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1. Introduction

Let # denote the Boolean algebra with two elements 0 and 1 with addition and multiplication
defined as if 0 and 1 were real, except that 1 + 1 = 1. A matrix with entries from £ is called a Boolean
matrix. Let My, ,(#£) be the space of all m x n Boolean matrices. If A is an m x n non-zero Boolean
matrix, its Boolean rank, b(A), is the least integer k for which there exist m x k and k x n Boolean
matrices B and C with A = BC. The Boolean rank of the zero matrix is 0. It is known that b(A) is the
least k such that A is the sum of k Boolean matrices of rank one (see [3]). An operator T from a space of
Boolean matrices to another is called linear if T preserves sums and sends the zero matrix to the zero
matrix.

In [1], Beasley and Pullman proved the following result.
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IfTisalinear operator on My, 5 (%), and min(m, n) > 2, then the following statements are equivalent.

(i) T preserves Boolean ranks 1 and 2.
(i) T is invertible and preserves Boolean rank 1.
(iii) There exist permutation matrices P and Q such that T(A) = PAQ forall A € Mpun(#)orm =n
and T(A) = PA'Q for all A € My, 1 (%).

In [4], Pullman gave a graph-theoretic interpretation of the above result.

A subset V of My, 1(£) is called a Boolean vector space if V contains 0 and is closed under addition.
In this paper, we first introduce the concept of tensor products of two Boolean vector spaces and study
some of their basic properties. We next characterize (i) linear transformations from one tensor product
of two Boolean vector spaces to another that send pairs of distinct rank one elements to pairs of distinct
rank one elements and (ii) surjective mappings from one tensor product of two Boolean vector spaces
to another that send rank one elements to rank one elements and preserve order relation in both
directions. We obtain from the above characterization theorems the corresponding results concerning
rank one preservers between spaces of Boolean matrices as a special case.

2. Tensor products of Boolean vector spaces

Let X be a non-empty set. Let Zx denote the set of all functions f from X to £ such that xeX:
f(x) # 0}, the support of f, is a finite set. Let |f| denote the cardinality of the support of f. For any f, g €
By, let f + g be the function from X to 4 such that (f + g)(x) = f(x) + g(x) for any x € X. Clearly
f + g € %x. For our purpose, we define a Boolean vector space to be any subset of Zy containing the
zero function which is closed under addition.

If f and g are in %y, we write f > g if f(x) + g(x) = f(x) for any x € X. Clearly % is a partially
ordered set under this order relation. We write f > g whenf >gandf # g.

Let Uand V be Boolean vector spaces.IfU € V, then Uis called a subspace of V. Let S be a non-empty
subset of U. Let (S) denote the intersection of all subspaces of U that contain S. Then (S) is a subspace of
U called the subspace spanned by S. Note that f € (S) if and only if f is a linear combination of a finite
number of elements in S, ie., f = Zf=1 Ajsi for some sy,...,s¢inSand some A; € Z,i=1,...,k.
The set S is called independent if every element f in S is not the sum of any finite number of elements
in S\{f}. We regard the empty sum as the zero vector. A subset E of U is called a basis of U if E is
independent and (E) = U. We regard the empty set as the basis of the zero Boolean vector space.

The following result is known for the case where U is finite dimensional (see [2]).

Proposition 2.1. Every Boolean vector space U has a unique basis.

Proof. We may assume that U # {0}. Let K = {|f| : f € U\{0}}. We can write K as {k; : i € I} where
I'={1,2,...,n} for some integer n or [ is the set of all positive integers and k; < k; if i < j. Let J; =
{f € U:lf| = ki}.i € I.LetHy = J;.1fj + 1 € I, we define Hj be the set of all elements f in Jj;4 such

that (U’,~=, Hi) U {f} is independent. Let H = ;¢ H;. It is clear that H forms a basis of U.

Suppose that M is a basis of U. We shall show that M 2 H. Suppose the contrary. Then there exists
h € H such that h ¢ M. Since M spans U, it follows that h = g; + - - - + g, for some g, . . ., g, in M.
Since h ¢ M, we have h > g fori=1,...,m. Since H spans Uand h > g fori = 1,..., m, it follows
that each g; is the sum of a finite number of elements in H\ {h}. Hence h is the sum of a finite number
of elements in H\ {h}, a contradiction to the fact that H is independent. This shows that M 2 H. Since
every element of U\H is a linear combination of some elements of H, it follows that M = H., [J

The cardinality of the basis of a Boolean vector space is called its dimension. For convenience, we
call each element of the basis of a Boolean vector space a cell.

A non-empty subset H of a Boolean vector space U is called non-dominating if for any non-empty
finite subset S of H and u € H\S, we have ¥,cs v£u.
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Lemma 2.2. Let U # {0} be a Boolean subspace of By . Then the basis {f; : i € A} of Uis non-dominating
if and only if there exists an injective mapping o : A — Y such that for every i € A, fi(o (i)) = 1 and

fij(o(i)) =0 forallj #i.

