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Abstract

Polymer stabilised blue phase liquid crystals (PSBPLCs) have been investigated for photonics and display
applications for the following reasons: optical isotropy in the dark state, ease of fabrication due to the omission of
the alignment layer, and sub-millisecond response length. Major barriers to the commercialisation of PSBPLCs are:
hysteresis, residual birefringence, and most significantly, high driving voltage. We have chosen to lower the driving
voltage through optimization of the mixture (host LC, chiral dopant and monomer). In this paper, investigation of
the contribution of the host liquid crystal to the phase stability and electro-optic characteristics of the PSBP will be
discussed. The following cases have been investigated: a) A three component host liquid crystal (E8, PE-5CNF (4-
Cyano-3-fluorophenyl 4-pentyl benzoate) and CPP-3FF (4-(trans-4-n-propyl cyclohexyl)-3'4"-difluoro-1,1"
biphenyl), LCC Corporation, Japan). For a ratio of E8:PE-CNF:CPP-3FF of 5:3:2, a large BPI window of >50.4°C
and low hysteresis was achieved, but the driving voltage was 79V, and b) A single host liquid crystal, 80OCB with
chiral dopant CB15. For a ratio for 8OCB:CB15 of 1:1, this mixture demonstrated a significantly lower driving
voltage of 65V, but exhibited a smaller BPI window of >27°C. Decrease in the ratio of 80OCB:CB15 also induced
the presence of a BPII phase in the mixture. A single host liquid crystal has the advantage of simplicity of
composition, and lowered driving voltage. However, the hysteresis and blue phase temperature range needs to be
optimised. This investigation concludes upon the suggestion of liquid crystal characteristics which optimises the
blue phase temperature range, low hysteresis, switching times and driving voltage.
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time.

1. Introduction

The blue phases (BP) of liquid crystals are a set of phases that exist between the isotropic and cholesteric phases of
certain liquid crystalline materials. It exists in a fairly small temperature range, typically around 1 to 2 K. BP liquid
crystals are optically isotropic and have double helix cubic arranged in a cubic superstructure [1]. The periodic
lattice structure of BP is comparable to the wavelength of visible light, typically of a pitch comparable to that of blue
light, hence the name “blue phase”. In 1969, Saupe was the first to describe the BP as a cubic structure [2]. Further
identification of the structure of blue phases revealed a three-dimensional lattice of cylindrical liquid crystal “logs”
interspersed with a corresponding lattice of disclination lines [2, 3]. The BP can be divided into three types (BPI,
BPII and BPIII) depending on the chirality of the LC. The BPIII phase has in almost similar structure to the isotropic
phase, whereas BPI and BPII are made out of double twist cylinders packed in cubic lattices. It can be understood as
the stacking of cylindrical “double twist tubes”, in which the director rotates about any radius of a cylinder. The
disinclination lines arising from this three-dimensional fluid crystal lattice is the reason for the small temperature
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range of the blue phases, as they are relatively unstable. Blue phases possess the advantages of sub-millisecond
response time, no requirement for alignment layers, and wide viewing angles, and thus promise potential electro-
optic applications such as large area displays and tunable lasers [4, 5]. However, their development is impeded by
this small temperature range, and high driving voltage. The stability of the blue phases are usually improved in the
following three ways: polymer stabilisation [6], nanoparticle stabilisation [7], and use of unconventional liquid
crystals such as liquid crystalline dimers and novel shaped liquid crystals [8, 9]. In particular, polymer and
nanoparticle stabilisation operate on the same principle: filling up the space in the disclination lines should reduce
the free energy costs of the defects, thereby stabilising the phase. Two significant milestones which were achieved in
broadening the blue phase temperature range were by Kikuchi in 2002, who, through polymer stabilisation expanded
the blue phase temperature range up to 60°C; and Coles and Pivnenko who presented a broad-temperature blue
phase of approximately 50°C. that existed at room temperature using liquid crystal dimers [8]. By 2008 Samsung
demonstrated a blue phase liquid crystal display (BPLCD) prototype at the Society for Information Display’s annual
conference [10]. More recently, an interest in flexible blue phase displays has emerged, due to the fact that an
alignment layer is not needed for the device architecture of BPLC [11, 12], such as the bendable single substrate
BPLC developed by Kimura et al [13].

