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Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate translation of mRNA into protein and play a crucial role for almost all biological
activities. However, the identification of miRNAs from mesenchymal stem cells (MSCs), especially from dental pulp, is poorly understood. In
this study, dental pulp stem cells (DPSCs) were characterized in terms of their proliferation and differentiation capacity. Furthermore, 104 known
mature miRNAs were profiled by using real-time PCR. Notably, we observed 19 up-regulated miRNAs and 29 significantly down-regulated miR-
NAs in DPSCs in comparison with bone marrow MSCs (BM-MSCs). The 19 up-regulated miRNAs were subjected to ingenuity analysis, which
were composed into 25 functional networks. We have chosen top 2 functional networks, which comprised 10 miRNA (hsa-miR-516a-3p, hsa-
miR-125b-1-3p, hsa-miR-221-5p, hsa-miR-7, hsa-miR-584-5p, hsa-miR-190a, hsa-miR-106a-5p, hsa-mir-376a-5p, hsa-mir-377-5p and hsa-
let-7f-2-3p). Prediction of target mRNAs and associated biological pathways regulated by each of this miRNA was carried out. We paid special
attention to hsa-miR-516a-3p and hsa-miR-7-5p as these miRNAs were highly expressed upon validation with qRT-PCR analysis. We further
proceeded with loss-of-function analysis with these miRNAs and we observed that hsa-miR-516a-3p knockdown induced a significant increase
in the expression of WNT5A. Likewise, the knockdown of hsa-miR-7-5p increased the expression of EGFR. Nevertheless, further validation
revealed the role of WNT5A as an indirect target of hsa-miR-516a-3p. These results provide new insights into the dynamic role of miRNA
expression in DPSCs. In conclusion, using miRNA signatures in human as a prediction tool will enable us to elucidate the biological processes
occurring in DPSCs.
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Introduction

Dental pulp stem cells (DPSCs) have emerged as a promising source
of cells for numerous applications in regenerative medicine. Once
thought to be seed cells only for tooth tissue regeneration, currently,
these cells are being investigated for repair of tissues outside the
tooth. We have shown that DPSCs are able to differentiate into myriad
types of cells [1]. Likewise, others have a successful outcome of
using these cells in pre-clinical animal disease models [2]. DPSCs are

present in ‘cell-rich zones’ within the dental pulp region and are
considered to have similar characteristics as BM-MSCs, e.g., self-
renewal capability and multi-lineage differentiation [3, 4]. Previously,
we conducted a gene profiling study between DPSCs and other types
of MSCs and found that although these cells shared basic MSCs crite-
ria, they retained unique gene characteristics which make them differ-
ent from one another. For instance, DPSCs are primed towards
neuro-ectoderm lineages as compared with other cell lines [5]. We
reckoned that these phenomena are because of molecular networks
and regulatory pathways. However, knowledge of these fundamental
cues in DPSCs is still insufficient. Hence, optimal conditions and sig-
nals, especially involving gene expression regulation governing the
fate of DPSCs, need to be identified.

One of the molecular regulatory factors that have received
increasing attention is miRNAs, which have the ability to regulate
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many target genes and control gene expression through translational
repression and degradation [6]. MicroRNA (miRNAs) are ~20–22
nucleotides in length and well known to govern a broad array of cellu-
lar functions by influencing the abundance and translation efficiency
of cognate mRNA. One single miRNA can target multiple sites of
genes on mRNA transcripts, and conversely, a single mRNA can be
targeted by multiple miRNAs [7, 8]. This regulation is performed on
two bases: cis regulation in which miRNA directs target mRNA and
either represses their translation or regulates degradation at post-
transcriptional level. On the other hand, miRNA also appears to pro-
vide a subsequent effect that may exert the level of other mRNA as
well as protein interactions through trans-regulatory mechanisms [9].

They are also essential regulators that can contribute to intrinsic
stem-cell (SC) properties such as self-renewal, SC pluripotency and
differentiation [10]. For instance, differentiation was found to be
directly associated with cell cycle exit in which miRNA tends to cause
negative regulation of oncogenes, which otherwise would promote
proliferation [11]. Moreover, they were shown to be involved in differ-
entiation [12], controlling developmental time-point and homoeosta-
sis through diverse cellular processes by focusing on specific
pathways within cells.

Thus, in this study, expression profiling of miRNAs found in
DPSCs as compared with the BM-MSCs, which is always regarded
as a golden cell source in regenerative medicine, was carried out
for the first time to uncover molecular signatures and regulatory
pathways that could broaden our understanding of the roles of
miRNAs for future experimental and clinical applications. Ultimately,
this can be used as a primordial approach to comprehend the
DPSCs’ biological progressions to ensure success when applied in
SC therapy.

Materials and methods

Tissue collection and isolation of cells

This study was conducted with written consents from all donors after

being reviewed and approved by the Medical Ethics Committee, Faculty

of Dentistry, University of Malaya [Medical Ethics Clearance Number:
DF CO1107/0066(L)].

A volume of 60 ml of BM-MSCs aspirates was obtained from the

iliac crest of three healthy donors (n = 3) under deep sedation (age:
24–35) as previously described by us [5]. Briefly, the BM-MSCs were

diluted (1:1) in knockout (KO) DMEM (Invitrogen, Carlsbad, CA, USA;

www.invitrogen.com), and centrifuged at 706.3524 9 g for 10 min. to

remove anti-coagulants. After centrifugation, the mononuclear cells
(MNC) were isolated by layering onto a lymphoprep density-gradient

media (1:2; Axis-Shield PoC AS). The MNC present in the buffy coat

were then washed with culture medium (consisting of basal media of

KO-DMEM, 10% Australian characterized foetal bovine serum (FBS,
Hyclone, Thermo Scientific Inc, Waltham, MA, USA, http://www.thermo-

fisher.com), 1% Glutamax (Invitrogen) and 0.5% Penicillin/Streptomy-

cin (Invitrogen). The mononuclear fractions that also contained SCs

were plated onto culture flasks. Separately, DPSCs cultures were iso-
lated from sound and intact third molars of adults (age: 24–35, n = 3)

as previously described by us [13]. Prior to isolation, root surfaces

were cleaned with povidone-iodine (Sigma-Aldrich, St. Louis, MO, USA;
http://www.sigmaaldrich.com) and the pulp was removed within 2 hrs

post-extraction. The pulp tissues were minced into smaller fragments,

and treated with a solution of 3 mg/ml of collagenase type I (Gibco,

Grand Island, NY, USA; http://www.invitrogen.com) for 40 min. at
37°C. After inactivation with 10% FBS, the cells were then centrifuged

and seeded in a conventional tissue culture flask. Similar culture condi-

tions were provided for both cells, namely in T75 cm2 culture flasks
(BD Pharmingen, San Diego CA, USA; http://www.bdbiosciences.com)

with culture medium containing KO-DMEM, 0.5% and 10,000 lg/ml of

Penicillin/Streptomycin (Invitrogen); 0.019 Glutamax (Invitrogen) and

10% FBS with humidified atmosphere of 95% air and 5% CO2 at 37°C.
Non-adherent cells were removed after 48 hrs of initial plating by

intensely washing the flask. The medium was replaced every 3 days

until the cells reached 80–90% confluence.