Proof. The sufficiency part is clear. We prove the necessity. Leti€ AandY; ={y € Y : fi(y) = 1}.
For each t; € Y, let Z;; be the subset of all fj, j # i, such that fj(t;) = 1. Suppose that Z, # ¢ for all
ti € Y;. Let hy € Z;,. Then ¥ ey, hy; 2 fi, a contradiction since {f; : i € A} is a non-dominating basis.
Hence Z;; = ¢ for somes; € Y;. This shows that fi(s;) = 1, fj(s;) = 0forallj # i. Clearly, s; # s; for all
i # j. Hence the mapping o : A — Y defined by o (i) = s; is injective. This proves the necessity. [J

Let U be a subspace of y. It is possible that dim U > dim %y (see [1]). For example, if {f1, . . ., fy)
is the basis of Zy and n > 2, then the subspace (fi,fi + fo.f> + f3.f3, .. . fa) is of dimension n + 1.
However, the following is true:

Proposition 2.3. If U is a subspace of %y with a non-dominating basis, then dim U < dim %y.
Proof. This follows from Lemma 2.2. [J

Let U and V be Boolean vector spaces. Then a mapping T : U — V which preserves sums and 0 is
said to be a (Boolean) linear transformation. A linear transformation T is called singular if T(u) = 0 for
some non-zero vector u. We say that Uis isomorphic to Vif there exists a bijective linear transformation
fromUto V.

Lemma 2.4. Let U be a Boolean vector space with a non-dominating basis. Then for any non-zero vector u
in U, there exists a unique set of cells {cy, ..., cx} of Usuch thatu = ¢y + - - - + ;.

Proof. Suppose that u = Zf‘:l ¢ = Yi~, ej where both cy,...,ck and ey, ..., ey are distinct cells.
Since Y_[, e; > ¢; for eachj, it follows that ¢; = e, (j) for some o (j) < m.Hence m > k. Since ):};, G > e
for any i, we see that e; = c(j) for some 7(i) < k. Hence k > m. Therefore k = m and the proof is
complete. [J

Proposition 2.5. Let U be a Boolean vector space with a non-dominating basis {e; : i € I}. Then U is
isomorphic to %;.

Proof. For each non-empty finite subset J of I, let Ay = 3 ic; e; and let f; € % be such that f;(i) = 1if
i€Jandfj(i) = 0ifi ¢ J. By Lemma 2.4, we see that the mapping sending zero to zero and Ajtofjis
a well-defined bijective linear transformation from Uto %;. O

Proposition 2.6. Let U and V be Boolean vector spaces and T : U — V be a linear transformation. Then
the following two conditions are equivalent:

(i) T is injective.
(ii) Forallu,v e U, T(u) 2T(v) => u>v.
IfU has a non-dominating basis {e; : i € I}, then condition (ii) is equivalent to the following condition
(iii) {T(e;) : i € I} is a non-dominating basis for Im(T).

Proof. (i) = (ii): Suppose that T(u) > T(v). Then T(u) + T(v) = T(u + v) = T(u) and hence u +
v = u. This shows that u > v.

(ii) = (i): Suppose that T(u) = T(v).Then the result follows from the hypothesis since T (u) > T(v)
and T(v) > T(u).

Now we assume that U has a non-dominating basis {e; : i € I}.
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(ii) = (iii): Since for any non-empty finite subset H of I and any j ¢ H, we have ¥ ;cy e;}ej. it
follows from (ii) that

T (Z e,-) = ZT(e,‘)iT(ej).
ieH i€eH
This shows that {T(e;) : i € I} is a non-dominating basis for Im(T).

(i) = (i): Suppose that T(u) = T(v), but u # v. We may assume that u%v. Suppose that u = 0.
Then T(v) = 0. Since T(e;) # 0 for any i € I, it follows that v = 0, a contradiction. Hence u s 0 and
we have u = Y ;cy e; for some non-empty finite subset H of I. Clearly there exists j € I\H such that
ej <v.Since T is linear, we have T(v) > T(g;). Since

D T(e)#T(ep),

ieH
it follows that

T(u) =) T(e)£T(V),

ieH
a contradiction. This proves that T is injective. [J

Foranyf € %#xandg € %y, letf ® gdenote the functionfromX x Y toZsuchthat (f ® g)(x,y) =
f(x)g(y) forany x € X and y € Y. The map f ® g is called a decomposable element. Clearly f ® g €
PBxxy and f ® g = 0ifand only iff = Oorg = 0.Forany h € %x and k € By, we have

Ff+hRg=f®g+h®g
fRE+k=fRg+fRk.

Let U and V be subspaces of #x and %y respectively. Let U ® V denote the subspace of %yxy
spanned by all the decomposable elements f ® g with f € U and g € V. We call U ® V the tensor
product of U and V. Clearly #Bx ® By = Bxxy-fX ={1,2,..,m}andY = {1,2, ..., n}, then Bxxy
can be identified naturally with the space of all m x n Boolean matrices. Let A be a non-zero element
inU ® V.Then A is said to have rank s if A is the sum of s, but not less than s, non-zero decomposable
elements in U ® V. The rank of the zero elementin U @ V is 0.

For each non-zero vector u in U and each non-zero subspace Kof V, u® K := {u®v : v € K} is
called a left factor subspace of U ® V. Similarly, for each non-zero vector v in V and each non-zero
subspace Hof UyH ® v := {u ® v : u € H} is called a right factor subspace of U ® V.

Let T be a linear transformation from U ® V to W @ Z where W and Z are Boolean vector spaces.
Then T is said to be induced by two linear transformations if one of the following conditions holds:

(i) there exist linear transformations @ : U — Wand ¢ : V — Z such that Tu ® v) = 6 (v) ®
¢(v) foranyu € Uandv € V;

(ii) there exist linear transformations ¢ : U - Z and ¢ : V — W such that T ® v) = ¢(v) ®
@(u) foranyu e Uandv € V.

For the first case, we write T = ¢ & ¢, while for the second case, we write T = 6 ® ¢.

