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ABSTRACT

Autoregressive Conditional Duration (ACD) models playa central role in modelling
high frequency financial data. The Maximum Likelihood (ML) and Quasi Maximum
Likelihood (QML) methods are widely used in parameter estimation. This paper
considers a semi parametric approach based on the theory of Estimating Function
(EF) in estimation of A CD models. We use a number of popular distributions with
positive supports for errors and estimate the parameter(s) using the both EF and
. ML approaches. A simulation study is conducted to compare the peiformance oj the
EF and the corresponding ML estimates for ACD(1.1), ACD(l,2) and ACD(2,l)
models. It is shown that the EF approach provides comparable estimates with the
ML estimates using a shorter computation time. Finally, both methods are applied to
~odel a real financial data set and provide empirical evidence to support the use EF
approach in practice.

Keywords: Conditional duration, Estimating function, High Frequency data,
Maximum likelihood

INTRODUCTION

In many financial modelling problems, we face with the problem of analyzing high
frequency data. A class of high frequency data models are originally appeared as
"fixed-interval" models, where all transactions are recorded as the fixed time
intervals. However, one main drawback of these models is that they do not take into
account the irregular spacing of the data. As a result, we may lose some useful
information if the transactions cluster differently within a fixed interval. To avoid
such loss of information, Engle and Russell (1998) had proposed the class of models
called the autoregressive conditional duration (ACD) models. This class of models
adapts the AR and GARCH theory to study the dynamic structure of the adjusted
durations and can be used to analyze transaction data with irregular time intervals .
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Let Xj be the adjusted duration such that x, = t, - 1,_1, where 1j is the time of the ith
transacti on and let

(I)

where Fi-l is the information set available at the (i -1) th trade.

The basic ACD model is defined as

(2)

where Cj is a sequence of independently and identically distributed (iid) non-

negative random variable's with density f(.)and E(ci) = 1 and s, is independent of

Fi-l·

From Equation (2) it is clear that a vast set of ACD model specifications can be
defined by allowing different distributions for e, and specifications of If! i .

A general class of ACD models generated from (2) is called
ACD (m,q),(m ~ 1, q ~ 0) and is given by

m q

III. = Ci) + "'"'a .x. .+ "'"'b.,1//. .,'t'l L.... .I 1-.1 L.... /'1' 1-.1
i=i ;=1

(3)

r

where OJ> 0, aj,b.i > 0 and L(a; + b) < 1, and r = max(m.q).
;=1

This paper focuses on the parameter estimation of ACD models based on a number
of different distribution with positive support for Cj. Engle and Russel (1998) used
the ML method to estimate the parameters of the ACD model. Tsay (2002) and
Malia Pacurar (2008) also discussed the usage of the ML method. Applications of
ACD models are discussed by Allen ct {II .. (2008, 2009) using the Quasi Maximum



Likelihood (QML) methods. If the parameters in the model are not well-estimated,
then the model may not be adequate for describing the behavior of the data. The
accuracy of forecasts may also affect by a "poor" model.

In their paper, Peiris et al., (2007) suggested the use of the estimating function (EF)
approach to estimate the parameters in ACD models. Peiris (2008) shows a
simulation result of the estimation of ACD models using estimating functions.

Since the error distribution of the model is not known in practice, this paper extends
the work of Peiris et.al.(2007) and focuses on the estimating parameters of ACD
models based on various possible error distributions. We assess the performance of
EF and ML methods and compare the bias and the standard errors in each case. We
consider four popular different non-negative distribution for ci including the
Exponential, Rayleigh, Lognormal and Gamma to model ACD structures. Results
show that both methods are comparable in estimating the parameters of the ACD
models but the EF method proves to be faster and efficient than the ML for
estimating the parameters when the distribution is unknown.

With that view in mind the following section reviews the parameter estimation
problem based on the ML and EF approaches.

ESTIMATION

This section considers the ML and EF approaches to estimate the parameters of
ACD models as well as the parameters of the corresponding error distributions.

The ML approach

Let iO = max(m,q) and xn = (xp".,xn)' for an ACD model, where n is the sample
size. The likelihood function for the durations is

n

L(xn Ie,xj) = TIf(xj I F;-I ,9)
i=1



where 9 denotes the vector of model parameters, Xio =(Xj,···,xio) and
;n

I'»; 19) = TIfeXi)·
i=1

As the sample size n increases, the impact of the marginal probability density
function (pdf), ts»; 19) on the likelihood function diminishes. Thus, the marginal

density can be ignored resulting in the conditional likelihood function as below:

"
Lex" 19, x;.) = TIfex; 1;;_1'9) .

