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Abstract. Planck introduced the quantum hypothesis from his Blackbody radiation studies, where
he and subsequent workers opined that classical mechanics and electrodynamical theories could
not account for the phenomenon. Hence a statistical mechanics with an appropriate Second law
entropy was invented and coupled to the First law to account for quantum effects. Here, as an
academic exercise we derive the quantum of energy by considering two structures, that of the dipole
oscillators on a 2-D surface and the scattering of radiation into the 3-D cavity. Previous derivations
are briefly cited and reviewed where none followed this. approach. One prediction from this first
order Brownian motion development is that a 2-D sheet of oscillators should emit radiation largely
with energy density factor T I of the Kelvin temperature T, rather than that deduced as T4 from
detailed balance. Preliminary measurements conducted here seemed to verify the the TI density. The
first order theory also admits a possibility of nonlinear quanta and the consequences are explored
briefly.!t was noticed in passing during the experimentation that certain bodies suspended in a
vacuum exhibited small persistent temperature differentials. A Second law statement is presented for
such cases and consequences explored for processes that are not coupled by Newtonian momentum
energy transfer mechanisms, such as for the radiation field as deduced by Planck. The different
forms of heat transfer due to different laws (e.g. gravity waves and electromagnetic waves) are
strictly separable and cannot be confused or forced to an equivalence. We generalize on the Zeroth
law, the Kirchoff law and postulate an appropriate entropy form due to these generalizations.
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INTRODUCTION AND BACKGROUND

The background to this presentation was a work that derived the Blackbody (BB or bb)
spectrum and Planck quanta from strictly classical arguments and first order Brownian
motion theory which could distinguish the processes of the 2 - D surface of the BB cav-
ity from the 3-D electromagnetic (em) cavity modes that builds up as a result of the sur-
face scattering [1]. It also commented in detail contemporary developments that claimed
from their titles to derive the Planck BB radiation law on classical grounds, where it was
demonstrated in each case that this was not the case [2, 3,4,5,6, 7, 8, 9, 10, 11, 12, 13].
[1] assumes the Zeroth law and thermal equilibrium of the surface oscillators and ergod-
icity [14, p.46] so that the density of probability w(X) is dependent on the energy of the
system i.e. w(X) = cp(H(X)) where X are the canonical coordinates for a single system
in an ensemble all having Hamiltonian H, also written H(X, a) with a being external
or system variables;each a coordinate represents an entirely different Hamiltonian and
all the results in classical statistical mechanics presumes that the statistical mechanical



ensemble is not mixed but is composed of similar systems with the same a variable.
The equipartition results also assumes the same a values for all systems. It is maintained
here that earlier work assumed different a values implying a mixed system that made
them conclude that there was a failure in the results of statistical mechanics. The fail-
ure of their derivation was thought to lie in the breakdown of the equipartition theorem
[15, pp.185-6] and where the inadequacy of mechanics is strongly maintained [15, pp.
117,189]. Jeans echoes similar sentiments [8, p.948] as does McLaren [12, pp.21,26]. A
more recent critique of Jeans and Einstein is given in a pedagogical article [16]. These
opinions probably helped drive the development of molecular orbital theory by assum-
ing that classical electrodynamics represented average quantities that need not represent
reality at the atomic level. What is attempted here is a completely classical derivation
which Planck and his contemporaries thought impossible, and which is entirely different
from the more current methods already alluded to. Planck invented a statistical mechan-
ics that could overcome the equipartition principle [15, Part III, Entropy and Probabil-
ity] for the Second law expression, whilst maintaining the First law without modifica-
tion. The two laws of thermodynamics "must be upheld under all circumstances" [17,
Planck, M. (1931). Letter to R.W. Wood,] according to Planck because the failure of
equipartition [15, p.114] implied that the laws of (Hamiltonian) mechanics failed at the
molecular level, and "a purely electrodynamical theory fails entirely" [15, p.114]. The
inadequacy of mechanics is strongly maintained by Planck [15, p.117,p.189, Sec. 170].
The approximate development below shows that no immediate and necessary modifica-
tion is implied. On the other hand, preliminary experiments seem to support some of our
predictions, and these with other possible predictions are presented in the next section.
Here we develop a statistical mechanics for mixed systems with different a variables.
The density w(X) [14, p.54, eqn. 11.27] for identical systems with the same a is given

by
w(H) = exp(\f(e,a) -H(X,a)/e)

and so the equipartition results for the {Pk, qk} momentum-spatial coordinate set,

(1)
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qk aH/aqk

which are based on (1), must refer to similar systems and to identical \f,a and e, the
temperature factor, where \f is the modulus, equivalent to the normalization constant.
If canonical coordinates are involved [18], as they must as we are considering different
oscillators, then from equipartition and (1) we have

(4)

where

Wi (Xi) Diexp( -f3Hi) (5)

where the systems need not be identical but identical ones have one particular subscript j
and belong to a particular energy channel; D, need not all be identical although the tem-
perature is (from the Zeroth law) for purely equilibrium mechanical systems. In our case,
each elementary oscillator with a unique characteristic frequency is a different Hamilto-
nian system with a distinct a value so that the total system L is made up of composite



