling factor applied in
the eigenmode would often be on trials. Another famous approach for evaluating post-buckling problems, the arc-length
method, has been developed in 1970s. However, the method failed to predict the stable post-buckling state after the global
instability as recently reported by Casado et al. [19].

The single perturbation load approach (SPLA) which was proposed by Hiihne et al. [8] is relatively a new method for
designing an imperfection on axially compressed shell structures. The method uses the influence of a single laterally applied
load to the surface of the model in order to simulate the worst geometrical imperfection of typical structural models such as
cylindrical shells. The applied lateral load would produce a local-dimple that acts as the imperfection amplitude. By varying
the amplitudes during the compression loading process, the local-dimple imperfection may then trigger local and global
instabilities to the structure. Arbelo et al. [10] reported several studies on estimating the cylinder knockdown factor using
SPLA method. Although significant cylinder knockdown factor data using SPLA have been produced, there are not sufficient
information on some engineering materials with the variation of cylindrical geometries such as different aspect ratios of
thickness, radius and length (L/r and r/t). For instance, the application of SPLA in Glass Fibre Reinforced Polymer has not been
extensively explored in comparison to that in Carbon Fibre Reinforced Polymer.

This paper presents the responses of two different imperfections (by the eigenmode-affine method and SPLA) on the
cylindrical shells for different geometries and materials. The results obtained by using the eigenmode-affine and SPLA are
then validated with the published experimental data. The findings presented here would show the more suitable approach
for the use in the design process and buckling failure evaluations.

2. Materials and method

Different cylinders geometries, aspect ratios and material properties are investigated with the aid of FE analyses: linear
eigenvalue and nonlinear static analyses.

2.1. Finite element modelling and material properties

After performing convergence tests on the number of elements used in the CFRP cylindrical shell models (see Table 1),
about 11,660 four-node doubly curved shell elements with reduced integration and hourglass control (S4R) were found
to be suitable to model the composite cylinders. It was reported that the imperfection in the CFRP cylindrical shells is more
sensitive than that in the GFRP material [20]. In this present work, the use of more than 10,000 elements seems to result in
insignificant difference in buckling loads. All the analyses were carried by using a finite element software package of ABAQUS
V6.10. The schematic of the axially compressed cylindrical shell is shown in Fig. 1. As shown in Fig. 1, displacement and rota-
tion constraints are applied on one end of the cylindrical shell, and the load-controlled displacement AU with slow quasi-
static compression is applied on the other end to infuse instability of the cylinder.



Table 1
Convergence study on the CFRP cylindrical shells.

Number of elements

2860 4998 6591 10,241 11,660
Buckling load (kN)
279.89 261.62 255.74 249.6 248

Perturbation load
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Fig. 1. Boundary condition of FE modelling by SPLA.

Table 2

Cylindrical shell geometries used in FE models.
Authors Unit Bisagni [20] Englitis [17]
Cylinder designation CFRP GFRP
Radius, r (mm) 350 150
Free length, L (mm) 520 560
Nominal thickness, t (mm) 132 1.1
Tt 265 136
Lir 145 3.73
Controlled displacement, AU (mm) 2 2

Table 3

Material properties of CFRP and GFRP.
Stiffness Unit CFRP [20] GFRP [17]
Elastic modulus Eqq [memz} 52,000 18,660
Elastic modulus Ej; (N/mm?) 52,000 18280
Shear modulus Gz [Np‘mmz} 2350 4560
Poission’s ratio v 0.302 0.16
Density p (kg/mm?*) 132 x10°® -
Ply thickness tpy, (mm}) 0.33 0.275

The cylinder geometries used in this study referring to those experimentally done by Eglitis [17] for the GFRP laminated
shell and by Bisagni [20] for the CFRP laminated shell, and the details are presented in Table 2. Similarly, material properties
of the monolithic laminates of carbon and glass fibre composites reported by Eglitis [17] and Bisagni [20] were also used in
this study and presented in Table 3. The layers of the cylindrical shell consist of four-ply with stacking sequences of
[0/45/—45/0] for CFRP laminated shell and unidirectional-ply of [0/0/0/0] for GFRP laminated shell.

2.2. Eigenmode-affine method

In this method, the FE linear buckling analyses were first carried out to obtain the eigenvalues and eigenmodes of the
cylindrical shells. Next, the initial geometrical imperfection based on the first eigenmode shape was introduced on the
cylindrical shell. The first eigenvalue was used to calculate the critical perturbation load Py jg,. The range of the imperfec-
tion magnitude a was investigated by varying the ratio of a/t, where t is the shell thickness.

2.3. Single perturbation load approach

In general, the procedure of the SPLA in the finite element analysis for axially compressed cylindrical shell models has
three loading steps [8]. In the first step, a lateral perturbation load P, is applied at the centre of the cylindrical shell (as



illustrated in Fig. 1). It is purposely used to produce a single buckle as the worst imperfection mode until the equilibrium
state of the shell is reached. Next, in the second step, the cylindrical shell is loaded by quasi-static axial compression until
the first instability point is reached. The Newton-Raphson algorithm with adaptive time increments is adopted/chosen in
both steps. In the third step, a uniform end-shortening displacement is introduced to act as the axial compressive load.
At this stage, the dynamic responses of load-end shortenings are taken care of by employing ABAQUS/Explicit that is a spe-
cially-dedicated module of finite element analyzer to solve highly nonlinear systems.