Growth Kinetics

Analysis of proliferation capacity was determined by plating 25,000
cells/cm2 of each SC into separate T75 cm2 culture flasks (BD Pharmin-

gen). When the cells reach 90% confluence, they were then trypsinized.

Cells were counted and evaluated for viability by means of Tryphan Blue

dye exclusion before sub-culturing. Cells were re-plated for a total of 5
subsequent passages (P1–P5), with three replicates for each passage.

To compare the expansion rate for both cells, the population doubling

time (PDT) values were determined. The PDT was obtained by using

the formula:

PDT ¼ t � log 2=ðlogNh � logNiÞ
Ni: the inoculums cell number; Nh is the cell harvest number and t is

the duration of the culture (in hours).

Cell cycle analysis

The cells were pre-seeded on a 35-mm tissue culture dish (BD Pharmi-

gen) at a density of 5000 cells/cm2. Upon reaching 90% confluence,

the cells were detached, fixed and permeabilized in 70% ethanol and left

overnight at 4°C. Thereafter, 500 ll was extracted (containing 1 9 106

cells), and DNA was stained with Propidium iodide/RNAse staining buf-

fer (BD Pharmigen) for 15 min. at room temperature and subsequently

washed in Dulbecco’s PBS (DPBS; Invitrogen). DNA content was analy-
sed on Guava Technologies (Millipore, Billerica, MA, USA) flow cytome-

ter by using Cytosoft, Version 5.2, Guava Technologies software.

Flow cytometric analysis

At P3, cells were harvested by trypsinization with 0.05% trypsin (Invi-

trogen) upon reaching 90% confluence, and re-suspended in DPBS to

reach a final cell density of 1.5 9 106 cells/ml. An amount of 200 ll of
cell suspension (1 9 105 cells) was incubated in the dark for 1 hr at

37°C with Phycoerythrin-conjugated antibodies against CD44, CD73,

CD166, CD105 and CD34, and fluoro isothycyanate-conjugated antibod-
ies against CD45 and HLA-DR (all from BD Pharmingen) for specific

surface antigens analysis by using flow cytometer. Excess antibodies

were removed by washing with DPBS. All analyses were standardized

against negative control cells incubated with Isotype-specific IgG1-PE
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and IgG1-FITC (BD Pharmingen). At least 10,000 events were acquired
on Guava Technologies flow cytometer, and the results were analysed

by using Cytosoft, Version 5.2, Guava Technologies.

In vitro tri-lineage differentiation assay

A total of 1000 of P3 cells/cm2 in 6-well plates were grown until conflu-

ence, and induced to multi-lineage differentiation as defined by Govin-

dasamy et al. [13] with the following formulae: adipogenic

differentiation medium: media supplemented with 10% FBS, 200 lM
indomethacin, 0.5 mM 3-Isobutyl-L-methyxanthine, 10 lg/ml insulin

and 1 lM dexamethasone (all reagents from Sigma-Aldrich); chondro-

genesis differentiation medium: media supplemented with ITS+1
(Sigma-Aldrich), 50 lM of L-ascorbic acid-2 phosphates, 55 lM of
sodium pyruvate (Invitrogen), 25 lM of L-proline (Sigma-Aldrich) and

10 ng/ml of a transformation growth factor-beta (TGF-b) (Sigma-

Aldrich); osteogenic differentiation medium: media supplemented with
10% FBS, 10�7 M dexamethasone, 10 mM-glycerol phosphate (Fluka,

Buchs, Switzerland) and 100 lM of L-ascorbic acid-2 phosphate.

Evaluation of tri-lineage differentiation

After ~21 days of differentiation, the cells were fixed for cytochemical
staining. Lipid droplets were visualized by using Oil Red O staining

(Sigma-Aldrich), proteoglycans accumulation was visualized by Alcian

Blue staining (Sigma-Aldrich) and calcium accumulation was visualized

by using Von Kossa staining (Sigma-Aldrich) for adipogenic, chondro-
genic and osteogenic differentiation respectively. The cells were also

analysed by using quantitative RT-PCR (qRT-PCR). Total RNA was

extracted by using Trizol (Invitrogen) and reverse-transcribed into cDNA
by using Superscript II reverse transcriptase (Invitrogen) according to

the manufacturer’s instructions. The qRT-PCR mixture contained cDNA,

forward and reverse primers, and SYBR Green PCR Master Mix (Applied

Biosystems, Foster City, CA, USA). The reactions were conducted by
using AbiPrism 7000 Sequence Detection System (Applied Biosystems)

with initial enzyme activation at 95°C for 10 min., followed by 45 cycles

of denaturation at 95°C for 15 sec. and annealing and extension at

60°C for 60 sec. The expression level of genes of interest was normal-
ized against housekeeping gene GAPDH. The fold change was calculated

by using the equation 2�ΔΔCT. Primer sequences are presented in

Table S1.

miRNAs isolation

Culture medium was aspirated, discarded and rinsed with DPBS. Cells

at P3 (n = 3) were then trypsinized to detach them from the flask and

counted. Immediately, culture medium was added to inactivate the tryp-

sin, and centrifuged to pellet the cells. An estimated 102 to 103 million
cells were collected for the miRNA isolation. The foremost step carried

out for the mirVana miRNA Isolation Kit procedure was to disrupt

samples in a denaturing lysis buffer. Next, samples were subjected to
Acid-Phenol:Chloroform extraction, which provides a robust front-end

purification that also removes most DNA [14]. The procedure to obtain

miRNAs was according to the manufacturer’s protocol (mirVana miRNA

isolation kit, Ambion, Life Technologies, Austin, TX, USA).