systems :r.! ,:r.2 ... :r.n with different Hamiltonian structures in thermodynamical equilib-
rium where :r. = :r.! U:r.2 U:r.3 ... U:r.n would obey, for two canonical variables (in this
case represented by the frequencies w) would obey (4) so that the probability densities
P == w can be written P( Wi, Wj) = P; (Wi )Pj (Wj) where the probability for each channel is
w;(w;) = exp('¥;(0, Wi) -H;(w;,a;)/0). Henceforth, X will denote the amplitude of the
various oscillators. These oscillators can be envisaged as the free electrons oscillating
about the lattice cores of opposite charge where the mean distance between the particle
and cores <X > at high enough temperatures would be bounded and also slowly vary-
ing once the mean kinetic energy exceeds the mean potential energy; these oscillators
vibrate at different frequencies with damped (combined electromagnetic and mechani-
cal) average viscosity coefficient y and breakup with mean relaxation time T. Since these
two quantities pertain to the entire system, they can be used to coordinate the various
processes. The radiation from these oscillators before breaking up are assumed to scatter
into the stable modes of electromagnetic stationary waves within the cavity, where each
mode is considered to be a different canonical system :r.j in thermal equilibrium with
the entire system :r.. The following is a deliberately simplified treatment to highlight the
general approach; the theories of stochastic processes using the Ito and other integra-
tions is sufficiently advanced to derive quantities to any degree of accuracy based on a
model; here we concentrate on a feasible model and defer detailed treatment until the
nature of the model is further clarified and understood. Clothing inappropriate models
with mathematical abstractions can be a costly detour.

Structure of the oscillator equations

After a particular oscillator configuration has been reached, it radiates without being
forcefully driven. For anyone amplitude Xo, the damped harmonic equation is

(6)

where a = ym. The radiation within the cavity and particles on the surface cavity
interacts to reconfigure the oscillator after time T. The damping is assumed small so
that within this time frame of the relaxation time T; for this oscillator characteristic, the
trial solution for amplitude Xo is X = Xo exp(iwt) with natural frequency of vibration
w2 = kim, with k the elastic constant and m the mass of the oscillator. Averaging over
one period, the non-thermal coarse-averaged quantity for kinetic energy K', potential
energy V' and total energy E' has been worked out [19, Chap.23] as

K' mXJw2/4
V' - kXJ/4
E' mXJw2/2

(7)
(8)
(9)

and from the above we infer that the average square amplitude <XJ > for this oscillator
is such that the Kinetic K , Potential V and total energy E must preserve the above
form so that K = m < XJ > w2/4, V = k < XJ > /4, andE = m < XJ > w2/2. One



approximation we make here is that because we are working at high temperatures and
because we are parameterizing the system over an average system relaxation time r,we
shall also refer to Xo as pertaining to the average oscillator amplitude as well. Define the
density of states nE,a) such that

nE,a) =1 dX
(H(X,a)<E)

where again X are the canonical coordinates. Then the entropy S is defined as S= klnr
and from the definition of r and assumption of isotropy, it follows that T = aE and
from the definition (1) of the probability density of form P(E) = cQ(E) exp -E (3 where
8 = kbT = 1/{3 and the identity I/T = as/aE we can derive

(10)

where kb is the Boltzmann constant. From normalization of P(E) and the average value
of < E >,we derive

P(E) = (3 exp -E{3. (11)

The coarse-averaged Brownian motion equation for oscillators

The first order Brownian motion equation gives for a collection of oscillator atoms a
total system property [20, p.574] referring to the velocity v

(12)
or

-2kbT < ~v( r) > /(mV) > . (13)

Writing the oscillator equation as X(t) =< Xo > COSO)! and averaging over the entire
spectrum where ~v( r) =X(t)'t' we derive

<XJ > 't' < (04 > /2 = 2 < y> kbT [m

The average value of (04, < (04 > is

(14)

(15)

where ~ = m < XJ >. In the first order derivations here, we assume the following
«XJ »~< Xo >2~« Xo >2>, and when these do not hold one can always revert
to the exact expressions. From (12,14,15) we derive

't'kbT <XJ > ym/2
= <XJ > a/2.

(16)
(17)

The y term is the average term < y ». We term equation (16) the First Certainty
Relation, where we note that kb T '" M, 't' '" ill, so that a classical statistical analog



to the Heisenberg Uncertainty Principle is represented by First Certainty Relation. The
y viscosity term pertains to all the oscillators, but the elastic constant k is obviously a
variable (= ai / m) and its average k is

< k >= 2kbT <XJ > .

Combining (18) and (16) we derive the Second Certainty Relationship defined as

ym/(7:<k»= 1.

(18)

(19)

Radiation power and scattering

Eqn.(6) involved a material matrix so that the damping term y = aim is ordinarily
a mechanical quantity[20, p.565,Sec.15.6]; in our case it involves the strong electro-
magnetic forces and the much weaker dispersion forces of the particles, which in many
instances may be neglected, as in the Poisson-Boltzmann solution of charges in a tem-
perature field. This work maintains an open view concerning these interactions in that
both the strong electromagnetic forces and the much weaker dispersion forces are in-
cluded. Ifa direct equation is made to only electromagnetic damping, then Qai = ym/2
where Q = e2/ ( 12n£oc3) , e being the charge, £0 the permittivity and c the phase ve-
locity of the radiation. It is anticipated that in many cases this identity is a sufficiently
accurate one. From (9), we can approximate that the average energy is maintained at
E = mXJro2/2 over approximately one cycle before the mode reconstitutes itself into
another mode. We note that the electromagnetic dissipation per unit time for strong
electromagnetic interactions would be yE. A coarse-graining of the EM scattering over
time 7: yields

-(dE/dt)7: = a <XJ > ai7:/2 (20)

For N scattering centers, the total average radiation scattered 8R( co) over time 7: is

(21)

for frequency range to - 8ro /2 :::;ro :::; ro+ 8ro /2 where the frequency v is related via
ro = 2nv. Clearly,

-
dE 'uuodo:

- 8an2vdv
where a m < XJ > /2, and a = ym.