LetU = Bx.V = By, W = %B,,Z = Bj,whereX = {1,2,...,m},Y ={1,2,...,n}, = {1,2,...,p},
J=1{1,2,...,q}.Then Bx ® By and %, ® %) can be identified naturally with My, » (%) and M, 4(%)
respectively. If T : U ® V — W @ Z is a linear transformation satisfying condition (i), then T(A) =
PAQ for some p x m Boolean matrix P and some n X q Boolean matrix Q. f T: U®V - W®Z s
a linear transformation satisfying condition (ii), then T(A) = PA'Q for some p x n Boolean matrix P
and some m x q Boolean matrix Q.

For the following three results, we assume that U and V are subspaces of #x and %y respectively.
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Lemma 2.7. If 1L, fi ® & > Xjq Uj ® vj where f; ® gi, uj @ v; are non-zero decomposable elements
inU®V, then T, fi > Y]  ujand X1, 8i > Xy Vj-

Proof. Suppose that Y, fi2 Yj_1 uj. Then there exists x € X such that (X, fi) ®) =0 and

(Z};] uj) (x) = 1.Hence there exists 1 <s < nsuchthat us(x) = 1.Choosey € Y suchthatvs(y) = 1.
Clearly,

(Zf, ®g;) (x,y) =0 and (Z U ® vj) xy) =1,
f=1 f=1

a contradiction. This shows that 3, fi > 37/, u;. Similarly, we have 337, g > XL, v;. O

Corollary 2.8. If Y, f; ® & = Xj_; U; ® v; where f; @ gj, u; ® v; are non-zero decomposable ele-
ments in U ® V, then

n

Y=Yy and ) &= v

i=1 j=1 i=1 j=1

From Corollary 2.8, we see that every non-zero decomposable element A of U ® V has a unique
representation f ® g where f € U and g € V. We call f the left factor of A and g the right factor of A.

Theorem 2.9. Let C and D be bases of Boolean vector spaces U and V respectively. Let E = {u®v:u €
C,v € D}. Then

(i) E is the basis of U @ V;
(i) C and D are non-dominating if and only if E is non-dominating.

Proof. (i) It is clear that U ® V is spanned by E. Suppose that E is not independent. Then there exists
u® v € E such that u ® v is the sum of finite number of elements from E\ {u ® v}. We see that
URV=U1 @Vi+ -+ UV

for some distinct elements uj, . . ., U € C and some non-zero vectors vy, . . ., Vg € V. By Corollary 2.8,
we have u = YK, u;. Since {u, uy, ..., ux} € C and C is independent, it follows that u = u; for some
i. Without loss of generality, we may assume that u = u;. We have the following two cases:

Case 1. k = 1. We have v = vy, a contradiction to uy ® vy € E\{u ® v}.
Case 2. k > 2. Since
U=uj+---+u and uFuy+---+ug

there exists x € X such that u(x) = 1and u;(x) = 0 for eachi > 2. Note that v # v; and v > v;. Hence
there exists y € Y such that v(y) = 1and v¢(y) = 0. This implies that (u ® v)(x,y) = 1. However,

W @v)xy) =0
since v1(y) = 0, and
w@vi)(xy) =0
for i > 2 since uj(x) = 0 for i > 2. Hence,

k
u®v;!:}:u;®v,-.

i=1
a contradiction. This proves that E is independent.
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(ii) (=) Suppose that E is dominating. Then there existu ® v € Eand Ay, ..., A € E\{u ® v} such
that

A+ +An2u®v.
Let {uy, ..., ui} be the subset of C consisting of the left factors of Ay, . . ., Ap,. Then
A+ FAn=u1®Vvi+- -+ U@,

where for eachi = 1,.. ., k, v; is the sum of the right factors of those A; with u; as their left factors. By
Lemma 2.7, Z{-;, u; > u. Since C is non-dominating, it follows that u = u; for some i. Without loss of
generality, we may assume that u = uy. Since Aj # u ® v for any j, it follows that v = wy + -+ - + w;
for some w; € D\{v}. Since D is non-dominating, we have v{ 2v.If k = 1, then u; ® v; >u ® v and
hence by Lemma 2.7, v; > v, a contradiction. Now, suppose that k > 2. Since v, }v, there existsy € Y

such that v;(y) = 0 and v(y) = 1. Since C is non-dominating, it follows that up + - -+ + ukiu and
hence uj(x) = 0 fori>2 and u(x) = 1 for some x € X. This shows that

k
(Z ui ® Vi) (xy)=0.

i=1

However, (u ® v)(x,y) = 1, a contradiction. This proves that E is non-dominating.
(<) Suppose that C is dominating. Then Yk, uj>uforsomeu € Candsomeu, ..., ux € C\{u).

For any v € D, we have
NVt +wy @v2udvY,

a contradiction since E is non-dominating. Hence C must be non-dominating. Similarly, we can show
that D is non-dominating. [J

Proposition 2.10. Suppose that T : U® V — W ® Z is a linear transformation induced by two linear

transformations 6 and ¢ where U # {0} and V # {0}. If T is injective, then both 6 and ¢ are injective. If
U or V has a non-dominating basis, then the converse is also true.

Proof. Suppose that T is injective. Consider the case where T = 6 ® ¢. Suppose that 6 (f) = 6(g)
for some f,g € U.Let h € V\{0}. Then T(f ® h) = T(g ® h). Hence f ® h = g ® h. This shows that

f = g. Hence @ is injective. Similarly, we can show that ¢ is injective. For the case where T = ¢ é @,
the result can be proved similarly.