3. Results and discussion

Prior to performing response analyses on the cylindrical shells, the sensitivity study was conducted to determine a suit-
able value for the artificial damping factor. It is known that too small value of the artificial damping would possibly result in
a singularity of the tangent stiffness matrix. Meanwhile, a large artificial damping value would lead to over-damped results.
The stacking design of unidirectional-ply of [0/0/0/0] is chosen to perform this sensitivity study. This type of stacking
sequence was also chosen by Castro et al. [12] for finding the suitable artificial damping factor. The responses of different
artificial damping values for the GFRP cylindrical shells are presented in Fig. 2a. It can be observed that the use of the
damping factors ¢ =4e—9 and 4e—8 fail to reach the first local snap-through. This feature is associated with the singularity
of the tangent stiffness matrix, resulting in not convergence problem. Meanwhile, a larger artificial damping value c= 4e-5
seems to produce over-damped results. Thus, the artificial damping value c=4e—7 that produces a convergence result is
chosen in this study.

The knockdown factors (= PafPr,perfect) versus variations of the imperfection amplitude over the thickness a/t obtained by
using the eigenmode-affine method are presented in Fig. 2b. The perturbation load Pg. e Was obtained from the nonlinear
FE analysis on the perfect cylindrical shell. The imperfection sensitivities can be noticed from the significant drop of the
knockdown factors over the normalized values of a/t. Noticeable reductions of the knockdown factor are observed in both
CFRP and GFRP cylinders for small imperfection magnitudes (up to a/t = 0.3). Meanwhile, the knockdown factors become
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Fig. 2. (a) Convergence analysis for GFRP cylindrical shell; (b) Distribution knockdown factors by the eigenmode-affine method; Variations of imperfection
amplitude by eigenmode-affine: (c) CFRP cylinder and (d) GFRP cylinder.



relatively stable towards the lowest value before ascending with different rate. The lowest knockdown factors p of the CFRP
and GFRP cylinders are found to be around 0.52 and 0.48, respectively. For different imperfection amplitudes as plotted in
Fig. 2c and d, the CFRP and GFRP cylindrical shells show variations of the response of the load-end shortening. Based on the
findings shown in Fig. 2b-d, the eigenmode-affine method requires significant efforts to justify the suitable imperfection
magnitude to be introduced in the cylindrical models, especially with different material properties, ply arrangement and
geometry.

Fig. 3a and b show the responses of the knockdown factor for the CFRP and GFRP cylinders using SPLA in the function of
perturbation loads and normalized imperfection amplitudes. Stable horizontal responses at the lower bound are observed in
both materials. The initial stable horizontal response is well known called the minimum/threshold perturbation load P,;. A
perturbation load larger than Pp; will be about constant. The perturbation loads smaller than the minimum/threshold
perturbation load Prin trigger instability to the cylindrical shell before resulting in natural buckling wave patterns. The per-
turbation load larger than P,,;, would act as a worst imperfection that directly leads to the cylinder load carrying capacity.
There is a typical method that has been adopted by researchers as reported by Castro et al. [ 12] for determining the normal-
ized knockdown factor. The normalized knockdown factor can be obtained by making the ratio of the lower bound value over
the top bound value. Fig. 3 reveals that, the normalized knockdown factors for the CFRP and GFRP cylinder are found to be
around 0.67 and 0.63, respectively. The corresponding minimum/threshold perturbation loads P, were found to be around
60 kN for CFRP cylinder and around 35 kN for GFRP cylinder. Meanwhile, for the given P perfec, the maximum load carrying
capacity of the CFRP {Pa.perfece = 239.47 kN) and GFRP (Pepperfec = 65.78 kN) cylinders were found to be around of 130 kN and
42 kN, respectively.

To demonstrate the ability of the methods, the results obtained by using the eigenmode-affine method and SPLA are com-
pared with the published data [17,20] as presented in Table 4. It can be seen from Table 4, the critical buckling loads for both
CFRP and GRFP cylinders predicted by using the eigenmode-affine method show lower values than the experimental data
and those estimated by SPLA. It simply states that the eigenmode-affine method would give more conservative estimations

(a) "
-O-- CFRP
: —&— GFRP

05 Peri,perfect_CFRP = 239.47 kN

£
-
=}
g 0300 Pcriperfect_GFRP = 66.26 kN
5 E
2 07k
g L
s = =
2 osf Q,
r % SO0
0.5+
0.4 i 1 i 1 i 1 " 1 i 1
0 20 40 60 B0 100

Perturbation load [N]

—_—
o
—

Knocdown factor, p

04 L 1 L 1 L 1 L

Fig. 3. Distribution knockdown factors by SPLA: (a) Perturbation loads; (b) Normalized imperfection amplitude ajft.
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