(22)
(23)

For a conducting BB cavity, the number density D( v) per unit volume is given [21,
p.118] by

(24)

Define n= a < XJ > N4n2/2. Then

8R( ro) p(E)nv27:dE
_ 8nv3an2p(v)7:dv (25)



where p(v) =P(E). It is clear that the DR(w) function determines the frequency range
in which radiation may be scattered, and which may be accepted by the blackbody cavity
since it is in a resonance condition. Over time r, the energy received per mode is Dr( zo)
where

Dr( ro) DR( ro) / (D( v)dv)
c\xnQvp(v)-r.

(26)

(27)

Define £( v) == Dr( (0), which is the quantum of energy transfer over relaxation time -r.
From the First Certainty Relation (16), we write

(28)

We notice that a frequency factor v appears for the quanta injected into the stable modes
present in the cavity. The problem now is the possible temperature dependency. We note
that we have carried our various coarse grained averaging, but the probability term (11)
has a 13 pre-exponential term which cancels with the kbT term of (28). There remains
the exp( -f3E) term. Two arguments will be adduced to produce an expression for the
quantum, one being an approximation :
(i) From equipartition, the average energy for each of the equilibrium vibration modes
irrespective of frequency injecting radiation into the stable cavity modes is given by (11)
so that we have exp( -f3E) = exp( -kbT /(kbT)) = e-i = X·
(ii)If a non-equilibrium oscillator energy density is involved, then subjected to the
approximations of our averaging procedure, the term in the exponential -f3E = reduces
from the First Certainty Relationship to _~;2r .The identity w2 = k / m and the Second

Certainty Relationship leads to the expression exp( -f3E) = exp( - <%» = X(k). Since
the vibration constant varies slightly , being larger for higher angular frequency oi,
there would be a slight change of X depending on the frequency, but where nevertheless
X(k) :::::;e-i .Much more experimentation and higher order stochastic analysis is required
to determine which of the two scenarios is more likely. In this work, we write X as
referring either to X(k) or X = e-i.
From the above, the quantum £ of energy transfer over time -r (28) can be written

£(v) hv
_ 4c3 an3 N 1:2XV (29)

The BB Planck constant h may therefore be written in the case of complete scattering
as

(30)

It is conceivable that the oscillators may not be in the proper position for affecting the
radiation modes. Then an orientation factor 1( must be factored into the Planck constant
so that the effective Planck constant he!! with orientation factor 1( is written he!! = xh
with h given in (30). The average power < P > emitted by our oscillators is given by

< P >=< ymX2 >= QW2 < XJ > /2 (31)



Equating (31) with the First Certainty Relationship yields < P >= O/rkbT and averag-
ing (31) a second time yields

(32)

Eq.(32) was a very surprising result for it shows that the surface oscillators emit radi-
ation in a manner that resembles Fourier heat conduction, and not as T4 as inferred by
many from the Stefan-Boltzmann law for 3-D cavity radiation. Thus this coarse aver-
aging theory predicts that a 2-D metallic or conducting sheet has essentially a Fourier
heat transfer mechanism for thermal radiation, whereas if the topology of the system
allows for cavity radiation buildup, then some T4 radiation transfer would also be pos-
sible. These result were verified in experiments conducted at the University of Malaya
Engineering Faculty in the 1990's [22, 23].

The Planck distribution without recourse to the Second law
-

For anyone cavity mode, the average energy E due to the scattered quanta is

M
E = lim L nP(c(v)n)c(v).

M~oon=O
(33)

Since the canonical distribution gives
00

P(nc(v)) = exp[-nc(v)/(kbT)]/ L exp[-mc(v)/(kbT)] (34)
m=O

the two preceding equations (33,34) yield
-E - c(v)exp[-c(V)/(kbT)]/(1-exp(-c(v)/(kbT))

c(v)/(exp(c(v)/(kbT)) - 1). (35)

The total energy density for this particular mode U; per unit frequency and unit volume
is

U; - D(v)E(v)
8nc-3v2hv/(exp(hv/(kbT)) -1) (36)

which is the Planck formula [24, 25].

EXPERIMENTS AND THEORETICAL C9NSEQUENCES

Experimental results:active heating experiments. A thermal conductivity apparatus
meant to demonstrate the standard radiation and convective heat transport laws at low
pressure was modified [25] for our purposes. It consists of a cylindrical chamber that
can be evacuated to low pressures by a single-stage pump of diameter 2ro = 26 em and



length Lo of approximately 20 ern where in the center, a pencil-like heater (effective
length 11.5 em, diameter 1.03 em with heating area of 38.4 cm2 ) was clamped in place
by insulated holders. This arrangement leads to an unambiguous determination of the
convective heat transfer coefficient at the indicated vacuum pressure which may be
compared with available data and we found that out foil samples were in accord with
the standard data [23, Sec. 3]. The temperatures were monitored by very thin (fine)
thermocouples. By various methods of calibration and extrapolation (for instance from
a !1T vs (P) 1/4 power law (P being the pressure) at fixed electrical power dissipation
to determine the actual temperature difference at zero pressure between the heater and
chamber wall) we can determine the actual transfer of radiation in the pure vacuum
state. Also, we can eliminate through extrapolation the heat conduction due to the
thermocouple wires, the holders and the residual convective transfer due to the low
pressure gas present. (The lowest gas pressures attainable was ~ .166 mbar. Because
various surfaces are present, each of which transmits radiation with the 10 cos e Lambert
law applying, one can through integration for various geometries calculate the net
transfer of energy from surface S1 to So where So is the outer chamber and S 1 is the thin
pencil heater surfaces respectively. For the ratios Lolro = 19/13, and rt/ro = .038 [24,
Fig.8-159(b),p.322] the energy transfer ratio from SI to So is ~ 98% which warrrants
the energy transfer expression (normalised to 1m2 of surface SI) due purely to heat
radiation because of a temperature difference Pw to