Suppose that 6 and ¢ are injective. We have the following two cases:

Case 1. T = 6 @ ¢. Suppose that U has a non-dominating basis C. Since € is injective, it follows from
Proposition 2.6 that #(C) is a non-dominating basis of Im &. Suppose that T(A) = T(B) for some vectors
A BinU ® V. Either (i)A = B = 0 or (ii) not both A and B are zero. Consider case (ii). Without loss of
generality, we may assume that A # 0. Note that

A=y ®vi+- -+ Un®vn

for some distinct cells uy, ... un € C and some non-zero vectors vi,... vy € V. Let €(u;) = w;,
o)) =2z,i=1,...,m.Then

TA) =wi®2z1+:+Wn®2Zn.

Since ¢ and ¢ are injective, we havew; # 0, z; # 0and hence wy ® z; # 0.This shows that T(A) # 0
and hence B # 0. Thus

B=/i®g + - +/n®&n

for some distinct cells fi, . . ., fu € C and some non-zero vectors gy, ..., gy € V.Let0(f;) = h;, ¢(gi) =
ki i=1,...,n.Then

| AS\S\18us25
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TA=w1®z1+  +Wn®2zZn
= T(8)
=h; ®ki+ -+ hy ®kn.

In view of Corollary 2.8,
wit- +wp=h+-+h

Since #(C) is a non-dominating basis of Im 6, it follows from Lemma 2.4 that
m=n and {Wi ... Wn}= {0}

Without loss of generality, we may assume that h; = w;, i = 1,..., m. Since @ is injective, it follows
thatuy; = f;, i = 1,..., m. Suppose that m = 1. Then w; ® z; = h; ® k; and hence by Corollary 2.8,
z1 = ky. Since g is injective, it follows that vi = g1 and hence A = B. Now, suppose that m > 1. Since
6(C) is a non-dominating basis of Im#, we have Y1, w,¢w1 Hence there exists an element p such
that wq (p) = 1 and w;(p) = 0 for i > 2. For any element q in the domain of z;, we have

i=1

(Z Wi ® z:) ®.9) = wi(P)z1(@) = z1(q)

= (Z w; ® ki) @.9) = wi(P)k1(q) = ki(q).
f=1

Hence z; = kq.Similarly we can show thatz; = k;, i > 2. Since ¢ is injective, it follows thatv; = g;, i =
1,.... m.Hence A = B. This shows that Tis injective. Similarly, if V has a non-dominating basis, we can
show that T is injective.

Case2.T =0 ® @. The proof is similar to that of Case 1. [J

3. Rank one preservers between tensor products of Boolean vector spaces

Throughout this section, U, V, W and Z are Boolean vector spaces each of dimension at least two.
We denote the set of all rank one elements in U ® V by Z(U, V).

Two elements uy, u; of a Boolean vector space are said to be comparable if uy > uy oruy > uy.

The following result was proved in [1, Lemma 2.6.2] for the space My, ;(2). It can be proved by
using the same argument as in [1, Lemma 2.6.2].

Lemma 3.1. Let A and B be two rank one elements in U ® V such that A + B is of rank one. If A, B are
incomparable, then A and B have a common factor.

Theorem 3.2. Let U and V be two Boolean vector spaces both without comparable cells. LetT : U Q@ V —
W ® Z be a linear transformation. Then T sends distinct rank 1 elements to distinct rank 1 elements if and
only if one of the following is true:

(i) there exist a fixed non-zero element w € W and a linear transformation ¢ from U ® V to Z such that
T(A) =w® ¢(A)
forany Ain U ® V where ¢|g(u,v) is injective,
(ii) there exist a fixed non-zero elementz € Z and a linear transformatton 0 from U ® V to W such that

TA) =0A)®z

forany Ain U ® V where 6|g(u,v) is injective,
(iiii) T is induced by two injective linear transformations.

PERPUSTAKAAN UNIVERSITI MALAYA
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Proof. The sufficiency part is clear. We now prove the necessity. We first show that for any non-zero
vectoru € U, T(u ® V) is a factor subspace of W ® Z. Let vy and v; be two distinct cells in V. Then

Tu®v) =wi ®21,
Tu®v) =w2®2;

for some non-zero vectors wi, wy in W and non-zero vectors zq, 2z in Z. If w; ® z1 2 w; ® 23, then
TU® (vi +v2)) =T v1)

and hence by hypothesis, u ® (vi + v2) = u ® v1. This implies that vy + v, = v; and hence v > vy,
a contradiction. Hence wy ® z4 ;ﬁwz ® z;. Similarly we can show that w; ® 22¢w1 ® z;. Hence by
Lemma 3.1, either wy = w; or z; = z; since wy ® z1 + wz @ 2; is of rank 1. Suppose that w; = w;.
Then z; # z;. Now for any cell v in V such that v ¢ {v1,v2}, we have T(u ® v) = w @ z for some
non-zero vector w in W and non-zero vector z in Z. By the previous argument, we see that w @ z
and w; ® z; have a common factor for i = 1,2. Hence w = wy = w; since z; # 2,. This shows that
T(u® V) € w®Z Similarly, if z; = z;, wehave T ® V) S W ® z;.

Using the same argument as above, one can show that for any non-zero vectorv € V,T(U ® v) is
a factor subspace of W ® Z.

Claim. For any two distinct non-zero vectors uy, u in U, T(u1 ® V), T(uz ® V) are either left factor
subspaces or right factor subspaces. Suppose the contrary. Then there exist distinct non-zero vectorsx, y in
U such that

Tx®V)=x®1Z,

TYRV) =W QY
for some non-zerox' € W,y € Z, some subspace Z of Z, and some subspace Wy of W. Choose a non-zero
vectorg € Zy suchthatg # y'.Letc € VsuchthatT(x @ ¢) = X ®g.SinceT(x ® ¢) and T(y ® c) have

a common factor, it follows that T(y ® ¢) = X' ® y'. Hence X' € W. Similarly, we can show thaty’ € Z;.
Hence T(x ® V) N T(y ® V) contains X' ®y/, a contradiction to the hypothesis. This proves the Claim.