For commercialization of PSBPLCs in electro-optic and photonics applications, the key challenges that lie ahead are
in terms of high operating voltage, low transmittance (~75%), poor dark state, switching hysteresis induced by
chirality in the BP mixture, and inconsistent gray levels due to the presence of the polymer networks. This work
addresses two of the issues, i.e. high operating voltage and electro-optic hysteresis, through comparison of a three-
mixture liquid crystal host vs a single liquid crystal host. Current practice is to employ a mixture LC host in order to
tune the PSBPLC properties; in this work, a single host LC is employed in order to simplify the overall PSBPLC
composition and improve its electro-optic characteristics.

2. Experimental details

2.1 Materials

The widening of the blue phase was achieved through polymer stabilisation in two cases; 1) a three host LC mixture
and 2) a single host LC mixture. For the three host LC mixture the following materials were used to achieve a room
temperature PSBPLC mixture: E8, CPP-3FF (4-(trans-4-n-propyl cyclohexyl)-3',4"-difluoro-1,1-biphenyl, LCC
(;OYPOTatiOH, Japan) and PE-SCNF (4-Cyano-3-fluoropheny! 4-pentyl benzoate, LCC Corporation, Japan) as the host
liquid crystal, NYC-22133L as the chiral dopant and UCL-011 (DIC Co.) as the monomer. On the other hand, for a
single host LC based PSBPLC mixture, 8OCB, CB15 and UCL-011 were used as host LC, chiral dopant and
monomer respectively to prepare the room temperature BPLC mixture. The chemical structure of 8SOCB and CB15
are shown is Fig 1.Moreover, the phase transition temperatures of these materials are shown in Table 1.

For each of these cases, the BP of the unpolymerised mixture is first identified using Polarising Optical Microscopy
(POM). The samples were temperature controlled using hotstage, Linkam (LTS420). After having identified the blue
phase range, the mixture was irradiated with a UV light (A= 365 nm) of irradiation intensity 1.5mW/cm?’ for 20 min,
in order to polymerise the UCL-011 monomer within the blue phase temperature window. The mixture was then left
to cool down to room temperature. POM was then again used to identify the phase transition temperatures of the
polymer stabilised mixture, and define the broadened blue phase temperature range.

80CB CB15

Figure 1: Chemical structure of 80CB, 8CB and CB15




Table 1: Phase transition temperature of 8CB, 80CB, and CB15

Material Cr—>SmA (°C) SmA—Nematic (°C) | Nematic—Iso (°C)
80CB 54 67.1 80
CB15 4.0 -54 230

For the three host LC mixtures, seven mixing conditions are detailed here, where the percentage of host LCs were
altered whist keeping constant the amount of chiral dopant and monomer. The mixing conditions for this mixture are

shown in Table 2.

Table 2: Mixing conditions

Condition No. 1 2 3 4 5 6 7
E8 1S5RS G238 23.8°|. 317 1 31471397
Host LC (wt%) PE-5CNF 3175397 1127:8-1: 307 | 23 8} 3.7 |:23:8

CPP-3FF 31.7 | 238 | 27.8 | 23.8 | 23.8 | 159 | 15.9
Chiral Dopant (wt%) | NYC-22133L | 129 | 129 | 129 | 129 | 129 | 129 | 12.9
Monomer (wWt%) UCL-011 w0 I [ e e 0 [ o R B A e e i

Initially, 8OCB was mixed with same chiral dopant (NYC-22133L) used in three host LC mixture but the BP could
not be observed, thought to be due to the insolubility of 8OCB with NYC-22133L. According to Figure 1 which
depicts the molecular structures of 8OCB and CB15, 80OCB contains the CN group, thus it is believed that a chiral
dopant (CB15) with the CN group will be appropriate for the solution. The optimized mixing condition is shown in
Table 3.