(37)

where To, T are respectively the temperatures of the chamber and metallic sample wound
round the pencil heating element. If T = To, then there is no net radiation heat transfer
Pw which explains the form of (37). We carried out experiments for both the active heat-
ing of sheets and also for the passive relaxation (cooling) of solid metallic cylinders
(as opposed to sheets). For active heating of sheets, we used 4 different metal spec-
ifications, the one reported here is material CI [Cu, 99.9%, Phosphorus deoxidized,
BS2870/JSH3100, O.l27mm rolled sheet]. For another temperature differential exper-
iment we also use material AI, Al [AI,(ALCOM,MALAYSIA) 99.6%,AAllOO-H24
Finstock,0.1l5mm rolled sheet]. Because we can measure and extrapolate all parame-
ters, the active heating experiments are more accurate. Define the mean power square
deviation ASD[L]as

N
ASD[L] = LPwi - Yd(Ti - To) - (J(Tj4 - T04))2 IN.

i=1

(38)

Let the label [L] denote the following situations in the optimization: 1) Ys when the
single optimization involving only Yd is involved where (J = 0, 2) (Js when the single
optimization involving only (J is involved where Yd = 0, 3) Yc(Jc when both param-
eters are optimized by standard least squares optimization; in all cases the Yd and/or
(J values are given by the s or c subscript. The results for the C1 material with To =
302.9K is presented as a set with the key {Tave, Ys, (Js, Yc, (Jc, ASDYs, ASD(Js, ASDyc (Jc}
where Tave is the average temperature of the measurements for the ((J, y) parameters,
where 100 equally spaced intervals in Pw were used for each set. We have for mate-
rial CI {420.2,4.470,0.2287 x 10-7,3.737,0.3754 x 10-8, 13.375,325.3,0.8899} and



{449.6,4.597,0.2061 x 10-7,2.910,0.7566 x 1O-8,74.97,217.4,2.884}. The Rd ratio
of radiant dissipation defined as Yc(T - To)/ac(T4 - T04) is approximately 4: 1 in most
cases or greater for all our active heating experiments (> 5 : 1 in the second set). In
nearly all our measurements [22, Tables 2-5] ASDrs < ASDas, implying the superiority
of the linear to the T4 power law, but the combination law is often the best because there
are more variables present. These results seem to underscore the importance ofthe linear
law.
Minor measured equilibrium temperature differences. These experiments are semi-
quantitative, but the measurements are significant to within experimental error. The spot-
welded tips of the two thermocouples were put in contact and observed in vacuo (~0.16
mbars) where no change to rv O.lK could be detected. Materials Al and C1 were rolled
from a flat sheet 13 x 19.4 em to a cylindrical object (with 0.4 em overlap) and were
fastened with transparent tape (Sellotape) and suspended centrally with very fine cotton
thread with 2cm clearance from the base of the cavity in its natural state and the top was
covered with a flat plate painted matt black as was the color of the well. At atmospheric
pressure, the maximum temperature difference between the rolled Al sheet (at T1) and
the vessel wall (at T2) was .1K,the vessel being warmer in several repeated experiments.
As the pressure dropped, we get the results {P(mmHg),T1(°C),T2(OC} such as {O.l25,
25.6, 26.1} and {0.120, 25.7, 26.2} after equilibrating (no change of temperature in a
10-minute interval). For C1, typical results are {0.15, 24.6, 25.0}, {0.125,25.1, 25.5},
{0.10, 25.4, 25.7}. A statistically significant difference of 0.5-0.3 K is noticed. The same
magnitude of temperature differentials is observed if the wall lining is replaced by the
same material as the test sample. These may be due to other effects connected with e.g.
heats of desorption or chemical changes on the surfaces but the temperature difference
persisted as long as observation was made (rv 1-3 hours) and so could also be attributed
to an actual temperature difference between the surfaces considered free from physical
and chemical effects. The best method to check for variation would involve measurement
without metallic contact (since thermal material conduction as exists in the thermocou-
ple wires would tend to negate the effects of thermal variation) e.g. laser light reflection
analysis, where if there are discernible effects, they would probably be of a higher mag-
nitude than the crude results obtained here because of thermal conduction due to the
wires. Nevertheless, these experiments consistently show a significant temperature vari-
ation of approximately 0.5K in all of the experiments under equilibrium conditions.
Some theoretical consequences. We outline just 5 of several possible consequences of
the above experiments if they tum out to be valid that comes from (i) the partitioning of
the surface processes and the bb cavity radiation (ii) the linear form of radiation trans-
fer from a surface (iii) considerations of the bb cavity and temperature differentials that
leads to the generalization of the Kirchoffradiation law (iv) statements and theorems for
equilibrium temperature differentials and (v) entropy conjectures for these systems.
(i) Pure bb emissions from a cavity with variable index of refraction. The index of re-
fraction n is frequency (v) dependent if dispersion [26, Chap. 19] is considered, so that
n = n( v). We may consider statistical scattering of energy by the surface oscillators
over every element dv of frequency v in a standardized bb cavity of unit volume having
N oscillators, a mean relaxation time T, where a = m < X~ > /2 and where all these
variables are as defined above for the bb development. Since the elementary quantum



e = 8r( ro) is, from (26) , dependent on D( v), then if the index of refraction of the 3-
dimensional bb cavity is n = n( v), we expect a modification to the radiancy from such
a bb. D(v) = 8nv2c;;;3, where Cm is the velocity of light in the medium of refractive
index n(v) = cjcm, and Amv = Cm where Am is the associated wavelength; v does not
change when light travels through two media with different n's, and we assume that
such is the case of em waves transmitted between the surface oscillators and the bb cav-
ity. From the definitions, D(v) = 8nv2c-3n3 and from (25) and (26), £ must transform