We have the following two cases:

Case (i). For any non-zero vector e in U, T(e @ V) is a left factor subspace of W @ Z.
We have T(e ® V) = € ® Z, for some non-zero vector ¢’ € W and some subspace Z, of Z.
Suppose there exists a non-zero vector f € V such that

TU®S) =f ®K
for some non-zero vector f* € W and some subspace Ky in Z. Since
e®@fe(e®@V)NUS)

it follows that f' = €. In this case we have Im(T) C f’ ® Z. Hence there exist a linear transformation
@ from U ® V to Z such that

T(A) =f' ® p(A)

for any Ain U ® V where ¢|g(u,v) is injective.
Suppose now that for each non-zero vector fev,

TU®f) =W ®f
for some subspace Wy of W and some non-zero vector f € Z. This implies that
Te®)) =¢®f

for any non-zero vector e in U and any non-zero vector f € V. Let 6 : U — W be the mapping such
that #(e) = ¢ and ¢ : V — Z be the mapping such that ¢(f) = f. Since T is a linear transformation,
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it follows that both & and ¢ are linear transformations. Hence T = 6 ® ¢. Clearly both ¢ and ¢ are
injective.

Case (ii). For any non-zero vector e in U, T(e ® V) is a right factor subspace. By using a similar argu-
ment as in Case (i), we can show that either there exist a fixed non-zero element z € Z and a linear

transformation ¢ from U ® V to W such that T(A) = 6(A) ® z for any A in U ® V where €|g@u,v) is
injective, or T is induced by some injective linear transformationsn : U — Zand § : V. — W. O

The following example shows that Theorem 3.2 is not true if one of the Boolean vector spaces U
and V has comparable cells.

Example 3.3. Let U be a Boolean vector space consisting of three elements 0, ey, e; where e; < e;.
Let V and W be Boolean vector spaces with non-dominating bases {fi, f2} and {g1, 82, g3} respectively.
Then there exists a linear transformation T from U @ V to W ® W such that

Te1®f1) =808, TE1®f) =808
T(e; ® fi) = (g1 + &) ® (&1 + 83),
T(e2 ® f2) = (g1 + &) ® (82 + 83).

Note that U ® V has six rank one elements and

T(e1 ® (i +f2) =& ® (g1 +82).
T(e; ® (i + ) = (g1 +83) ® (81 +82 +83)-

Hence T sends distinct rank 1 elements to distinct rank 1 elements. However, Im(T) is not a factor
subspace of W ® W and also T is not induced by two injective linear transformations. We note that T
sends rank 2 elements to rank 2 elements.

Remark 3.4. A linear transformation U ® V to W ® Z sending pairs of distinct rank one elements to
pairs of distinct rank one elements is not necessarily injective. For example, the linear transformation
T : My(2) to M 4(%) defined by

(¢ b]\ _[a b ¢ a+d
¢8I0 -0 0 0
has this property.

Remark 3.5. Theorem 3.2 is analogous to the following result of Westwick [6]: If T is a linear trans-
formation from one tensor product of two vector spaces over a field to another that sends non-zero
decomposable elements to non-zero decomposable elements, then either the image of T consists of
decomposable elements or T is induced by two injective linear transformations.

Lemma 3.6. LetP € M (). Then the linear transformation : My,1 (B) — Mp1(2B) defined by 6u =
Pu, is injective if and only if P contains ann X n permutation submatrix.

Proof. Let {¢; : i = 1,...,n} be the standard basis of Mp,1(2). Using Proposition 2.6 and Lemma 2.2,
we see that .

@ is injective

& {Pey, ..., Pe,) is a non-dominating basis of Im €

& There exists an injective mapping o : {1,..., n} — {1,...,m} such that the o (i)th coordinate
of Pe; is 1 and the o (i)th coordinate of Pe; is 0 foranyj # i

& Pcontains an n X n permutation submatrix. [
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The following result follows from Theorem 3.2 and Lemma 3.6.

Corollary 3.7. Let T : My (%) — My¢(2) be a linear transformation where min{m,n, k, I} >2.ThenT
sends distinct rank one matrices to distinct rank one matrices if and only if one of the following is true:

(i) there exist a fixed non-zero vector w in My1(%) and a linear transformation ¢ from Mmn (%) to
Mjy,(2) such that

T(A) = wg(A)

for any A in My, n () where the restriction of ¢ to the set of all rank one matrices is injective,
(ii) there exist a fixed non-zero element z in My,(%) and a linear transformation 6 from Mpn (%) to
My 1(2) such that

T(A) = 6(A)z

for any A in My, o (%) where the restriction of 6 to the set of all rank one matrices is injective,

(iii) T(A) = PAQ for some P € Mym (%) and some Q € Mny (%) where P contains an m x m permuta-
tion submatrix and Q contains an n X n permutation Submatrix,

(iv) T(A) = PA'Q for some P € My(%) and some Q € M, (%) where P contains an n X n permuta-
tion submatrix and Q contains an m x m permutation submatrix.

Example 3.8. Let T; and T, be any two linear rank one preservers on M2(%B).LetT : Mg(B) = M4s(B)
be defined by

(8) -4
(D=

if C = 0orD # 0,where A, B € M (%). Then Tis a linear rank one preserver which is not of the form
(i) or (i) mentioned in Corollary 3.7. Note that T(Eq1) and T(E;3) do not have a common factor, T cannot
be of the form (iii) or (iv) mentioned in Corollary 3.7. Here Ej; denotes the matrix with 1 in position i, j
and 0 elsewhere.