;:::;0+1

(4)

For some selected distributions of s., the likelihood functions are as shown below:

1. Standardized Exponential distribution: L(x I xio) =TI {_l e-C~J}
/:::=10+1 Vlj

2. Standardized Rayleigh distribution: L(x I xio) =[1 {~( \ JeN~ II
'-'0 ~1 Ijf, J

4. Standardized Gamma distribution: L(x I=: = TI J[ K'·_ (!:i_JK-1 e-~:]_l 1
'=;0+111(1,) Ijfi Vii r



..
Now we consider the theory of estimating functions (EF) as an alternative semi-
parameter approach for parameter estimation.

The Estimating Function Approach

Let {Yb Y2, ... J be a discrete stochastic process. We are interested of fitting a
suitable model for a sample of size n from this process. Let 8 be a class of

probability distributions F on R /1 and B = B(F), F E G be a vector of real
parameters.

Let hi be a real valued function of Yr, Y2,' .. , Yi and B such that

Ei-1,F[hi {Yl ,Y2," "Yi; f}(F)}] = 0, Ci = 1,2,···,n;F E 8)

and

EChihj) = 0, (i:t: j),
•

where Ei-1,F C·) denotes the expectation holding the first i-1' values

Yl,Y2,",Yi-l fixed and Ei-1,F(.)=Ei-1, EO,F(.)=EF(.)=E(.)Cunconditional
mean).

Estimating Functions

Any real valued function g(.) of the random variates Yl, Y2"", Y/1 and the
parameter B, that can be used to estimate B is called an estimating function.

If gC:) satisfies regularity conditions (i) the first and the second derivatives of g(.),

g' C·) and gil C.)exist, and Cii) E[g2 (.)] is non-zero

and

then g(.) is called a regular unbiased estimating function.
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*Among all regular unbiased estimating functions g , g is said to be optimum if

(5)

{E[[aCY1,Y2"",Yn;e)] )}2
ae !3=!3(F)

*is minimized for all FEe at g = g .

Then, we estimate e by solving the optimum estimating equation

*g (Yl, Y2 , ... , Y n ; e) = 0 .

Main Results

We restrict initially to estimating functions g of the form

n
g = '2:h;a;-l

1=1

where the functions h, are as defined before and a/-l is a function of the random

variates Yl,Y2,",Y;-1 and the parameter e for all i= 1,2,.. ·,n. We consider the
class of linear estimating functions L generated by g. Note that g being linear in
hi' the class L corresponds to linear functions in Gauss-Markov set-up for linear

models.

Clearly,

E(g) = 0, gEL.

Now we state the following theorem due to Godarnbe(l985):
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Theorem

*In the class L of estimating functions g , the function g minimizing (5) is given by

* n *
g = Ih;a;_l ,

i==1

where

[OhiJE. 1-* /- of}
Qi-l = 2'

£,-l[h, ]

Notes:

*1. The functiong is called the optimum estimating function.

2. Based on Godambe (1985), an optimal estimate of f} can be obtained by
*solving the equation(s) g = O.

See Thavaneswaran and Abraham (1988) and Grahramani and Thavaneswaran
(2009) for theory and various applications of estimating functions.

Estimation of ACD (m,q) Using the EF Approach

Consider the ACD (m,q) model given by Equations (2) and (3). It is clear that the
conditional distribution

where' [2i_1 is the information set available at time i-I and u~ is the variance of
e.,

Let hi = Ifi - Xi' It is obvious that hi is an unbiased estimating function. Now, a
linear unbiased estimating function is constructed such that
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0== '\' h.a~o ~ I I'

,;1

Ol/f,

where a~ == a,e and e is a parameter.
, 1jI,~V

Solving the following system of Equation (6) for e and the optimal set of estimates
can be obtained:

(6)

The following derivatives under the conditions of i-th order stationarity can be used:

•

•

aw, _ ~ b Ol/f'-i---V!,-,+ ~ j--
obi ,;1. j='. obj

where k and 1 are respectively the subscripts of the parameter of interest for a and
b.

•

It is easy to see that for ACD( 1, J ) model, we have

(7)

where s is the variance of £, .