Profiling of miRNAs

Profile analysis of human encoded miRNAs was performed by using
the TaqMan MicroRNA Assay (Applied Biosystems). Briefly, TaqMan

MicroRNA Assays included two steps: stem loop reverse transcription

(RT) followed by real-time quantitative PCR (90 ng/Rx with 24-multiplex

primers). Each of the 10 ll RT reaction tube which included 90 ng
total RNA, 50 nM stem-loop RT primers, 19 RT buffer, 1.25 mM

each of dNTPs, 0.25 U/ll RNase inhibitor and 10 U/ll MultiScribe

Reverse Transcriptase was incubated in a PTC-225 Peltier Thermal

Cycler (MJ Research, Watertown, MA, USA) for 30 min. at 16°C and
at 42°C, followed by 5 min. at 85°C and then maintained at 4°C. RT
products were diluted 20 times with dH2O prior to the setting up of

the PCR reaction. Real-time PCR for each miRNA was carried out in
triplicates, and each 10 ll reaction mixture included 2 ll of diluted

RT product, 5 ll of 29 TaqMan Universal PCR Master Mix and

0.2 lM TaqMan probe. The reaction tube was incubated in an Applied

Biosystems 7900HT Sequence Detection System at 95°C for 10 min.,
followed by 40 cycles at 95°C for 15 sec. and 60°C for 1 min. The

threshold cycle (Ct) is defined as the fraction of cycle number at

which the fluorescence exceeds the fixed threshold of 0.2. As an

endogenous control, total RNA input was normalized based on the Ct
values of the TaqMan U6 snRNA assay. The fold change was calcu-

lated as 2 – Ct 9 K, where Ct = [Ct miRNA � Ct U6snRNA] and K is

a constant [15].

Quantitative validation of miRNA using qRT-PCR

Quantitative reverse transcription-PCR (RT-PCR) was carried out by

using 25 ng of total RNA by using the mirVana quantitative RT-PCR

miRNA Detection Kit (Ambion, Life Technologies) with mirVana

quantitative RT-PCR primer sets (Ambion, Life Technologies) for the
10 miRNAs of interest that are listed in Table S2. Detection of amplifi-

cation was performed with SYBR green nucleic acid stain (Invitrogen)

by using an Applied Biosystems-Real time Detection System. The

miRNAs expression levels were calculated by using comparative cycle
threshold (Ct) method. Ct values of target miRNAs were normalized in

relation to U6 snRNA, which is an internal control gene. The fold

change was calculated by using the equation 2�ΔΔCT.

Pathway analysis and prediction

Predicted miRNA targets were determined by using the miRanda algo-

rithm (http://microrna.sanger.ac.uk/targets/v5/) and TargetScan v4.2
(http://www.targetscan.org/). Common predicted targets as well as tar-

gets from each database were subjected to pathway exploration by

using the Ingenuity Pathway Analysis (IPA) software (Ingenuity Sys-
tems, Redwood City, CA, USA). An IPA (Core) Analysis is the process

of mapping uploaded data to the IPA Knowledge Base (KB), and creat-

ing molecular networks by generating pathways algorithmically. This

pathway was developed by dividing data into diseases and biological
functions that are overrepresented in our data. To avoid exceeding the

maximum gene list size allowed by the IPA program, we limited tar-

gets based on assigned score by each program. Therefore, scores of

at least 17 and 20.31 were set for miRanda and TargetScan respec-
tively. Using this software and its accompanying interactive database,
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the top-ranked pathways were determined based on the incidence of
predicted miRNA targets in a list of canonical pathways provided by

the software. IPA also produced the top-ranked networks where the

predicted miRNA targets were found according to gene ontology. Addi-

tionally, the biological functions associated with these networks are
also provided.

Transient transfection of miRNA mimics and
inhibitors

The miRNA mimics, inhibitors and negative controls for hsa-miR-516a-
3p and hsa-miR-7-5p were purchased from (mirVana�, Life Technolo-

giesTM). DPSCs were transfected with the mimic, inhibitor and negative

control at final concentrations of 20 nM. The siPORT NeoFX transfec-

tion agent (Ambion, Austin, TX, USA) was used according to the manu-
facturer’s instructions. Briefly, cells were digested with 0.25% trypsin

when they reached 80% confluence. The transfection agent was mixed,

and incubated for 10 min. at room temperature. Cell suspension was
overlaid onto the transfection complexes, and incubated at 37°C for 24

and 48 hrs for further miRNA and mRNA analysis. Transfection effi-
ciency was determined by qRT-PCR.

Real-time RT-PCR of mRNA expression

The transfected cells were analysed for selected target mRNA expres-
sion by using quantitative RT-PCR. Total RNA was extracted by using

Trizol (Invitrogen), and was then reverse-transcribed into cDNA by using

Superscript II reverse transcriptase (Invitrogen) according to the manu-

facturer’s instructions. The qRT-PCR mixture contained cDNA, forward
and reverse primers, and SYBR Green PCR Master Mix (Applied Biosys-

tems). The reactions were conducted by using AbiPrism 7000 Sequence

Detection System (Applied Biosystems) with initial enzyme activation at

95°C for 10 min., followed by 45 cycles of denaturation at 95°C for
15 sec., and annealing and extension at 60°C for 60 sec. The expres-

sion levels of wingless-type MMTV integration site family, member 5A

(WNT5A) and epidermal growth factor receptor (EGFR) were normalized
against the housekeeping gene alpha-tubulin. The relative expression

levels were normalized against Human cDNAs (Positive control), which

Table 1 Sorted Log2 (fold change) of 104 miRNA between DPSCs and BMSCs using DDCts. 53.85% of DDCts (56 of 104 determined

assays), were between +1 and �1

Up-regulated Down-regulated Between +1/�1

hsa-miR-516a-3p hsa-miR-20a* hsa-miR-154* hsa-miR-15b* hsa-miR-509-3p hsa-miR-188-5p

hsa-miR-7-5p hsa-miR-659 hsa-miR-630 hsa-miR-138-1* hsa-miR-601 hsa-miR-214*

RNU43 hsa-miR-126* hsa-miR-379* hsa-miR-149* hsa-miR-543 hsa-miR-432*

hsa-miR-526b* hsa-miR-181a-2* hsa-miR-335* hsa-miR-151-3p hsa-miR-589* hsa-miR-130b*

