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Abstract
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Fitting Weibull ACD Models to High Frequency Transactions Data:

A Semi-parametric Approach based on Estimating Functions
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Autoregressive conditional duration (ACD) models play an important role in financial

modeling. This paper considers the estimation of the Weibull ACD model using a semi-

parametric approach based on the theory of estimating functions (EF). We apply the EF

and the maximum likelihood (ML) methods to a data set given in Tsay (2003, p203) to

compare these two methods. It is shown that the EF approach is easier to apply in

practice and gives better estimates than the MLE. Results show that the EF approach is

compatible with the ML method in parameter estimation. Furthermore, the computation

speed for the EF approach is much faster than for the MLE and therefore offers a

significant reduction of the completion time.

Keywords: Weibull distribution, Autoregression, Conditional duration, Estimating
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1. Introduction

In financial modeling, one problem we face is the analysis of high frequency transaction

data. The main characteristic of this type of data is that it is collected at irregular, short

time 'intervals. A basic tool used to study such duration data is the use of autoregressive

conditional duration (ACD) models given by Engle and Russell (1998).

specifications of If'i .

Since the durations are non-negative variables, in practice, we use the

distributions such as the Exponential, Gamma and Weibull to model ACD structures (see,

Peiris et al (2008) for details). The Weibull distribution is more flexible and therefore

plays an important role in ACD modelling. Since the Exponential and Gamma

distributions are special cases of the Weibull distribution, below we give the

corresponding Weibull density and other useful results for later reference.

The general class of ACD models adapts the AR and GARCH theory to study

the dynamic structure of the adjusted durations {x;} (Xi = ti - ti-1), where ti .s the time

at the ith transaction. A crucial assumption underlying the ACD model is that the time

dependence is described by a function If'i' where If'i is the conditional expectation of the

adjusted duration between the (i -1)th and the ith trades.

Let

(1.1)

where Fi-l is the information set available at the (i -1)th trade.

The basic ACD model is defined as

(1.2)

where {Gi} is a sequence of iid non-negative random variable's with density f(.)and

E(Gi) = 1. Also note that Gi is independent of Fi-l. From Equation (1.2) it is clear that a

vast set of ACD model specifications can be defined by different distributions of Gi and
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The Weibull Distribution

A random variable X has a Weibull distribution with shape parameter a > 0 and

scale parameter f3 > 0 if its cumulative distribution function (edt) and probability density

function (pdt) are given by

if x < 0

if x 2 0

and

if x 2 0 (1.3)
otherwise

respectively. When a = I, the Weibull distribution reduces to an exponential distribution.

The pdf of the standardized Weibull distribution is

Notice that the scale parameter f3 not appears in (1.4). It can be seen that E(Y) = 1 and

( 2)rl+-
V = Var(Y) = a 2 - 1.

[.(1+ ~)]
(1.5)

The corresponding cdf is

;y20 (1.6)

;y<O

The Section 2 reviews the general ACD model and its basic properties for later reference.
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2. A Review of the General ACD(m,q),q ~ 0 Model

. Suppose that only the most recent m durations (m ~ 1) influence the conditional

duration If/ i in (1.1) and consider the model satisfying

m

r, = a>+Lajxi_j,
j=1

m
where a>> 0 ,a j > 0 and I a j < 1.

j=1

This is caIIed an ACD (m) model.

If there is no limited-memory characteristic, then one can define a more general

class caIIed ACD(m,q), q ~ 1 model as given in Engle and RusseII (1988)

m q
If/i =a>+ IajXi-j + IPjlf/i-j,

j=1 j=1
(2.1)

It is easy to see that 'l7i = Xi -If/i is a martingale difference sequence and the model in

(2.1) can be written as

m q
X· - 1'7. = a>+ "a .X· . + "P' (x . . - 1'7. . )I 'II L..., j I-j L..., j I-j 'II-j

j=1 j=1

and consequently

r q
Xi =a>+ I(aj +Pj)Xi-j - IPj'l7i-j +ni ,

j=1 j=1
(2.2)

r

where r = max(m,q) and I(a j +Pj) < 1.
j=1

This is in the form of an ARMA process with non-Gaussian innovations. This

representation is used to obtain the unconditional mean and variance of the ACD model
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r .
in (2.1). Notice that {xi} is weakly stationary provided the zeroes of ¢(z) = 1- 2.. t5j Z}

j=l

are outside the unit circle, where OJ = a j +Pj, j = 1,·.. , r .