M

as e = 8r(ro) = e' = hvn-3. Since i(v) = e(v) = n~O n£(v)p(£(v)n) where
Lim M -+ 00

we derive E(v) = (exp(£(~j/kbT)-I)" The Planck en~rgy density is U;=D(v)E(v), which
therefore modifies to U~-= 8nv3hc-3 j[exp(£(v)jkbT) -1]. The radiancy is

c U' cU'E£v = _!!!___J!_ = -4 v = (2nhv3 j[nc2]) [exp(hvj[n3kbT]) _1]-1 (39)
4 n

One the other hand, the standard result is [27, p.9]

(40)

However, Wiebert has pointed out [28, p.53] that this result is hardly ever used. From
the above, we see that the Planck density derives from the canonical distribution func-
tion applied to the wave modes within the 3-dimensional cavity, whereas the ykbT energy
emission or absorption term derives from applying a canonical probability function for
oscillators with one or two degrees of freedom. Hence the dimensionality of the system
is crucial to the energy density of radiation emitted by the system. The role of dimension-
ality has been neglected in normal heat transfer applications, where the 3-dimensional
Planckian form is routinely assumed to hold for 2-dimensional surfaces [27,28].
(ii) Explanation for the results of active heating of surfaces experiments and prepon-
derance of linear form of radiation transfer from such a surface. The first order results
from the theory above indicate a leakage current (32) of magnitude < < P >>= ykbT
per oscillator on the 2-dimensional surface which should be compared to the Feynman
emission density expression J( ro) = ro2kbT j (nc)2 [19] which does not integrate to a
finite value for a surface. His conclusion then is that there is something wrong with the
classical equipartition since infinities are involved, in contradiction to experiment. How-
ever, here we have shown that no infinities are involved. The second effect observed
experimentally is a minor < 20% 3-dimensional build-up of electromagnetic energy in
sheets which becomes more pronounced for larger 3-D metallic objects ~ 50% or coiled
sheets that allow for cavity radiation buildup within the interstices. One must also ac-
count, in the case of a solid of the relatively weaker carriage of bb (meaning here T4
dependent radiation).These effects can be written in the following form where Pg(g, T)



is the total emission per unit area of surface where g are the geometrical variables
4,,· 4Pg(g, T) = Il(g, T)O"sT + LJi(g)T1 +A(g, T)O"sT

;=1
(41)

and where o, is the Stefan constant for bb radiation emitted from a standard cavity. In
(32), it was assumed that y was slowly varying with respect to T; if it were expanded
out in a Taylor series using a more complex theory than presented here, multiplied by
kbT, then the coefficients would be l.. Coefficient A is some average coefficient due to
the buildup of possible cavity radiation due to sheets that are coiled, allowing for small
cavities, or microcavities due to surface morphology orientated in a particular direction;
11 is a new type of bb permeability factor which determines the leakage of the bb-type
radiation of the lattice which builds up as a result of the apparent excess charge density
of the surface which scatters into the 3-dimensionallattice [29, p.100, eq.43], as well as
the internal scattering of the radiation generated by the oscillators within the cavity[30,
p.IS]; this 3-D bb heat then permeates through the 2-D outer surface of the system.The
quantum concept of surface charge arises from the Fermi level surface [30] whereas
classically, one can evoke the construct of Poisson's equivalent distribution for materials
with dielectric properties, where for a point P' outside the dielectric, the potential there
is the same as that due to a volume distribution of density Pp = - V.P and a surface
distribution of density O"p= P.D, the normal component ofP, the polarization [30, p.lS].
This dielectric simulation may be applied to a metallic conductor where there exists a
separation of charge due to the mobile valence electrons, causing an instantaneous dipole
for each atomic center. Equation( 41 ) is not compatible with directly equating the bb
component with a linear or other power law in temperature. Also, in a conducting media,
the buildup of em radiation and the intensity of that buildup is different from that of the
vacuum state. Indeed, attenuation of the em waves implies hardly any buildup of stable
modes with large intensities. In such media, the attenuation of the em waves created
at the surface is well described [26, Eq.(17-47)-(17-SS)]. For a complex refractive
index ft = n + ik, the freely propagating wave E = E' exp[-i(wt - u.r.n/c)] becomes
E = E'[exp( -kS'/c)].exp[-i(wt - u.r.n/c)] with the attenuation factor S' which is a
linear function of propagation distance. However, subject to the boundary conditions
used to derive the vacuum bb radiation, each mode is independent with its own quasi
partition function of form (S) (Di)-I, so that a Planck-type distribution is expected to
ensue with a T4 density, but the parameters such as the Stefan constant would differ
from a vacuum cavity since it would be a function of the internal variables such as the
conductivity, permittivity etc. The permeability factor 11accounts for the changes of the
partition functions due to attenuation (of the standing wave patterns) and the penetration
of the waves through the surface layer with its charge density. The geometrical factors g
include structure such as a coiled sheet that can create standing wave patterns at the
interstices of succeeding sheets in the coil, or a solid such as a cylinder where the
standing wave pattern is found within it.
(iii) Considerations of the bb cavity and temperature differentials that leads to the
generalization of the Kirchoff radiation law. For what follows, we make the assumption
that indeed equilibrium temperature differentials according to the Kelvin scale can exist.
We then deduce the consequences of such a result. In our experiments, temperature
differentials persisted despite having the same material for the centrally placed object