;
p IS LN |
"
¥ ]

The following result was proved in [1,5] for the space My, n(2). Our proof here is very short.

Lemma 3.9. Let A and B be distinct rank one elements in U ® V where both U and Vhave no comparable
cells. Then there exists a rank one element C in U ® V such that {rank(A + C), rank(B + 0} ={1.2).

Proof. Let A = u ® vand B = x ® y. Since A # B, we may assume thaty # v. Either y v or v2y. We
consider only the first case as the second case can be proved similarly. Let w be a cell of U such that
x> w and let z be another cell of U. Since U has no comparable cells, it follows that z}w. Hence z2x.
Let C = z ® v. Then A + C is of rank one and by Lemma 31,B+ Cisofrank2. OJ

Remark 3.10. It can be shown that Lemma 3.9 holds true under the weaker hypothesis that either
U\{0} or V\ {0} has no least element. However we do not need it for the following corollary.

Corollary 3.11. LetT: U®V — W®Z be a linear transformation where both U and V have no compa-
rable cells. Then the following two conditions are equivalent:

(i) T sends rank k elements to rank k elements whenk = 1, 2.
(ii) T is induced by two injective linear transformations.
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Proof. (i) = (ii): Suppose that A and B are two distinct rank one elements in U ® V such that T(A) =
T(B). By Lemma 3.9, there exists a rank one element C inU ® V such that

{rank(A + C), rank(B + O)} = {1,2}.
Hence
{rank T(A + C), rank T(B + O)} = {1, 2}

a contradiction since T(A + C) = T(B + C). This proves that T sends distinct rank one elements to
distinct rank one elements and hence the result follows from Theorem 3.2.

(ii) = (i): Suppose that T is induced by two injective linear transformations @ and ¢.We consider
only the case T = 6 ® ¢ as the proof for the other case is similar. Clearly T sends rank 1 elements to
rank 1 elements. Suppose that A is of rank 2. Then A = u; @ vi + Uz @ v2 for some uy,u; € U and
vy, V3 € V.Hence T(A) = By + B, whereB; = 0 (u;) ® ¢(v;), i = 1,2.1f By, By have acommon factor,
say 6 (u1) = 6(up), thenuy = up and henceAis of rank <1, a contradiction. If By > By, then by Lemma
2.7,0(uq) =6 (uz) and @(vq) > @(v2). By Proposition 2.6, we have uy > uz and v1 > v,. This implies that
A = u; ® vy, a contradiction. Similarly it is not possible that B; > By. By Lemma 3.1, T(A) is of rank 2.
This completes the proof. [J 3

Remark 3.12. Example 3.3 shows that Corollary 3.11 is not true if one of the Boolean vector spaces U
and V has comparable cells.

Theorem 3.13. Let T be a linear transformation on U ® U where U is finite dimensional and U\{0} has
no least element. Then T sends maximal left factor subspaces to maximal factor subspaces if and only if

T=0@¢porT=0 é ¢ for some non-singular linear transformation 6 on U and some bijective linear
transformation ¢ on U.

Proof. The sufficiency part is clear. We now prove the necessity. Let E be the basis of U and n be
its cardinality. Since E is a finite partially ordered set, it follows that E has a minimal element e;.
Similarly E\{e;} has a minimal element ;. Continue the process, we can choose a minimal element
es from E\fey, ... es—1} if n>s > 2. Hence E = {e1, €2, ... en} where e is a minimal element of
{es. €541, .- wlnhis=1,..M

Suppose that

Tw ®U)=f®U and T, ®V) =U®g

for some distinct uy, up € U\{0} andforsomef,g € U\{0}.Since T((u1 + uz) ® U) isa maximal factor
subspace, it follows that

T +u)@U) =f®U
for some f' € U\{0} or
T +uw)@U) =U®¢
for some g’ € U\{0}. Consider the first case. There exists vx € U such that
T((uy +u) ®vi) =f ek k=1....n
Since
T((uy + u) @ vi) > T(uz2 @ Vi),
it follows that ey > g for any k. Since U\ {0} has no least element, it follows that g = 0, a contradiction.
Similarly, the second case leads to a contradiction. Hence {T(u ® U) : u € U} consists of maximal left
factor subspaces or consists of maximal right factor subspaces. Consider the first case. We have
Te®U)=fi®U

for some f; € U\(0), i = 1,...,n.Foreachi=1,....m, there exists a bijective linear transformation
@; on U such that
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T(e; ® e) = f; @ gi(e)
for any cell e. Note that E = {gj(e1), . ... gi(en)}.

Suppose that f; = f, = - -+ = f. Letf := f;. Note that for any distinct i and j,
T((ei+¢)®@U)=fQU
and hence for eachs = 1, . .., n, there exists ¢; € E such that
T((ei+€) ®cs) =fDes.
Hence
f®es=f®gi(cs) +f @ ¢jcs).
This implies that

es > pi(cs) and es > @j(cs).
Since e; is a minimal element of E, it follows that
er = gi(c1) = gj(c1).
Suppose that
es = gi(cs) = @j(cs), s=1,...k—1
where k is a fixed positive integer such that 1 < k < n.Then

{eks . - en} = {@i(ck), - . . pi(cn)}
= {gj(ck). . . . pi(cn)}.