hsa-miR-376a* hsa-miR-801 hsa-miR-923 hsa-miR-19b-1* hsa-miR-625* RNU48

hsa-let-7f-2-3p hsa-miR-34b* hsa-miR-550 hsa-miR-27b* hsa-miR-638 hsa-miR-93*

hsa-miR-106a hsa-miR-27a* hsa-miR-10b* hsa-miR-22* hsa-miR-643 hsa-miR-7-1*

hsa-miR-190a hsa-miR-454* hsa-miR-18a* hsa-miR-26a-1* hsa-miR-656 hsa-miR-505*

hsa-miR-378 hsa-miR-513-3p hsa-miR-15a* hsa-miR-26b* hsa-miR-769-5p hsa-miR-181a*

hsa-miR-125b-1* hsa-miR-29c* hsa-miR-500* hsa-miR-30e* hsa-miR-877 hsa-miR-222*

hsa-miR-629* hsa-miR-16-1* hsa-miR-30a* hsa-miR-942 hsa-miR-135a*

hsa-miR-939 hsa-miR-941 hsa-miR-30d RNU24 hsa-miR-493*

hsa-miR-377* hsa-miR-432 hsa-miR-30e RNU44 hsa-miR-145*

hsa-miR-565 hsa-miR-136* hsa-miR-34a* RNU6B hsa-miR-875-5p

hsa-miR-766 hsa-miR-661 hsa-miR-411* hsa-miR-768-3p hsa-miR-30d*

hsa-miR-148b* hsa-miR-99a* hsa-miR-409-3p hsa-miR-373* hsa-miR-550*

hsa-miR-221* hsa-miR-520c-3p hsa-miR-424* hsa-let-7i* hsa-miR-21*

hsa-miR-584 hsa-miR-99b* hsa-miR-425* hsa-miR-100* hsa-miR-760

hsa-miR-564 hsa-miR-206 hsa-miR-770-5p hsa-miR-30a
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had also been normalized to 1. The fold change was calculated by using
the equation 2�ΔΔCT. Primer sequences are presented in Table S1.

Western blot analysis

Western blot analysis was performed after the whole transfected cell

lysate was extracted by using Cytobuster (Novagen, Milipore, Billerica,

MA, USA) lysis buffer. The cell lysate was then treated with protease
inhibitor cocktail (Milipore). Prior to loading on to gel, protein quantifi-

cation was carried out against bovine serum albumin (ThermoScientific,

Wilmington, DE, USA) by using Bradford method. The proteins were

loaded on 10% sodium dodecyl sulphate-polyacrylamide gels, and then
transferred to polyvinylidene fluoride membranes. Blocking and washing

were performed according to the manufacturer’s instructions (Western

blot kit, Pierce ECL, ThermoScientific). The membranes were left over-
night with the following primary antibodies: rabbit anti-human WNT5A;

A

B C

Fig. 1miRNAs manifestation in DPSCs compared with BM-MSCs. (A) The log2 of RQ value was used to plot the relative fold change. Y-axis: log2
RQ, X-axis: miRNA. Sorted Log2 RQ shows 29 miRNAs with decreased expression and 19 with increased expression in DPSCs. The most significant

difference was seen in hsa-miR-500* with decreased expression, and hsa-miR-516a-3p with increased expression [RQ = 2�ΔΔCt, ΔΔCt = ΔCt
(DPSCs) � ΔCt (BM-MSCs), ΔCt = Ct (target miRNA) � Ct (endogenous control)]. Venn diagram showing the number of shared and specific miR-
NAs for DPSCs and BM-MSCs. (B) Scatter plot and correlation analysis between DPSCs and BM-MSCs with standard correlation found to be R2 is

over 76%. (C) Major functions inclined by miRNA action on putative target genes using IPA of MSCs of BM versus DP. Height of bar is determined

by projected involvement of the particular pathways.
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rabbit anti-human EGFR; and alpha tubulin as control (Abcam, Cam-
bridge, UK). Thereafter, the membranes were incubated with peroxi-

dase-conjugated secondary antibody (Abcam). The blots were visualized

by using a chemiluminescence detection system.

Reporter vectors and luciferase assay

The oligonucleotides of the putative hsa-miR-516a-3p recognition
element, at the nucleotides of 1650-1656 of the 30-untranslated region

(30-UTR) of the human WNT5A gene wild-type, were designed by using

human genomic DNA with flanking Pst1 and EcoRV sites (forward:

50-CTGCAGTCCAGTTGGGATTATTC-30 and 50-GATATCTTCAACCCAACA
CGC-30). Meanwhile, the mutant type was constructed by deleting 3 nu-

cleotides of the seed region with the flanking EcoRV and HindIII sites

(forward: 50-GATATCTCAAAGTATTTTGTAC-30 and 50-AAGCTTCCTCA
GAAACAAGG-30). After annealing the sense and anti-sense oligonucleo-
tides, the DNA fragment products were double digested by using the

above-indicated restriction sites and cloned into pSV40-CLuc (New
England Biolabs, Ipswich, MA, USA) vector. The resulting vector

wild-type indicated as pSV40-WNT5A-WT or mutant type as pSV40-

WNT5A-MT was then transfected by using Lipofectamine 2000 (Invitro-

gen) into hsa-miR-516a-3p mimics (miR-516) DPSCs (mirVana�, Life
TechnologiesTM) or miR-negative control (miR-NC) DPSCs (2 9 104

cells) seeded in a 24-well plates. After 48 hrs of incubation, the cell

extracts were prepared for luciferase assay. A thymidine kinase pro-
moter-driven secreted Gaussian luciferase (pTK-GLuc, New England

Biolabs) was used as an internal control. The relative luciferase activity

was calculated by normalizing transfection efficiency to the internal

control. All experiments were carried out in 3 technical replicates.