Table 3: Mixing conditions

Ideal value Experimental value
Name | weight[mg] | ratio[wt%)] | weight[mg] | ratio[wt%]
80OCB 50 45.45 53 46.37
CB15 50 45.45 50.6 44.27
UCL-011 10 9.09 10.7 9.36

All the mixtures were injected in sandwich-type cell made with plain ITO glass substrates (dimension-25x15x1.1
[mm]). The substrates were untreated as the BP does not require any alignment to guide the molecules. The phase
transition temperatures for all the mixtures were identified by using this type of cell structure.

2.2 Electro-optic measurement

The cell structure for the BPLC, as shown in Figure 2 (a), is much simplified due to the elimination of the alignment
layer. Interdigitated ITO electrodes of dimensions shown in Figure 2 (b), provide the in-plane electric field which
drives the electro-optic switching. Upon switching, the directors from the isotropic state to an aligned state parallel
to the electric field applied. The cell parameters are as follows: electrode line 25um, electrode spacing 10 um and
cell gap ~10 um.During the observation of the electro-optic response, the cell was placed between crossed polarizers
(45° with respect to the electrode direction) and a He-Ne laser was used as the optical input. Optical response of the
laser light through the cell was captured using a photodiode which was connected to the oscilloscope.
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Figure 2: Structure of (a) BPLC cell (b) Interdigitated electrode.

3. Results and discussion
3.1 Temperature range

The BP temperature ranges for the three host LC (seven mixing conditions) are shown in Table 4. Given that the
three component LC host mixtures possess different isotropic transition temperatures, tuning of the composition of
the mixtures is required in order to achieve both a high positive BPI-Iso transition temperature, and also the widest
BP temperature range. Referring to Table 4, it can be seen that the widest temperature range was achieved for
Condition No. 7, where a BP range of >50.4°C, assuming that the BPI-Iso transition temperature for this condition
was 40.4°C, and the minimum observable temperature for this mixture was -10°C. It was also observed that the
component, CPP-3FF proved to be the most dominant in determining the overall phase temperature of the mixture.

The textures for the BP for the case of the three host mixture for Condition No. 1, the resulting blue phase can be
seen in Figure 3.

Table 4: Phase transition temperatures of BPLC mixtures (before and after stabilisation) are determined by polarizing
optical microscope studies

Condition No. 1 2 3 4 5 6 7
N*—BPI 33 27.5 | 337 | 304 | 313 | 315 | 334
Before Stabilisation (°C) | BPIIso | 354 | 298 | 36.7 | 334 | 352 344 | 36.2
AT 24 23 3 3 39 29 2.8
N*-BPI | <-10 | <-10 | <-10 | <-10 | <-10 | <-10 | <-10
After Stabilisation (°C) | BPI>Iso | 32.9 | 29.7 | 278 | 273 | 315 | 285 | 404
AT >42.9 | >39.7 | >37.8 | >37.3 | >41.5 | >38.5 | >50.4

Figure 3: Polarized Optical Microscope (POM) image of room temperature PSBPLC. (a) Before polymer stabilisation
at 33.9°C and (b) After polymer stabilisation at 11°C.



For the single host liquid crystal case, Figure 4 represents the POM images of the BP for the mixture listed in Table
3. Before stabilisation, the following transitions were recorded: N* 39°C BPI 40°C Iso. However, in this condition,
BPII was not observed. The photo-polymerisation temperature of the sample was chosen to be in the BPI
temperature range, i.e. at 39.5 °C. Before polymer stabilisation, the temperature range of BPI was 1°C and after
polymer stabilisation the temperature range was successfully widened to more than 27°C, as tabulated in Table 5.