as the wall of the apparatus. It follows that the different intensity of radiation falling
generally on both surfaces is a factor in accounting for such changes. People have been
accustomed to viewing radiation as a "substance" like matter, and therefore ascribed the
same energy transfer properties. However, Planck has shown that if light be considered
as particulate in its intensity I per unit time and area, then the pressure exerted on a
metallic surface is only half of that due to Newtonian particles having the same intensity
I [15, p.53, Sec.57-60] all at the same velocity. If equilibrium is concerned with force
balance (as is the general assumption here) then systems "connected together" by a
radiation field would not have the same forces acting on them as if they were "connected
together" through diathermal contact by a Newtonian matrix of particles. The Boltzmann
constant kb is inferred in statistical mechanics from systems in mechanical contact [31,
Chap.2] in an ensemble, where the traditional supposition has been systems which
statistically obey Newtonian dynamics with respect to momentum interchange,whereas
for pure heat radiation, the momentum contact exchange between the surfaces (i.e.
energy interactions) need not necessarily involve the same temperature parameter (with
respect to Newtonian molecular momentum exchange) if the Planck inference is valid
and if it can be derived via the principles of statistical mechanics. Blackbody boundary
matrixes (bm) where the charged oscillators reside have a Kelvin temperature because
they are connected together in an ensemble that obeys Newtonian dynamics. Consider
the system of standardized (meaning that the energy density is as given by the Planck
law with the associated constants) unit volume bb cavities that possesses exactly similar
dipole oscillators in the bm, and where the temperature is Te for both the bm and bb
radiation. The bb radiation is defined to be at temperature 1'c because it is in equilibrium
with the bm, whose temperature may be determined by mechanical contact with a
thermometer involving Newtonian corpuscular momentum transfer. We may suspend
a body of known geometry and material composition in the cavity until it reaches
radiathermal equilibrium (without Newtonian corpuscular momentum transfer in the
Planck sense). We define the traditional statement of the Zeroth law to imply Newtonian
corpuscular momentum transfer (with conservation) amongst the systems in contact and
refer to this implication as ZLNM. We may replicate this system A times (where the
bm's are contiguous and in thermal contact) for A systems of cavities with identical
radiation. By ZLNM, the bm's all have the temperature Te. Since the suspended bodies
are not in mechanical contact, we need not ascribe a Kelvin temperature 1'c to it, although
since they are exchanging energy with the bms, there must exist another parameter
common to both, which must be determined. We suppose that fue mean energy of a
bm Ebm and that of the suspended body E(N, V) obeys Ebm »E(N, V). Let Ej(N, V)
be a microstate of the suspended body ( N being the number of particles say and V
its volume). By the stationary entropy principle and Boltzmann's modified definition
of entropy S where for any composite system we write SA = TlnQA,where T is an
undetermined constant and QA is the number of arrangements consonant with energy
and mass conservation. We note that in the normal optimization methods, one either
stationarizes InQ or Q where the T factor is not relevant. It becomes relevant only
When the entropy is standardized. From these definitions it follows (for details of the
standard methodology see [31, Chap. 2]) that for the suspended object the probability
of state j Pj is given as Pj = exp[-f3Ej(N, V)]/Q] , where the partition function is
Q = Ljexp[-f3Ej(N, V)] and the average value X of thermodynamic variable Xj in



-
state j is X = LjXjPj. We now consider two situations: a') the bm's of each individual
system denoted A without the smaller body C suspended in any of them, where the
bm's now compose a canonical ensemble and b') the ensemble as in <L) but with C
suspended in each of the systems enclosed by the bm's. Since Ebm »E(N, V) , each
bm is a thermal reservoir [20, p.202, Sec. 6.2] with respect to the C suspended within.
For a'), each bm subsystem would [31, eq.2-12] constitute a separate entity with ZLMN
interaction and with temperature parameter f3, where the probability of the bm energy
state E; of a particular bm is Pi = exp -f3E;(N, V)/Q. The connection between f3 of
statistical mechanics and macroscopic thermgdynamics (where the Kelvin tegiperature
T is featured) is made by comparing (i) (JE/JV)N,f3 + f3(JP/Jf3)N,V = -P with (ii)
(JE/ JV)N,T+ T(JP / aT)N,V = -P, where P is the pressure ,and the other symbols as
previously defined. The ensemble postulate of Gibbs relates directly any macroscopic
thermodynamical variable X with ensemble average, i.e. X =X (with the exception of
all global parameters as f3 and J1, the chemical potential per particle) . From ( i ) and
(ii ), it is inferred that f3 = 1/ kb T for bm systems in a'), where kb is the Boltzmann
constant. By considering another system B in thermal ZLMN contact with A to form a
system AB which is one member of like systems AB in an ensemble, it can be shown
(assuming independence of QA and QB) that A and B [31, Chap.2] must have the
same f3; by inference from the Zeroth law in the ZLMN sense, where A and Bare
in interaction via Newtonian corpuscular interaction at the same pressure P, then the
Kelvin temperature T must be the same, where kAT = kBT or kA = ke = kb, where kb is
universal for ZLMN thermal equilibrium. Thus, the kb = k value for the bm's (system
A) is fixed and equal to the Boltzmann constant kb. For case b'), A the bm and C the
suspended object are in radiathermal contact, in non-ZLMN interaction. By repeating
the derivation as for ZLMN contact, where in statistical mechanics the only assumptions
for the canonical ensemble are 1) energy and mass conservation, 2) independence of
probability distributions of the microstates in systems A and C [31, Chap.2], we again
derive that for systems A and C, the same f3 obtains. But from a'), f3 = l/kbTA, hence

~~=~~ ~~
where the Tis are the Kelvin temperatures that can be determined by a "diathermal fibre"
[32] and where TA need not equal Te. The contact term sc is relative to any of the systems
in radiathermal contact with it, such as system A and is called the radiathermal constant
for body C. Suppose in nested Chinese box fashion we suspended object 1 inside object° (which has ko = kb), and 2 inside 1,3 inside 2 and so on. Then