Statistical analysis

All values are given as mean and SD. Data were analysed by using the

SPSS statistical software, version 19.0 (SPSS Inc, Chicago, IL, USA). The

Fig. 2 Network 1: Schematic representation describing the interaction between 5 highly expressed miRNAs found in DPSCs with their associated tar-
get mRNAs and cellular proteins related to cancer, reproductive system disease and genetic disorder. The miRNAs are namely hsa-miR-516a-3p,

hsa-miR-125b, hsa-miR-190a, hsa-miR-106a and hsa-miR-584-5p. Network was constructed by using Ingenuity software based on expression rela-

tionships described in the literature. For miRNA analysis, the colour intensities (from pink to red) were correlated with fold change intensities, in

which miRNAs overexpressed in functional analysis, are indicated in red.
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data were analysed by using two-way ANOVA. The significance level was
set at P = 0.05. Tukey post-hoc multiple comparisons were carried out

to determine the differences between the groups. Mean � SD values are

shown from either three independent biological or technical experiments.

Results

Elementary depiction of dental pulp and bone
marrow SCs

For physiognomies interpretation, both BM-MSCs and DPSCs
showed appearance of fibroblastoid cells in spindle-shaped mor-
phology (Fig. S1A), which was retained in all subcultures. DPSCs
cultures consistently displayed a higher incidence (12.7% � 2.1%)
of cells in the S + G2 + M phases of the cell cycle with ~85% of

cells in phase G1/GO when compared with BM-MSCs
(5.7% � 1.2%) of cells in S + G2 + M with ~90% of the cells in
phase G1/GO (Fig. S1B). The accumulation cell number was also
compared for BM-MSCs and DPSCs throughout 5 passages
(Fig. S1C). The graph for DPSCs showed a lag phase for 2
passages, and then multiplying at a rapid rate before reaching a
plateau stage earlier than BM-MSCs. Furthermore, the PDT for
DPSCs in P1 was 20.50 � 1.39 hrs, whereas 27.01 � 0.73 hrs
was recorded for BM-MSCs. At P5, the PDT was 23.12 � 0.65 hrs
for DPSCs and 33.16 � 0.97 hrs for BM-MSCs respectively
(Fig. S1C). Collectively, these results show DPSCs having a higher
proliferation rate as compared with BM-MSCs, conforming to our
previous [5] as well as other independent studies [16]. Moreover,
antigenic phenotypes for both cells were examined by using flow
cytometric analyses as shown in Figure S2. The results revealed
that DPSCs were positive (>85%) for many markers similar to
BM-MSCs: CD44, CD 73, CD90, CD105 and CD166. At the same

Table 2 Top two associated network functions generated by using Ingenuity Pathway Analysis

Network miRNA Abbr. Entrez gene name Function

Reproductive
system
disease,
Cancer,
Genetic
disorder

miR-638
miR-26a-1-3p
miR-294-5p
miR-30c-5p/miR-30c/miR-30b-5p
miR-30a-3p/miR-30d-3p/miR-30e
miR-26b-3p/miR-26b*/miR-26a-2-3p
miR-125b-1-3p/miR-125b-3p
miR-190a
miR-106a
miR-584-5p
miR-17-5p/miR-20b-5p/miR-93-5p
miR-516a-3p/miR-516b-3p

ARID4B
BAMBI
BMPR2
CTNNB1
CYR61
HIPK3
MICA
MYLIP
PKD2
TNF
VEZT
WNT3A
WNT5A
ZBTB7A

AT-rich interactive domain 4B (RBP1-like)
BMP and activin membrane-bound
inhibitor homologue
bone morphogenetic protein receptor, type II
catenin (cadherin-associated protein),
beta 1, 88 kD
cysteine-rich, angiogenic inducer, 61
homeodomain interacting protein kinase 3
MHC class I polypeptide-related sequence A
myosin regulatory light-chain interacting
protein polycystic kidney disease 2
(autosomal dominant)
tumour necrosis factor
vezatin, adherens junctions transmembrane protein
wingless-type MMTV integration site family,
member 3A
wingless-type MMTV integration site family,
member 5A
zinc finger and BTB domain containing 7A

Other
Other
Kinase
Transcription
Regulator
Other
Kinase
Other
Enzyme
Ion channel
Cytokine
Other
Cytokine
Cytokine
Transcription
regulator

Genetic
disorder,
Skeletal
and muscular
disorder,
Developmental
disorder

miR-543-3p/miR-543*/miR-543
miR-409-3p (human, mouse)
miR-409-5p
miR-4712-5p/miR-770-5p
miR-425-3p/miR-425*
miR-656
miR-539
miR-431
miR-495
miR-494
miR-487
miR-382
miR-7-5p/miR-7a-5p/miR-7a
miR-221-5p/miR-221*
miR-377-5p/miR-672-5p/miR-672
let-7f-2-3p
miR-376a-5p

DICER1
EGFR
EIF2C2
FOS
IRS1
NR0B2

dicer 1, ribonuclease type III
epidermal growth factor receptor
eukaryotic translation initiation factor 2C, 2
FBJ murine osteosarcoma viral oncogene
homologue
insulin receptor substrate 1
nuclear receptor subfamily 0, group B,
member 2

Enzyme
Kinase
Translation
regulator
Transcription
factor
Enzyme
Ligand dependent
nuclear receptor
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time, DPSCs were negative (<2%) for haematopoietic surface mark-
ers, such as CD34, CD45, HLA-DR.

Cultivation of confluent DPSCs and BM-MSCs was then intro-
duced to multipotent differentiation (Fig. S3A). Accumulation of
neutral lipid vacuoles indicated by the Oil Red O stain revealed adi-
pogenic differentiation in both cell lines. However, the observation
showed larger and dense lipid vacuoles (red colour) in BM-MSCs
compared with DPSCs, which were smaller and scattered remotely
throughout the flask. Similar effects were seen when there was a
higher exposure of dark-stained mineralized matrix in BM-MSCs in
comparison with DPSCs, which indicates efficient osteogenic differ-
entiation. Chondrogenic differentiation was confirmed with the pres-
ence of proteoglycan by using Alcian Blue in both cell lines. No
staining was seen in undifferentiated cells; however the data
are not shown here. Besides that, the cells also showed mRNA
expression of runt-related transcription 2, osteocalcin, peroxisome
proliferation activated receptor ɣ 2 lipoprotein lipase, aggrecan and

collagen 2A1 (COL2A1). These findings are typical for osteoblast
cells, adipocytes and chondrocytes (Fig. S3B).