If the parameters in the model are not well-estimated, then the model is not

adequate for describing the behavior of the data and the accuracy of forecasts will be

affected. The most common method of estimating the parameters is the use of maximum

likelihood (ML). For example, see Engle and Russell (1998), Bauwens and Giot (2000),

Zhang, Russell and Tsay (2001). This paper applies an alternative method of parameter

estimation that is based on the EF approach due to Godambe (1985). In their paper

Thavaneswaran and Peiris (1996) used the EF approach for estimating some nonlinear

time series models. Peiris and Ng (2008) used this EF approach in parameter estimation

of autogressive models with non-stationary innovations. Recently, Peiris, Ng and

Mohamed (2008) compared the performance of the EF and ML estimates of simple

exponential ACD models and showed that the EF method is more efficient than the ML

method. Using a large scale simulation study Allen, Peiris and Ng (2008) showed that the

parameter estimates based on EF method outperforms the ML estimates in Weibull ACD

models.

For an ACD(m,q) model, let io = max(m,q) and xN(T) = (Xl>,,,,XN(T)" where

N(T) is the sample size. The likelihood function of the durations xl,,", xN(T) is

With that view in mind the section 3 reviews the MLE and EF estimation

procedures in detail for ACD modelling.

3. Parameter Estimation

We first review the maximum likelihood (ML) approach.

3.1 The MLE Approach
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N(T)
L(XN(T) I B,Xi) = Ilf(xi I Fi-I,B)

i=l

where B denotes the vector of model parameters, X· - (xl ... x) and10 - , , t,

t,
f(Xio IB) = Ilf(xi)'

i=l

The impact of the marginal pdf f(xi I B) on the likelihood function diminishes as the
o

sample size N(T) increases and so the marginal density can be ignored, resulting in the

conditional likelihood function

N(T)
L(XN(T) I B,Xi) = Ilf(xi I Fi-I,B).

i=io +1
(3.1)

Estimating the Weibull ACD model

In the Weibull ACD Model, the {cd follows the standardised Weibull

distribution with F, (s) ~ 1- exp{ - [ ~ 1+~} r}. From Equation (1.2), we have

The corresponding conditional log likelihood function is given by

L(x Ia,x;) = n~r(l + _!_)a (.3..J a-I exp{-[r(l +_!_)(.3..J] a}
;=10+1'11; a 'II; a 'II;
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So taking logs

(3.2)

see Tsay (2002). Further examples can be found in Peiris et.al. (2005).

Now we review the theory of estimating functions (EF) as an alternative semi-

parametric approach in parameter estimation.

3.2 The EF Approach

Suppose that {Yl>Y2,"} is a discrete stochastic process. We are interested of

fitting a suitable model for a sample of size n from this process. Let 0 be a class of

probability distributions F on R nand 8 = 8( F), F E 0be a vector of real parameters.

o

Let hj be a real valued function of Yl, Y2,"', Yj and 8 such that

Ej_1,F[hj{Yl>Y2, .. ,Yj;8(F)}] = 0,

(i = 12 ... n: F E 0) and
" "

E(hjhj) = 0, (i *' i).
where Ei-1,F (.) denotes the expectation holding the first i -1 values Yl>Y2,", Yi-I

fixed and Ei-1,F (.) == Ei-l, EO,F (.) == EF (.) == E(.) (unconditional mean).

Estimating Functions

Any real valued function g(.) of the random variates Yl, Y2," ,Yn and the

parameter (), that can be used to estimate () is called an estimating function.

,.
•(
(
r
Lc
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In addition, if g(.) satisfies some regularity conditions (ie. (i) the first and the

seconc derivatives of g(.) (g' (.) and g"(.)) exist and (ii) E[g2(.)] is non-zero) and

E[g(Y"Y2,",yn;B(F))] = °
then g{.) is called a regular unbiased estimating function.

Among all regular unbiased estimating functions g ,g* is said to be optimum if

E[g2 (YI 'Y2"", Yn;B(F))]
(3.3)

{
E([Bg(YI 'Y2'" ',Yn;B(F))] ]}2

BB (J=(J(F)

*is minimized for all FEe at g = g .

W then estimate B by solving the optimum estimating equations

*g (Yl>Y2,"',Yn;B) = 0.

Main Results

We consider the class of linear estimating functions L generated by

n
g = IhiQi-1

i=l

where hi are as defined before and Qi-l is a suitably chosen function of the random

variates Yl>Y2,''',Yi-1 and the parameter B for all i = 1,2, .. ·,n.

Clearly,

E(g) = 0, gEL.

Now we state the following theorem due to Godambe (1985):

Theorem
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*In the class L of estimating functions g, the function g minimizing (3.3) is

given by

* n *g = "h·a· 1L.. 1 1- ,

j=l

where

Notes:

*1. The function g is called the optimum estimating function.