Since ey is a minimal element {e, €41, - . .. €}, it follows that
ex = gi(ck) = gj(ck)-

By induction, we see that
es = ¢i(cs) = j(cs)

foranys = 1,...,n. Hence ¢; = ¢; for any i and j. Let 6 be the linear transformation on U such that
6(u) = f for any non-zero vector u € U. Clearly ¢ is non-singularand T = 6 @ ¢1.
Suppose now that f; # f; for some distinct i and j. We have

T((ej+¢)@U)=u®U
for some non-zero vector u in U. For eachs = 1,..., n, there exists wy € E such that
T((ei +¢) @ws) =u®e;.
Hence
u®es = fi ® gi(ws) + fj ® pj(ws).
This implies that
es > pi(ws) and e > @j(ws).
By the same argument as in the last paragraph, we have
es = @i(ws) = ¢j(ws)

fors = 1,...,n. Hence ¢; = g; since {wy,..., wy ] is the basis of U. For any positive integer k < n, we
have either f # f; or fi # fj. Hence g = @i. This shows that

T(es®@v) =f; ® ¢1(v)

fors =1,...,nand any v € U. Since T is a linear transformation, it follows that there exists a linear
transformation @ on U such that @(es) = fs, s = 1,...,n. Clearly 6 is non-singularand T = 6 ® ¢.
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For the case where {T(u ® U) : u € U} consists of maximal right factor subspaces, it can be proved

similarly that T = « ® f for some non-singular linear transformation o on U and some bijective linear
transformation S on U. [J

The following example shows that the condition that U\ {0} has no least element is necessary for
Theorem 3.13.

Example 3.14. Let U be the Boolean vector space consisting of three elements 0, e, e; wheree; < e3.
Then there exists a linear transformation T on U @ U such that

Tei®e) =e®e, i=12,

Tle1®e) =T(e;Pe1) =e1 e

We haveT(e; ® U) = e; ® Uand T(e; ® U) = U ® ey. Clearly T cannot be induced by any two linear
transformations on U.

Theorem 3.13 is not true if U is infinite dimensional as shown by the following example.

Example 3.15. Let N be the set of all positive integer. Let {e; : i € N} be the basis of Zy. Let T be the
linear transformation on Zy ® %y such that

T(e; ®@ep) =e1 ® (e1 +e2),
T(ea,®e1) =e1 ®ey foranyn>2,

T(en ®e) =€ e foranyn e Nandi>2.

Then T sends every maximal left factor subspaces to e; ® Zy. However, T is clearly not induced by
any two linear transformations on #y.

The following example shows that there exist surjective linear rank one preservers from U ® U to
V ® V that send maximal left factor subspaces to maximal factor subspaces which are not induced by
any two non-singular linear transformations.

Example 3.16. Let T : M3(%) — M3(%) be the linear transformation defined by

¥ fhez i) [atetati b+h+i]
hoil) T ld+rtet+i ethtilt
We check that T is a rank one preserver. Let U := M31(%) and V := My1(%). Let {ey, e2, e3} be the
standard basis of U. Then T(e; ® U) = ((1,) RV, T(e2®U) = (?) @VandT(u®U) = (}) ® V for

any non-zero vector u ¢ {e, e2}. Hence T is surjective and it sends maximal left factor subspaces to
maximal factor subspaces. Since

T(E;3) = Eny and T(Es3) = En + Er2 + E21 + E22,

it is easy to see that there do not exist matrices P and Q such that T(A) = PAQ for all A in M3(%) or
T(A) = PA'Q for all A in M3(%).

The following result is a characterization of surjective mappings from a tensor product of two
Boolean vector spaces without comparable cells to another that send rank one elements to rank one
elements and preserve order relation in both directions.

Theorem 3.17. Let U, V, W, and Z be Boolean vector spaces where both U and V have no comparable cells.
IfT : U® V — W ® Z is a surjective mapping sending rank one elements to rank one elements and
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T(A) >T(B) <> A>B foranyABeUQ®V
then T is linear and induced by two bijective linear transformations.

Proof. We first show that T is injective. Suppose that T(A) = T(B), but A # B. Since T(A) #T(B) and
T(B) #T(A), it follows from the hypothesis that A)#B and B#A. We have the following cases:

Case 1.0ne of Aand B, say B, isnotacellin U ® V.Since AB, thereisacell CinU ® V suchthatB > C
but A}C . This implies that T(B) > T(C) and T(A) #T(C) and, a contradiction since T(A) = T(B).

Case 2. Both A and B are cells of U ® V. Then by Theorem 2.9,

A=c1®d, B=c,®d;
for some cells ¢y, ¢ in U and some cells dy, d; in V. Suppose that A and B have a common factor, say
1 = ¢3. Since A B, we have d; #d,. Let e be a cell in U distinct from ¢;. Let D = (e + ¢1) ® dy. Then
D > A and D}#B. Hence

T(D) > T(A) and T(D)#T(B),
a contradiction. Suppose now that A and B have no common factors. Let K = (¢1 + ¢2) ® dy. Then
K > Aand K}#B, since U and V have no comparable cells. Hence

T(K) > T(A) and T(K)#T(B),

a contradiction.

Since both cases lead to a contradiction, we have A = B and hence T is injective.