Differential expression of miRNAs between
dental pulp and bone marrow SCs

Based on the analysis of the 104 miRNAs, it is clearly shown in
Table 1, that 48 miRNAs were differentially expressed between
BM-MSCs and DPSCs. Among the differentially expressed miRNAs,
19 of them were up-regulated in DPSCs, while 29 were down-regu-
lated. In addition, a total of 56 miRNAs (53.8%) with DDCts value
between +1 and �1 were shown to be commonly expressed between
the two subsets of cells (Fig. 1A). Furthermore, there was a high cor-
relation of miRNA expression pattern between DPSCs and BM-MSCs,
with R2 ˃ 76% (Fig. 1B). The fold change value of each miRNA is
presented in Table S3.

Fig. 3 Network 2: Schematic representation describing the interaction between 5 highly expressed miRNAs found in DPSCs with their associated tar-
get mRNAs as well as cellular proteins related to genetic, developmental, skeletal and muscular disorder. The miRNAs are namely hsa-miR-7-5p,

hsa-miR-221-5p, hsa-miR-377-5p, hsa-miR-376a-5p, and let-7f-2-3p. Network was constructed by using Ingenuity software based on expression

relationships described in the literature. For miRNA analysis, the colour intensities (from pink to red) were correlated with fold change intensities, in

which miRNAs overexpressed in functional analysis, are indicated in red.
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Analysis of up-regulated miRNAs expressed in
DPSCs

The biological functions generated from the up-regulated miRNA
demonstrated its involvement in various pathways with the top 5 in
the reproductive system disease, cancer, infectious disease, organis-
mal development, connective tissue disorders and genetic disorders,
whereas the lowest 5 pathways are in cellular development, cellular
growth and proliferation, skeletal and muscular disorders, respira-
tory system development and function as well as haematopoiesis
(Fig. 1C). Within this, the software analysis identified 25 associated
network functions whereby a few pathways may involve in creating a
network function. Amongst this, top 2 networks were further analy-
sed based on the statistical significance (P < 0.01) and biological
relevance. In the first network that comprises of 12 miRNA, only 5
miRNAs were up-regulated (Fig. 2, Table 2). Among this, hsa-miR-
516a-3p was noted with highest expression level and this miRNA is
reported to regulate WNT and CTNNB1 mRNAs, which play an
important role in WNT pathways. Next is has-miR-106a (developed
from has-miR-106b), which regulates a diverse range of mRNA
related to transcription regulators such as ZBTB7A, enzyme such as
MYLIP and kinase such as BMPR2, MICA and ARID4B. The next
up-regulated miRNA is hsa-miR-125b-1-3p, which regulates
inflammatory-related mRNA, TNF. Surprisingly, we found that 2
up-regulated miRNAs, hsa-miR-584-5p and miR-190a, were
co-regulated by DELTA 133 p53 mRNA, which is known to be
involved in tumourigenesis.

A total of 5 up-regulated miRNAs of 16 miRNAs were noticed in
2nd network (Fig. 3, Table 2). Among these, hsa-miR-376a-5p and
hsa-miR-221-5p were regulated by translation regulator-related
mRNA, EIF2C2, while hsa-miR-377-5p directly regulated by DICER1.
The most highly up-regulated miRNA is the hsa-miR-7-5p, which con-
trols and acts on kinase-related gene EGFR, enzyme-related gene
IRS1 and also transcriptional regulator C-FOS1. Apart from that, it is
also shown that EIF2C2 and DICER1 modulate hsa-miR-7-5p. How-
ever, there were no possible targets for hsa-let-7f-2-3p.

Validation of the differentially expressed miRNAs
by using qRT-PCR

The distinct expressions of the 10 miRNAs found in DPSCs in both net-
works were further validated by using qRT-PCR analysis. The results
for up-regulated miRNAs in DPSCs are shown in Figure 4, which are
significant relative to BM-MSCs. Consistent with the array results, the
hsa-miR-516a-3p and hsa-miR-7-5p exhibited substantial increase in
expression in DPSCs and further carried out in the downstream work.

hsa-miR-516a-3p, the highly expressed
microRNA, indirectly targets WNT5A gene

To examine the role of miR-516a-3p in DPSCs, we focused our atten-
tion on elucidating the role of these microRNA on its target mRNA.

Computational analysis indicated that WNT5A is a potential hsa-miR-
516a-3p target because its 30-UTR is matched to the hsa-miR-516a-
3p seed region (Fig. 5A). To investigate whether WNT5A is regulated
post-transcriptionally, we examined the expression on mRNA and
protein level by performing gain- or loss-function assay. In DPSCs,
dramatic reduction of WNT5A mRNA was detected in overexpressed
hsa-miR-516a-3p by qRT-PCR analysis as well as in the western blot
result, while knockdown of has-miR-516a-3p enhanced their expres-
sion (Fig. 5B).

However, based on literature, Takei et al., [17] have debated that
expression of WNT5A and WNT3A is indirectly regulated by hsa-miR-
516a-3p because of other target, specifically SULF1 (extracellular sul-
fatase). Therefore, we proceeded to find the relative interaction
between the hsa-miR-516a-3p and its predicted WNT5A mRNA
30-UTR target sites by generating reporter vectors containing seed
region complementarity to the miRNA upstream of the open reading
frame (Fig. 6A). These were constructed by using wild-type of
WNT5A 30-UTR sequences and the same sequence with four point
mutation (deletion; Fig. 6B). In DPSCs transfected with mimic miR-
516, no effect on the expression of reporter was observed compara-
ble to the DPSCs transfected with miR-NC (Fig. 6C) impeding the
specificity of the binding sequences. This finding is in agreement with
the reported result by Takei et al.,[17].

EGFR gene as a direct target of microRNA
hsa-miR-7-5p

Likewise, we found that EGFR is a potential hsa-miR-7-5p target as
its 3‘UTR is matched with hsa-miR-7-5p seed region (Fig. 7A). Con-
sistently, our results displayed that overexpression of the miRNA

Fig. 4 Validation of 10 highly expressed miRNAs in DPSCs using qRT-

PCR. Generally, the higher a fold change value, the more copies are

present in the specific sample. The miRNAs expression levels were cal-
culated by using comparative cycle threshold (Ct) method. Ct values of

target miRNAs were normalized in relation to U6 snRNA, which is an

internal control gene. The fold change was calculated by using the
equation 2�ΔΔCT.
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reduced mRNA and protein level of EGFR, while knockdown of the
miRNA increased the mRNA as well as the protein level of EGFR
(Fig. 7B). Our results correspond well with previous works [18] con-
ducted to validate the interaction between hsa-miR-7-5p and EGFR
30-UTR target sites by using reporter assay. Hence, no further valida-
tion was carried out for hsa-miR-7-5p and EGFR target relation.