For example,

a) s ==.2 for standardized Exponential distribution

25S



b) s = i for standardized Rayleigh distribution
J[

c) s = ea2 for standardized Lognormal distribution

d) s = K + 1 for standardized Gamma distribution
K

SIMULATION

This section considers a large scale simulation study in order to compare the
performances of the MLE and EF approaches for an ACD(l,l) model based on a
number of standardised distributions as mentioned above in (a) to (e). Let e be an
estimator of parameter 8. Suppose that we simulate a series of length n and
estimate respective parameters. Repeat these simulation and estimation steps N
times and calculate the following:

- 1 N
i) Mean, e=- ~e

Nt;j'

ii) Estimated Bias = 8 -8

.. lati E' dB' (0/) (IEstimated Bias I)ill) Absolute Re atrve stimate las /0 = 8 . . x l 00%

iv) Estimated Standard Deviation (S.D) = -1-f(e _0)2
N-l ;=J

v) Mean Squared Error, MSE(e) = Elce - 8)2 J
~ 2= Var(8) + (bias)

. . . Estimated SD of EF
VI) Relative Efficiency = --------

Estimated SD of ML

For the Exponential ACD (EACD) case EACD(l, 1), EACD(2, J), EACD(l, 2) and
EACD(2, 2) have been studied and the corresponding estimating results have been
reported in Tables 1 to 4. It seems that the results obtained using the ML and EF
methods are comparable. However, the EF method provides smaller estimated
standard error in estimating the parameters b1 and b'2 for both EACDC1, 2) (in Table
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l.:

3) and EACD(2, 2) (in Table 4) models. Although the absolute relative bias, the.

means of b
l
and b

2
seem to be slightly better in ML estimates than the EF method,

the computation time is relatively smaller in the EF approach. When the Mean
Squared Error (MSE) is scrutinized for the case involving the EACD(1, 2) model,

e

)

. .
the results for b, and b:. appear to be comparable. The MSE for OJ is slightly larger. .
when EF is applied. The MSE computed for W , b, and h:. are smaller when the EF
approach is utilized in estimating the parameters of the EACD(2, 2) model.

A similar conclusion can be drawn for Lognormal ACD (1,1) model, Rayleigh ACD
(1, 1) model and Gamma ACD model(GACD(l, 1)) (Refer to Tables 5 to 7) the
estimates of the parameters are somewhat comparable for both EF and ML methods.
In general, the EF method's computation time is 5 times faster compared to the ML
method.

Table 1: Estimated Results for Simulated Exponential ACD (1, 1) Series with 500
observations ((j) = 0.20, al = 0.30, b. = 0.60 and fill = 0.50).

to a) hI

ML EF ML EF ML EF

Mean 0.2198 0.2205 0.2977 0.2949 0.5893 0.5905

Estimated Bias 0.0198 0.0205 -0.0023 -0.0051 -0.0107 -0.0095

Abs. Rel. Est. Bias 9.90% 10.25% 0.77% l.70% 1.78% 1.58%

Estimated S.D. 0.0715 0.0695 0.0527 0.0521 0.0686 0.0689

MSE 0.0055 0.0053 0.0028 0.0027 0.0048 0.0048

Relative Efficiency I 1.0000 I 0.9720 1.0000 0.9886 1.0000 1.0044
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Table 2: Estimated Results for Simulated Exponential ACD (2, 1) Series with 500
observations t to :;:0.10, aJ = 0.20, a1 = 0.30,bJ = OAO, Ifl = OAO and If 1= 0.60).

co aJ G2 bJ

ML EF ML EF ML EF ML EF
Mean 0.1082 0.1082 0.1961 0.1959 0.2953 0.2957 0.3928 0.3924

Estimated
0.0082 0.0082 -0.0039 -0.0041 -0.0047 -0.0043 -0.0072 -0.0076Bias

Abs. Rel.
8.20% 8.20% 1.95% 2.05% 1.57% 1.43% 1.80% 1.90%Est. Bias

Estimated
0.0322 0.0321 0.0564 0.0563 0.0815 0.0817 0.0917 0.0913S.D.