2. An optimal estimate of e (in the sense of Godambe(1985)) can be obtained by

solving the equation(s) g * = O.

Estimation of ACD (1,1)Using the EF Approach

Let Ifj = Et x, I Xi-l,Xi-2,··,xl)· Consider the ACD(1,1) model given by

(3.4)

with

Ifj = m+axj_l +blfj-l, (3.5)

where {sd is a sequence of iid standard Weibull random variables with E(s;) = 1 &

Var(sJ = V and to > 0, a,b > 0 such that a + b < 1.

It is clear that the conditional distribution

x; I 0;_1 ~ (lfi'If;2V),

where 0;_1 is the information set available at time i -1, V = Var(s;), and V is given in

(1.5).

Let h, = If; - x,. Then clearly, h, is an unbiased estimating function. Now we

construct a linear unbiased estimating function such that
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n

g = 2,hia:_1 ,

i=1

where n is the number of observations.

It can be seen that the optimal value of ai_I in the sense of Godambe(l985) is

given by

8lf/i

· 8ea. =--
/-1 2V '

If/i

where e is a parameter.

Solving the system of equations

(3.6)

for e = (m, a, b) the corresponding optimal set of estimates can be obtained. The

following derivatives under the conditions of second order stationarity can be used:

• 8lf/i = 1+ b 8lf/i-l or 8lf/i = _1_
8m 8m 8m 1-b

8v, f3 8 If/i-I-=X· + __
8a /-1 8a•

• 8lf/i = + b 81f/i_1
8b If/i-I 8b'

Since these equations do not estimate V , an estimate of a is obtained by solving

r(l+~) (l-b2 -2ab)(var(x)+[E(x)]2)_--'-_--'-...,.. =[r(l+~)J a' var(x)+[E(x)]'(l-b' -2ab)

The Section 4 applies these two approaches for a real data set from Tsay (2002) and

comperes the corresponding EF and ML estimates.
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4. An Application of ACD Modelling

The data set used in this paper is based on a sample of high frequency transactions

data obtained for the US IBM stock on five consecutive trading days from November 1 to

November 7, 1990 (see Tsay(2003, p203)). Focusing on positive transaction durations,

we have 3534 observations. The series is then adjusted (see Tsay(2003, p195-197) such

that we obtain 3534 positive adjusted durations. Figures 1 to 3 are respectively the series,

the histogram of the series and the autocorrelation (ACF) of the series. Based on Figure

3, there exist some serial correlations in the adjusted durations. Now we fit the series with

Weibull ACD(l,l) model as shown in Tsay (2003, p2003) and estimate the following two

Weibull models.

Modell (based on ML method):

x; = If/;&;, If/; = 0.1635 + 0.0640x;_1+ 0.88531f/;

a = 0.8788.

Model 2 (based on EF method):

x; = If/;&;, If/; = 0.1803 + 0.0650x;_1 + 0.88111f/;

a = 0.7786.

where &; is follow the standardized Weibull distribution with parameter a.
To assess the performance ofML and EF methods given in Section (3.1) and (3.2)

on this two models, the standard errors were computed. Standard errors of oi.a.b,a for

the Modell are 0.0477,0.0107,0.0217 and 0.0116 respectively. The standard errors of

oi.a.b.a for the Model 2 are 0.0506,0.0114,0.0231 and 0.0223. The EF method in

general is comparable to the ML method in term of parameter estimates and standard

errors. Furthermore, we note that if we use the ML method to find the estimates, the

method needs to search for the maximum value under the maximum likelihood

procedure. One the other hand, th EF approach is just solving the simultaneous

equations to obtain the estimates. Thus, we would expect a reduction in computation time

if we use EF method instead of that based on the ML method. The reason is that the EF

method is only involved in solving the simultaneous nonlinear equations while the ML

method needs to search for the maximum value of likelihood function. It is important to
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note t~at the EF method requires 8.172 seconds in a Core 2 Duo 2.2 GHz computer to

obtain .the solution while the ML method requires 41.578 seconds.

5. Co elusion

This paper applied the EF approach in parameter estimation of Weibull ACD

models nd compared the properties with the corresponding ML estimates. Results show

that the tandard errors of the estimates using either EF or ML methods are comparable.

However, the computation time for EF method is much shorter than that of the ML

method.
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Figure 1: Time plots of durations for IBM stock traded in the first five trading days of
November 1990: the adjusted series.
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Figure 2: The histogram of the adjusted series.
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Figure 3: ACF of the adjusted series