(43)

and in the limit, the surfaces would be infinitesimally separated. Hence for a system
whose components are radiathermally in equilibrium, where in traversing a path L of
independent thermodynamical coordinates, we derive the elementary expression for the
radiathermal constant k and the temperature for system a (used to denote to which
system the variables refer to) between any two points L), L2 in thermodynamical space
a type of reciprocal relation

(44)



and since <I>a= kaTa = const, d<I>= 0, implying trivially that f d<I>= ° or that <I>ais
a perfect differential. Suppose there are n nested Chinese boxes inside system 0, then
assuming that the temperature distribution is due to the first q boxes and at the same
time for all n where (43) obtains, we obtain for the qth box results such as

nq-I k-nq-I T,.'
i=1 I i¥q I

(45)

The above deduction come from what is termed the series arrangement. The parallel
arrangement i§ when "small" bodies C1 ,C2, ... Cn are simultaneously suspended in cavity
A, where LiEC; «< EA, so that the radiation in the cavity A is determined by A only.
Then if the systems CI UA, C2UA, ... C; UA are all considered independent, the previous
arguments would yield

(46)

Write ke;Tc; = kc;Tc;(G,A) where G are variables for the particular body suspended
in A (including geometrical variables) and A are the thermodynamical variables for A.
There are several possibilities concerning the dependence of the k's on (A, G). If there is
dependency only on A then there will be equal temperatures for all C, and all the k's will
be the same even if not the same as TA; if there is dependency on both these variables
then the temperatures could be different. There are may of these possibilities to consider
that experiment alone will help determine.
The Kirchoff radiation law generalization. The generalization is readily made from the
results above with the principle of detailed balance on each surface of a body C immersed
in a radiation field; traditionally, it has been presupposed that the radiation field is a
standard bb field with incident radiation Pi(k, a, f3-I) where f3-I = kbT. The body's
emissivity Pi [20, Sec. 9.15] is defined such that
~(k, a)drodQ =the power, per unit area emitted with polarization a into a range about
wavevector k between angular velocity to and to+dto about direction k .
Then the principle of detail balance is applied where
Power radiated by body = power absorbed by the same body.
Apply these principles to our body C suspended in the cavity of a standardized bb where
f3-1 = kcTc, we deduce that

(47)
or

~(-k, a, Tckc)j fA(f3-I) (48)

where Pi is the emission in direction k, aC the absorbance of the object C at the same
Kelvin temperature as the object Tc ,P; the incident radiation of the standardized radiator
A which is a function of f3-I = Tckc = kb T only, so that Pi = fA (f3 - I) .The emissivity
Cc is defined with respect to A and no similar temperature is required i.e. Tc =1= T = TA



in general.
(iv) Statements and theorems for equilibrium temperature differentials.
We now define the temperature factor f3T to have the form of inverse 13 i.e.f3T = kiT
for some couping coefficient for system i where in general k, 1= kb. If thermal energy
is injected into a system initially at radiathermal equilibrium (between object j and A )
with temperature f3~, say at surface j, then it would heat up leading to a temperature
rise until f3! > f3[ and if left to relax with the other surface at A maintained at a
fixed temperature throughout, there would be flow of energy from j to A until another
equilibrium temperature f3I; is reached. We generalize heat energy as that form of
energy that flows as a result of a temperature difference ~f3T. Thus a flow of this heat
from a 'hotter' to a 'colder' region is anticipated with increase in entropy, even if the
term 'hotter' or 'colder' is contradicted where the Kelvin temperature T is considered
because because it is possible for f3l > f3! even if the Kelvin temperature T with
subscripts denoting the system is such that Ii < '0. Since heat is well defined here,
we also define a dimensionless radiathermal entropy srd increment as dSrd = dQ/f3 T
for heat increment dQ for heat variable Q. Further, we also define the flow of energy
by virtue of a temperature difference i1f3T as conductive heat flow. Then the entropy
change for each type of radiathermal heat flow is always positive, as is the case with pure
conductive heat flow without coupling, since if f3! > f3~ for the {j ,A} system, then for
the flow of heat Q transported from j to A when subjected to the temperature differential,
~d =_Q( 1/f3! - 1/ f3~ ~ 0 which is a Second law deduction. Relative to radiathermal
coupling, even if '0 < 1'eq, there can still be conductive radiathermal transfer from j to
a point at A at temperature Teq provided (keq/kj) < 1, '0 ~ (keq/kj) Teq. We denote the
heat current vector due to heat flowing by a non-ZLMN form of interaction i as Jqi.

The above implies that the Fourier Principle as explicated by Benofy and Quay [32]
regarding radiation transfer cannot be correct ( it may be termed correct for ZLMN type
heat transfer only) and demands generalization. For conductive (ZLMN) heat transfer,
the principle states that Jq.VT ::; 0 always, where T is the Kelvin temperature and
Jq the conductive heat transfer. We generalize this by stating that for pure conductive
heat transfer via energy form i (non-ZLMN) in thermal equilibrium with distinctly
different energy form j (also non-ZLMN) and form due to ZLMN processes with
conductive (as opposed to other types of energy transfer [32]) heat vector Jq , we have
each of the following holding simultaneously and separately; {Jqi. Vf3l ::;0, Jqj.Vf3! ::;
OandJq. VT ::;O} , where f3l (R) = k.T; for all i non-ZLMN processes, and ki is a
function of geometry and thermodynamical variables R and is the coupling constant
discussed previously. For discrete surfaces, the gradient Vf3l is replaced by Vf3l ~
8f3l / 81 = (f3ki - f3I;;) / 81 to compute the gradient for heat transfer between surfaces S1
and S2 . Clearly, the conventional definition of heat in thermodynamics is then equivalent
to conductive heat as defined here (for further details see reference [32]) for ZLMN
type interactions. By definition of our generalized conductive heat, assuming continuous
behavior of the variables and heat transfer rates, the rate of heat transfer would be a
function of the temperature difference per unit length, so that first order Fourier-like
equations for conductive heat for each of the different energy forms i and j is envisaged,



and may be written for each i as follows

Jqi= -Ki:Vf3T (49)

where K, is the conductivity tensor and Vf3T the generalized temperature gradient, where
Vf3T = kiT';.