Discussion

In the present study, DPSCs exhibited typical MSCs characteristics;
fibroblastoid morphology, proliferation, multipotent differentiation
capability and the expression of a typical set of surface protein. Nev-
ertheless, variations were still noted between DPSCs and BM-MSCs
and a key factor that attributes to this phenomenon probably because

of its intrinsic molecular propensity that governs the fate of the cells.
Various gene expressions are being controlled by miRNAs, and they
also partly act in mutual negative feedback loops with protein factors
to control cell fate decisions that are elicited by signal transduction
activity. These findings implicate miRNAs as important mediators of
gene regulation in response to cell–cell signalling [19]. Dysregulation
of these molecules often ends with an uncontrolled growth stage in
the cell population [20]. Hence, there is a need to identify miRNA
activity in DPSCs to enable understanding of expression patterns that
might be applicable prior to its usage in cell therapy.

Based on 2 network systems, 2 miRNAs were highly up-regulated
and the remaining was moderate. Here, we briefly discuss the
functions of each up-regulated miRNAs. An augmented level of hsa-
miR-125b-1-3p expression was observed in the present study. This
miRNA was involved in the regulation of TNF, a pro-inflammatory

A

BFig. 5WNT5A is a potential hsa-miR-
516a-3p target. (A) Sequence alignment of

hsa-miR-516a-3p and predicted binding

sites in the 30-UTR of WNT5A (http://

www.targetscan.org). (B) Quantification of
WNT5A mRNA expression levels in

response to the mimic and inhibitory

effect of hsa-miR-516a-3p. (C) Protein

level expression of the results shown in
(B). Data are shown as the mean of SD

values (n = 3).
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cytokine. This gene is said to function as critical feedback in signal
molecules between immune cells and MSCs for MSCs-mediated
immunosuppressive activities [21]. Interestingly, there are also
reports indicating that hsa-miR-125b-1-3p plays a vital role in sup-
pressing osteogenic differentiation in MSCs [22]. Furthermore, hsa-
miR-125b-1-3p has been indicated to be involved in MSCs ageing,
with a study reporting down-regulation of expression in MSCs in old
primates compared with young primates [23]. Similarly, the higher
expression of hsa-miR-125-1-3p in DPSCs could be as a result of the
fact that the cells were isolated at an early stage of adult tooth devel-
opment [24]. Overexpression of hsa-miR-125b-1-3p, which was done
elsewhere, showed a significant increase in SC population, while
depletion of the miRNA increased the non-SC population through
WNT signalling [25]. This was also reported by Lee et al. [26], who
described that the depletion of human hsa-miR-125b-1-3p leads to
the critical role of proliferation of differentiated cells.

Hsa-miR-106a-5p has been reported to target BMP groups, thus
inhibiting the cells from osteogenesis [27]. We believe that this miR-
NA down-regulates BMPR2, which is a kinase-related gene acting as
potent inducer for osteogenesis differentiation and cell growth
through Smad signalling [28]. The computational data also predicted
that hsa-miR-106a-5p is connected to various mRNAs such as
ARID4B, ZBTB7A, BAMB1, PKD2, BMPR2, MYLIP and MICA. Among
these mRNAs, ARID4B are cell cycle inhibitors [29], and the elevated
expression of hsa-miR-106a-5p suggests that it enables cell prolifera-
tion in DPSCs. On the other hand, ZBTB7A, a transcription factor,

regulates differentiation in multiple tissues and cell lineage, mainly
oligodendrocyte lineage cells [30]. However, in DPSCs, the hsa-miR-
106a-5p could suppress the response of this gene and allow prolifera-
tion rather than differentiation. Apart from this, according to
Shangguan et al. [31], increase in BAMB1 expression could block the
differentiation of MSCs into carcinoma cells through TGF-b/Smad sig-
nalling in BM-MSCs. Besides that, BAMB1 are also a negative regula-
tor for adipogenesis [32], while positively modulating WNT signalling
[33] to promote cell cycle progression. In DPSCs, hsa-miR-106a-5p
probably suppresses the BAMB1 and could instead play the antago-
nistic role. Hsa-miR-106a-5p also reacts to PKD2, which allows cal-
cium influx [34] into cells that would trigger maturing of cells into
specialized functions. Sun et al. [35] reported that miR-17 directly
targets PKD2, and post-transcriptionally represses PKD2 expression,
which leads to cell proliferation. Hence, in DPSCs, hsa-miR-106a-5p
is predicted to suppress PKD2 to enable cell proliferation. The other
gene that is regulated by hsa-miR-106a-5p is MICA, which is known
to activate natural killer receptor and induce immune surveillance in
cancer cells [36]. One of the roles performed by MICA is to promote
cytotoxic response during infection by binding with endothelial cells
of the graft and induce cell destruction. The suppression of this
immune-related gene in DPSCs by RNA interference may be used in
transplantation, and also as a therapeutic target gene.

Hsa-mir-376a-5p has been known to suppress proliferation while
inducing apoptosis in hepatocellular carcinoma cells [37]. This miR-
NA, along with hsa-mir-377-5p, also known as chondro-miRs (with

A

B

C

Fig. 6 Validation of WNT5A gene as a tar-
get gene of hsa-miR-516a-3p. (A) Sche-

matic diagram of luciferase reporter

constructs for consensus hsa-miR-516a-

3p target sites at the 30-UTR region. (B)
The sequence alignment of the predicted

hsa-miR-516a-3p binding site in the 30-
UTR region of human WNT5A is shown

with the seed target sequence
(UCCUUCG). (C) Luciferase reporter vec-

tor containing hsa-miR-516a-3p target

seed region of WNT5A (wild-type) or
same vector without target seed region

(empty vector) or same vector with dele-

tion of the target seed region (mutant)

were cotransfected with miR-516 mimics
or negative control respectively. Data are