MSE 0.0011 0.0011 0.0032 0.0032 0.0067 0.0067 0.0085 0.0084
Relative

1.0000 0.9969 1.0000 0.9982 1.0000 1.0025 1.0000 0.9956Efficiency

Table 3: Estimated Results for Simulated Exponential ACD (1, 2) Series with 500
observations (())= 0.10,G] = 0.20,bl = 0.30,b2 = 0.40, If] = 0.40 and 1f2 = 0.60)

co I G] 61 b1
ML EF I ML EF ML EF ML EF

Mean 0.1249 0.1236 0.1924 0.1827 0.3516 0.4238 0.3281 0.2652
Estimated

0.0249 0.0236 _0.00761-0.0173 0.0516
0.1238 -0.0719 -0.1348Bias

Abs. Rel.
24.90% 23.60% 3.80% 8.65% 17.20%

41.27% 17.98% 33.70%Est. Bias

Estimated
0.0817 0.1107 0.0552 0.0551 0.3245

0.3101 0.2870 0.2586S.D.

MSE 0.0073 0.0128 0.0031 0.0033 0.1080 0.1115 0.0875 0.0850
Relative

1.0000 1.3550 1.0000 0.9982 1.0000
0.9556 1.0000 0.9010Efficiency
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Table 4: Estimated Results for Simulated Exponential ACD (2, 2) Series with 500
observations ((v=OAO,(l1 =O.lO,a:, =0.20,bl =O.20,b] =OAO,1f1 =0.50 and

It.'] = 0.50)

OJ (ll u] bl b,

ML EF ML EF ML EF ML EF ML EF

t\~m 0.4428 0.4192 0.OY33 0.0967 0.180710.1641 0.3161 0.3870 0.2938 0.2425

Esti "luted
0.0428 0.0192 - - -

-00359 0.1161 -0.1062
BiOS 0.0067 0.0033 0.0193

0.1870 -01575

Abs. ReI.
10.70% 4.80% 6.70% 3.30% 9.65% 17.95% 58.05% 93.50% 26.55% 39.38%

Est. Bas

Estirna ed
0.2064 0.1849 0.0524 0.0515 0.0831 0.0824 OA155 0.3593 0.3308 0.2817

S.D.

MSE 0.0444 0.0346 0.0028 0.0027 0.0073 0.0081 0.1861 0.1641 0.1207 0.1042

Relative. 1.0000 0.8958 1.0000 0.9828 1.0000 0.9916 1.0000 0.8647 1.0000 . 0.8516
. Efficiency

Table 5: Estimated Results for Simulated Rayleigh ACD (1, 1) Series with 500
observations (OJ = 0.05,a = 0.30,bl = 0.60 and Ifl = 0.50)

OJ al bl

ML EF ML EF ML EF

Mean 0.0559 0.0555 0.2986 0.2966 0.5877 0.5912

Estimated Bias 0.0059 0.0055 -0.0014 -0.0034 -0.0123 -0.0088

Abs. Rel. Est. Bias 11.80% 11.00% 0.47% 1.13% 2.05% 1.47%

Estimated S.D. 0.0169 0.0171 0.0386 0.0403 0.0577 0.0589

MSE 0.0003 0.0003 0.0015 0.0016 0.0035 1 0.0035

Relative Efficiency 1.0000 I 1.0118 1.0000 1.0440 1.0000 1.0208
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Table 6: Estimated Results for Simulated Lognormal ACD (1, 1) Series with 500
observations (UJ = O.lO,a = 0.20,bl = 0.70,0" = 1.50 and lfIl = 0.50)

UJ Q
I bl (J

ML EF ML EF ML EF ML EF
Mean 0.1151 0.1160 0.1985 0.1974 0.6855 0.6857 0.4983 0.4913

Estimated I
0.0151 0.0160 -0.0015 -0.0026 -0.0145 -0.0143 -0.0017 -0.0087. Bias

Abs. ReI. Est.
15.10% 16.00% 0.75% 1.30% 2.07% 2.04% 0.34% 1.74%Bias

Estimated
0.0401 0.0442 0.0372 0.0400 0.0637 0.0690 0.0157 0.0267S.D.

MSE 0.0018 0.0022 0.0014 0.0016 0.0043 0.0050 0.0002 0.0008
Relative 1.0000 1.1022 1.0000 1.0753 l.0000 1.0832 1.0000 1.7006Efficiency

Table 7: Estimated Results for Simulated Gamma ACD (1, 1) Series with 500
observations (UJ = 0.05, a. = 0.20, b, = 0.70, K = 1.50 and IfII = 0.50)

UJ aJ hJ K

ML EF ML EF ML EF ML EF
Mean 0.0584 0.0590 0.2004 0.2010 0.6820 0.6797 1.5169 1.6055

Estimated - -
0.01690.0084 0.0090 0.0004 0.0010 0.1055Bias 0.0180 0.0203

Abs. Rel.
16.80% 18.00% 0.20% 0.50% 2.57% 2.90% 1.13% 7.03%Est. Bias

Estimated
0.0230 0.0238 0.0420 0.0419 0.0721 0.0736 0.0881 0.2518S.D.