This work has stressed on the coupling due to electromagnetic waves but the above
terminology" energy form" may refer to all other non-ZLNM processes, including
possibly gravitational heat or thermal waves as well for interactions i or j. Eq. (49)
may be generalized to any order, as is true for normal Fourier conduction as well. We
have demonstrated experimentally that (49) could be the main form for radiation transfer
from a flat 2-D structure and its surface. This possibility opens to question work that uses
previously developed potentials [33] to model a bb T4 power law [34, see esp. Annex A
and Sec. 2, p.216 ]
General equilibrium criterion and consequences. Focus on anyone particle or quasi-
particle or "complexed quantum" [35, 36] and monitor its change of momentum for n
collisions as n --+ 00 and where we fix the time increment St, = 8t for all collisions i and
where F; denotes the force on the particle for the ith interaction. Then

n

LF;/n = F ---+ 0
i=1

for equilibrium or else the momentum and absolute magnitude of the energy of the
system will keep increasing in contradiction to the definition of the equilibrium state.
Since L7 F;8t = L7/!,.Pi, then = L7/!"p;/n == 8p --+ 0 and a necessary condition for
equilibrium is that the mean momentum change for any particle must be zero. Consider
then two bb cavities 1 and 2 in radiathermal equilibrium with Planck factors hm, ((TI)
and hm2 ((T2) respectively. The apparent momentum of each photon of frequency v is
hv / c so that the above equilibrium principle leads on averaging of transitions from 2 to
1 as

or
(50)

Hence the Planck factor must be the same for all cavities that are simultaneously in
equilibrium. What about nonlinear quanta, a possibility suggested by (30) for non-
constant X? At this point we are in the realm of pure conjecture. If there is some
possibility for nonlinear quanta, then higher frequency waves would lead to a relatively
smaller value of h and vice versa since X = exp -(k/ < k » .Thus this situation could
lead to a cross-coupling of different quanta as they traverse from one cavity to another in
radiathermal equilibrium since the net momentum change must be zero. Thus if cross-
coupling (or transmutation) is admitted, then with the same notation as above, we have

(hm,(VI,TI)VI hm2(V2,T2)V2) =0
or

hm, (VI, TJ) = V2
hm2 (V2, T2) VI

(51)



Theoretically the above should also obtain for intra-cavity radiation if nonlinear quanta
exists. The Planck factors relative to the different temperatures and frequencies could
also represent stochastic averages.
(v) Entropy changes in radiathermally coupled systems. If two bodies are in radiather-
mal equilibrium, then if the two are coupled by a Carnot engine via ZLNM sur-
face interactions, then work can be extracted from the system based on ZLNM in-
teractions if their Kelvin temperatures differed; further if they are connected directly
by ZLNM interactions without the intervention of a Carnot engine, so that there is
conductive heat flow, then there would be an increase of standard ZLNM entropy
dS = -dQ (1/TI - 1/T2) > 0 at the indicated temperatures TI > T2with a transfer from
body 1 to 2. On the other hand, radiathermally , they would be at the same temperature
{3T and the radiathermal entropy change would be zero dSrd = O. Thus the two forms of
entropy are not directly equatable at this level of development. Similarly, if a system is at
radiathermal equilibrium with the indicated Kelvin temperatures, then a Carnot engine
working perfectly according to ZLNM interactions would cause an entropy change dS
of zero, whilst doing positive work W on the environment of amount dQI - dQ2, where
the heat absorbed by the engine at body surface I is dQI and that ejected at body surface
2 is dQ2, where dQI > dQ2 > O. On the other hand, the radiathermal entropy change
would be such that f,~> ff~or from the previous inequality dsrd < O. It was con-
jectured, on the other hand that if the Carnot engine were radiathermally coupled to the
temperature sources of the system, then for heat transfer increments dQ due to radiather-
mal (non-ZLNM) interactions, [23, p.27,eq.14] where the radiathermal temperature is
(3T = k(R)T = we get

f dsrd = f dQ/{3T = f dQ/(k(R)T) = 0 (52)

so that dsrd is a perfect differential about thermodynamical space R with k the coupling
coefficient.

CONCLUSIONS

It is possible to reconcile from classical Brownian motion considerations the experimen-
tal outcome of a linear term in temperature of the radiant heat flux, and that the physical
dimensionality of the system must be considered in determining whether bb radiative
flux is the principle form of heat transfer or not.

Considerations concerning the density of state and the nature of the Planck quantum
in terms of the relaxation time of all the surface oscillators of a bb cavity lead to another
form of the radiancy expression in the presence of a medium with refractive index other
than unity.

From the postulate that different energy coupling schemes based on the different laws
of nature are possible, there exists the possibility of minute temperature differences at
"radiathermal equilibrium", and in the event of this possibility, our theories result in
the extensions of the Zeroth, Kirchoff, Second and Fourier Heat Conduction laws. Our
elementary experiments suggests such possibilities. This analysis can be extended to



other forms of energy interactions resulting in the same structure of coupling constants
ki deduced here for radiation (other possibilities include thermal gravity waves, e.g.
that which is predicted to be propagated in massive body collisions and other energy
interactions arising from the independent forces predicted in particle theory).

Some other important considerations not developed here are the possible dependence
of the mentioned fundamental constants on geometry and magnitude of the system.
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