representative of at least three technical

experiments.
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chondrocyte targets such as TGFbR, MAP3K, collagens, SMADs and
cadherins), acts as a mediator of chondrogenic signalling pathways.
This includes cell–cell interactions, TGF-b and MAPK signalling,
which suggests a mechanism for genetic induction of chondrogenic
differentiation [38]. Along with that, hsa-miR-221-5p in DPSCs tends
to inhibit osteogenesis in MSCs [39]. Another miRNA, which is pres-
ent in DPSCs, hsa-let-7f-2-3p, is known to be a pro-differentiation
factor with ‘anti stemness’ properties [40]. Our results predicted that
translation factor EIF2C2 regulates these miRNAs. EIF2C2 is a short-
interfering RNA that mediates gene silencing, which suggests its
involvement in controlling lineage-restricted pathway [41]. DICER-1
and EIF2C2 interact together to function as a translation initiation fac-
tor for short interfering RNA-mediated post-transcriptional gene
silencing similar to the role played by miRNA. Bahubeshi et al., [42]
demonstrated that DICER1 could function as the sole member of the
miRNA pathway in which germline mutations induced the carrier to
develop a human disease. Therefore, the functions carried out by the

above miRNAs are suppressed because of the effects of DICER-1 and
EIF2C2, bringing about the loss of chondrogenic differentiation or
perhaps contributing to other lineage development. Hsa-miR-190a is
one of the poorly characterized miRNAs. Previous study focused
on the involvement of this miRNA in the development of tolerant to
l-opioid receptor agonists with NEUROD1 (a neural differentiation
marker) as the direct target for mir-190 [43]. Likewise, hsa-miR-584
is known to play an important role in tumourigenesis process by
inhibiting them [44].

We paid special attention to hsa-miR-516a-3p and hsa-miR-7-5p
as these miRNAs were highly expressed upon validation with qRT-
PCR analysis. We further proceeded with loss-of-function analysis
with these miRNAs and we observed that hsa-miR-516a-3p knock-
down induced a significant increase in the expression of WNT5A. This
gene is involved in controlling cell fate decision by integral involve-
ment in maintenance and growth [45]. Furthermore, in tooth develop-
ment, this gene is involved in regulating 4 cell signal pathways,

A

B

Fig. 7 EGFR is a potential hsa-miR-7-5p

target. (A) Sequence alignment of hsa-

miR-7-5p and predicted binding sites in
the 30-UTR of EGFR (http://www.target-

scan.org). (B) Quantification of EGFR

mRNA expression levels in response to

the mimic and inhibitory effect of hsa-
miR-7-5p. (C) Protein level expression of

the results shown in (B). Data are shown

as the mean of SD values (n = 3).
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namely JNK and AKT signal pathways as well as P42/44/MAPK and
P38/MAPK pathways, which have close relation with cell proliferation
and differentiation [46]. Apart from this, we also predicted that hsa-
miR-516a-3p down-regulates CTNNB1 gene, also known as beta-
catenin, which is associated with WNT signalling for SCs renewal
[47]. WNT, together with Beta-catenin signalling pathway, represent a
diverse group of molecules involved in controlling transcription of
pluripotent genes, self-renewal and differentiation in most of the SCs
found in adult tissues [48]. Meanwhile, Blauwkamp et al. [49]
reported that different levels of WNT signalling lead to distinct line-
age-specific differentiation properties in human embryonic SCs. As in
haematopoietic SCs, WNT signalling together with beta-catenin form
a complex pathway which are shown to be more essential for devel-
opment rather than for maintenance [50]. Hence, we suggest that
hsa-miR-516a-3p acts by suppressing the expression of WNT5A
genes involved in WNT signalling pathway via altering/elevating SCs
from undifferentiated to differentiated state. Nonetheless, it was puz-
zling to observe higher proliferation and less differentiation capacity
in DPSCs when it was supposed to be the other way round. One of
the possible reasons is the high expression of several pluripotency
transcription factors such as Oct-4, Sox-2 and Nanog in DPSCs [16]
with Wnt signalling pathway directly encompassing these genes. In
addition, Oct 4 is involved in the maintenance of SCs fate via interac-
tion with Wnt signalling pathway [51]. Nevertheless, our further work
to investigate the predicted interaction between the hsa-miR-516a-3p
and mRNA WNT5A does not satisfy the criteria of miRNA and target
prediction. This outcome corresponded to the work conducted by
Takei et al., [17] that the WNT5A expression changes are most proba-
bly because of SULF1, which plays an important role in promoting
WNT signalling pathway [52]. Consistent with the above findings,
Hayano et al.,[53] have postulated that regulation of WNT signalling
is modulated by SULF enzymes, which eventually control the differen-
tiation of mouse pulp cells into odontoblasts. Our findings and
notions warrant further investigation on the relationship between hsa-
miR-516a-3p and WNT signalling pathway.

Another gene, EGFR, is known to suppress the osteoblast differ-
entiation by inhibiting expression of transcription factors [54]. As in
neural SCs, the EGFR is known to promote cell number and self-
regeneration [55]. We found in this study that the positive interaction
between hsa-miR-7-5p and its target EGFR through gain and loss
assay. Validation of this interaction was found in a few studies that
confirm that hsa-miR-7-5p directly targets EGFR [56, 57]. Therefore,
we assume that in DPSCs, the role of EGFR is suppressed, which ulti-
mately maintains SC numbers.

In addition to targeting EGFR, hsa-miR-7-5p targets upstream
regulator, insulin receptor substrate (IRS-1) of the Akt pathway,
which is essential for regulation of cell cycle progression, cell survival
and cellular growth as noted by Kefas et al. [58]. Besides that, hsa-
miR-7-5p also down-regulates C-FOS1 transcription regulator, which
is known as a marker for neuron activity. C-FOS1 is a member of
AP-1 transcription factors that activate many genes, including those
involved in cell growth and proliferation [59]. Thus, hsa-miR-7-5p in
DPSC is predicted to inhibit C-FOS1, eventually decreasing cell prolif-
eration and growth. EGFR, IRS-1 and C-FOS-related genes are also

connected to MAPK signalling pathway that regulates proliferation,
gene expression, differentiation, mitosis, cell survival and apoptosis
using a diverse range of stimuli [60]. Therefore, we suggest that the
role of hsa-miR-7-5p in gene regulation may suppress cell cycle pro-
gression and proliferation, either for differentiation or to maintain
DPSCs in a quiescent state.

Conclusion

In conclusion, our data suggest that miRNAs expressed in DPSCs
preferentially express and integrate appropriately as a group, rather
than playing a solitary role to create a functional switch between self-
renewal, stemness and lineage development. These findings, along
with further studies, can introduce a new dimension of gene regula-
tion in controlling SC fate and behaviour in DPSCs, and facilitate
development of therapeutic approaches for various diseases.
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