We shall show that Tis linear. Let {E; : i € I} be the basis of U @ V. Let A be a non-zero element in
U ® V whichisnotacell. ThenA = } ¢, Ej for some finite subset ] of  where |J| > 2. Since T(A) > T(E))
for any j in J, it follows that

T(A)> ) T(E).
Jjel

Since T is surjective, we have

T(B) = ) _T(E)

Jjel

for some B in U ® V. Hence A > B. Since T(B) > T(E;) for any j in ], it follows that B > E; for any j in J.
Hence

B>) E=A

jel
This shows that A = B. Hence T(A) = ¥j¢; T(E)).
Let A; and A, be two non-zero elements in U ® V. Then A; = } ¢, Ej for some finite subsets J; of

I, i = 1,2.Clearly Ay + A2 = Y jej,uy, Ej- Hence

T(A1 +A2) = Z T(E)

jehVh
=) TE) + )_TE)
j€h i€h

= T(A1) + T(A2).

This shows that T is linear and hence the result follows from Theorem 3.2. [J

If a non-zero vector u in a Boolean vector space with a non-dominating basis is the sum of k distinct
cells, then k is called the height of u and is denoted by p(u) = k.

Lemma 3.18. Let U be a Boolean vector space with a non-dominating basis. Ifu € U\{0} has height k and
u’> ¢; for k distinct cells ¢, . . ., C, then u = ¥, Gi.
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Proof. By hypothesis, u = ZL, ei for some cells ey, . . ., ey. Since u > ¢, it follows that ¢; = e, @ for
someo (i) <k.Henceu=cy+---+¢. O

The following result is analogous to Theorem 3.17.

Proposition 3.19. Let U, V, W, and Z be Boolean vector spaces where each of them has a non-dominating
basis. Then T : (U, V) — 2(W, Z) is a surjective mapping such that

T(A) > T(B) < A>B foranyA B e 2(U,V)

ifand only if T could be extended to a linear transformation from U @ V to W ® Z which is induced by two
bijective linear transformations.

Proof. The sufficiency part of the result is clear. We now prove the necessity. From the first paragraph
of the proof of Theorem 3.17, we see that T is injective.

Let {E; : i € I} be the basis of U ® V. Then by Theorem 2.9, E; € 2(U,V),i € l,and {E; : i € I} is
non-dominating. Since T preserves order relation in both directions, it follows that {T(E;) : i € I} is
the set of all cells of W ® Z.

Let A be an element in 2(U, V) which is not a cell. Then A = 2 je; Ej for some finite subset J of
I'where [J| > 2. Since T(A) > T(E;) for any j in J, it follows from Lemma 3.18 that p(T(A)) > k where
k = |J|.1fT(A) > T(E;) for somes ¢ J, thenA > E;, a contradiction. This shows that p(T(A)) = k and
hence by Lemma 3.18, we have

T(A) = ) T(E).
i€l

Now from the last paragraph of the proof of Theorem 3.17, we see that T can be extended to a bijective
linear transformation from U @ V to W ® Z. Hence the result follows from Theorem 3.2. [J

Corollary 3.20. Let U, V, W, and Z be finite dimensional Boolean vector spaces where each of them has
a non-dominating basis. If T: U® V — W ® Z is a bijective mapping sending rank one elements to
rank one elements and A > B = T(A) > T(B) forany A, B € U ® V, then T is linear and induced by two
bijective linear transformations.

Proof. LetdimU = s,dim V = t,dim W = pand dimZ = q. In view of Theorem 2.9, both U ® V and
W ® Z have non-dominating bases. Since T is bijective, it follows from Lemma 2.4 that U ® V and
W @ Z have the same number of cells. Hence st = pq and the maximal height of all elements inU ® V
and in W ® Z are the same. Let {E; : i € I} be the basis of U ® V where I = {1,...,st}.

Let Abe an element of U @ V of height k > 0.Then A = Y, E; for some non-empty finite subset
J of 1. Clearly there exist elements A; of height i, i = 1,...,m where m = st such that A, = A and
Ai < Aipqfori=1,...,m— 1.Since T(A;) < T(Aiy1)fori=1,...,m — 1, it follows that T(Ag) is of
height k. This shows that {T(E;) : i € I} is the set of all cells of W ® Z and T sends zero to zero. Since
T(A) > T(E;) for any j in ] and p(T(A)) = k, it follows from Lemma 3.18 that T(A) = 2 i) T(E)).

Suppose that T(B) > T(C) > 0. Since {T(E;) : i € I} is a non-dominating basis of W ® Z, we have

T(B) = Y T(E), T(C) =Y T()
jeK jeH
where H is a proper subset of K. Therefore B = 3 ek Ej and C = ¥;cy E;. This shows that B > C. The
corollary now follows from Theorem 3.17. [J

Remark 3.21. From Corollary 3.20, we have the following corresponding result for spaces of Boolean
matrices:

Let T : Mpn(%) — My ¢(2) be a bijective mapping where min{m, n, k, I} > 2. If T sends rank one
matrices to rank one matrices and A > B = T(A) > T(B) for any A, Bin My, 5 (%), then {m, n} = {k, I}
and there exist permutation matrices P and Q such that T(A) = PAQ for all A € My, , (%) or T(A) =
PA'Q for all A € My (2).
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Let B(m, n) denote the set of all bipartite graphs with bipartition (X, Y) where [X| =m,|Y| = n.Let
G € B(m, n). Then it was shown in [3] that the biclique covering number of G, bee(G), is the same as
the Boolean rank of the (0,1)-incidence matrix of G. Following [4], the above result can be translated
into graph-theoretic terms as follows:

Let T : B(m,n) — B(k,I) be a bijective mapping where min{m, n, k, [} > 2.

If bee(G) = 1 = bee(T(G)) = 1 for any G in B(m, n) and H is a subgraph of K implies that T(H) is
a subgraph of T(K) for every H, K € B(m, n), then {m, n} = {k, I} and T(G) is isomorphic to G for all G
in B(m, n).
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