MSE 0.0006 0.0006 0.0018 0.0018 0.0055 0.0058 0.0080 0.0745
Relative

1.0000 1.0348 1.0000 0.9976 1.0000 1.0208 1.0000 2.8581Efficiency
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APPLICATION OF ACD MODELS IN FINANCIAL DATA

As an analogy of duration models in financial data set, the transaction durations of
IBM stock on five consecutive trading days from November 1 to November 7, 1990
was considered. This data was obtained from (Tsay,2002). We have 3534
observations where the positive transaction durations were focused on. In a nutshell,
we employ 3534 positive adjusted durations. Figures 1 to 3 are respectively the
series, the histogram of the series and the autocorrelation (ACF) of the series. Based
on Figure 3, there exist some serial correlations in the adjusted durations.

500 1000 1500 2000 2500 3000 3500

secuence

Figure 1: Time plots of durations for IBM stock traded in the first five trading days
of November 1990: the adjusted series.

1000

3000

2000

1D 20 30 '0 '0

Figure 2: The histogram of the adjusted series.
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Figure 3: ACF of the adjusted series

Based on the above analysis, we have fitted the ACD(l, 1) model from the
distributions proposed earlier using both ML and EF methods for each of the
distribution. In all cases we have use If/] = 1.0 as the initial value.

The ACD(1, 1)model is represented by:

and

where {cj} is a sequence of independent and identical non-negative random
variables with density f(.) and E(E:j) = 1.

The corresponding results are shown in Tables 8 to 11. As before, for this data set,
the results for the parameter estimates are comparable except for the Rayleigh
distribution.
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Table 8: EACD(l, 1) model fitted to the data

--
Maximum Likelihood Estimation Estimating Function

EACD
If, =: 0.1803 + 0.0650x'_1 + 0.88111,11,_1 lfI, =: 0.1803 + 0.0650x'_1 + 0.88111fH

(1,1)

-
to 0.0510 co 0.0534

Standard
0.0103 0.0111al al

Error

bl
0.0222 hi 0.0239

Table 9: Rayleigh ACD( 1,1) model fitted to the data

Maximum Likelihood Estimation Estimating Function

Rayleigh
lfI, =: 0.7760 +O.1338xi-J +O.73661V/'_1 lfIi = 0.1803 + 0.0650xi_1 + O.8811Ifi_1ACD

(1,1)

co 0.1206 U) 0.0478

Standard
0.0124al al 0.0097

Error

b[ 0.0277 bl 0.0209
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Table 10: Lognormal ACD(l, 1) model fitted to the data

Maximum Likelihood Estimation Estimating Function

Lognormal If, =0.1474+0.0682x'_1 +0.90341f,_ If, =0.1803+0.0650x'_1 +0.88111f1'_1ACD(l,l)

(J" 1.2963 0.9240

0) 0.0317 I co 0.1424

al 0.0082 al 0.0142Standard

Error
bl 0.0119 bl 0.0519

(J" . 0.0157 (J" 0.0364

Table 11: GACD(l,l) model fitted to the data

Maximum Likelihood Estimation Estimating Function

GACD
If, =0.1803+0.0650x'_1 +0.8-8111,ll'_1 1,lI, =0.1803+0.0650x'_1 +0.88111,ll'_1(1,1)

K I 0.8479 0.7415

co 0.0522 0) 0.1447

Standard al I 0.0102 al 0.0189
Error

b. 0.0226 bl 0.0492

K 0.0172 K 0.0453
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CONCLUDING REMARKS

This paper reviews the theory of ACD models and two estimations methods based
on the MLE and EF approaches. Based on a simulation study we have noticed that
both methods are comparable but the EF method is computationally efficient.

Although the EF approach is easy to apply in practice, the ML estimates are better
than the EF estimates when the true distribution is known. In practice, the EF
approach gives reliable estimates as the true distribution is unknown. Using the
recent result of Grahramani and Thavaneswaran (2009) it can be shown that the EF
approach is superior and this will be further investigated in a future paper.
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