Table 5: Phase transition temperature of BPLC before and after stabilisation

N*—BPI | BPI->ISO | Temperature Condition
(°C) ¢C) range (°C)
39 40 1 Resure
stabilisation
<10 37 >27 Adjer
stabilisation

Fig 4: .P(.)M image: (Left) BPI on heating before stabilised reflectance mode (right) BPI on cooling after stabilised
transmission mode

Ha‘w.ing su_ccessfully achieved the blue phase using 8OCB as the base, the composition was further optimized. The
mixing ratios are shown in Table 6. From this table, it is noted that the Sample 5 which contains the ratio of (0.6:1)
for SOCB:CB15 shows both BPI and BPII. After UV irradiation, the BPI-Iso transition temperature was increased
from 4.6°C to 13.8°C. Moreover, BPII was observed before polymer stabilisation while cooling (Iso 28.3°C BPII
26.7°C BPI 23.7°C N*), believed to be due to the high percentage (60 wt7%) of chiral dopant which increased the
chirality of mixture. On the other hand, after polymer stabilisation, the BPI-Iso temperature dropped below the room
temperature (23.8°C), due to the low weight percentage (40 wt%) of host LC in the mixture. Thus, it is noted that
Sample 3 of the original composition explored still shows the widest temperature range, which will then be
investigated further for its electro-optic characteristics.

Table 6: Optimized mixing conditions of host LC and chiral dopant for single host LC mixture

Sample | 80OCB (%wt) | CB15 (% wt) Comments N*—BPI (°C) | BPI->Iso (°C) | AT (°C)
1 60 40 BP did not appear N/A N/A N/A
2 55 45 BP did not appear N/A N/A N/A
3 50 50 BPI appear <10 37 >27
4 45 55 BPI appear <10 29.4 >19.4
S 40 60 BPI and BPII appear <10 23.8 >13.8




The POM images of the BP texture of the optimized single host mixture from Table 6 (Sample S) is shown in Figure
S

Figure 5: POM image of BPLC for the optimized single host mixture (a) before UV irradiation (b) after UV irradiation.

3.2 Electro-optical ( Voltage vs Transmittance) performance

hysteresis compared to Condition No. 5, which indicated a tradeoff between the switching voltage and hysteresis.

The transmission for Condition No. 1 is far superior at ~45%, compared to Condition No. 5 which had a
transmission of 18%.
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Figure 6: V-T graph of Condition No. 1 (Left), Condition No. 5 (right)



For the single host mixture containing 8OCB (listed in Table 3), the switching voltage and transmittance are
significantly better than the three host mixture, at a voltage of ~65V and a transmittance of ~66% is shown in Figure
7. The driving voltage of ~65V is comparatively low compared to literature [14, 15]. Conversely, the residual
birefringence and hysteresis is relatively high.
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Figure 7: V-T graph (ratio of 1:1 for SOCB:CB15)

In summary, the room temperature PSBPLC mixture was demonstrated for two cases:

a. For the three host LC mixture, the BP temperature range was extended to approximately 50.4°C
for.the 5:3:2 (E8: PE-5CNF: CPP-3FF) ratio. Tuning of the three-host components allows
optimisation of the blue phase temperature range. The driving voltage was ~78V, transmission
was ~45% and hysteresis was considerably low.

b. For single host LC (80CB) mixture, the BP temperature range was extended to approximately
27°C. Tuning of the blue phase range is through the variation in the ratio between the host LC and
tl.le §hiral dopant. For example, a ratio of (0.6:1) for 8OCB:CB15 produced the BPII phase. A
significant improvement of driving voltage (~65V) and transmission (~66%) was achieved at a
cost of increased hysteresis.

4. Conclusions

Two types of room temperature PSBPLC were demonstrated, containing a) a three host LC mixture, and b) a single
host LC. In comparing these two cases, it was found that the three host LC mixture produced a wide temperature
range (50.4°C) of PSBPLC as compared to single host LC mixture (27°C). However, in terms of electro-optic
prpperties, the driving voltage is relatively high (~79V) for three host LC mixture, compared to the single host LC
mixture (~65V). The single host LC mixture also demonstrated higher transmittance, although at the expense of a
higher hysteresis. Thus, the advantages and disadvantages of the two cases are compared, with the eventual aim that
should an optimal single liquid crystal host be identified, it will contribute towards developing a simpler mixture for
the PSBPLC which promises potentially lower driving voltage and higher transmissivity.
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