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Introduction

The availability of combination antiretroviral therapy
(cART) has led to substantial reduction in morbidity and
mortality in HIV-infected patients; however, life expect-
ancy remains reduced especially in HIV-infected patients
who initiate cART with CD4 T-cell counts less than
200 cells/ml [1]. Increased immune activation in patients
on long-term suppressive cART [2–4] has been
associated with increased mortality [5,6] and both AIDS
and non-AIDS-defining illnesses [7–10], suggesting that
chronic immune activation may have a potential role in
driving increased morbidity and mortality.
Causes of HIV-associated immune
activation

The mechanisms driving systemic immune activation in
chronic HIV infection are multifactorial (reviewed in
[11], Fig. 1) [12] and include the translocation of
microbial products from the gastrointestinal tract [13,14],
low-level HIV viremia [15,16], and coinfections with
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other persistent viral pathogens including cytomegalo-
virus (CMV) and hepatitis C virus (HCV) [17]. A recent
study in simian immunodeficiency virus-infected maca-
ques demonstrated a significant increase in immune
activation and coagulation markers, including D-dimers,
following exogenous administration of lipopolysacchar-
ide (LPS) [18]. The excessive production of interferon
alpha (IFN-a) [19–22] and pro-inflammatory cytokines
leading to upregulation of pro-apoptotic molecules
[23–26], lymph node fibrosis [27], dysfunction of CD4
T-regulatory cells (T-regs) [28,29], and depletion of
CD161þþ/(mucosal-associated invariant T cells, MAIT)
[30,31] are likely to also contribute.
Strategies to reduce persistent immune
activation in HIV-infected patients

Pharmacological agents
Multiple clinical trials have been completed (Table 1)
[32–76], or are in development (Table 2) [27,77–86], to
reduce immune activation in HIV-infected patients and
have also been recently reviewed in [87].
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Fig. 1. Schematic representation of the potential causes of
chronic immune activation in HIV-infected patients, its
impact on clinical end-points, and strategies of interventions
tested in recently completed and ongoing clinical trials.
Potential drivers of immune activation include microbial
translocation which occurs due to persistent dysfunction in
the gut-associated lymphoid tissue (GALT), persistent HIV
infection, coinfections with cytomegalovirus (CMV) and
hepatitis C virus (HCV), aberrant activation of plasmacytoid
dendritic cells (pDC), and altered ratio of Tregs and Th17
cells. Immune activation, though significantly reduced, per-
sists even in patients receiving suppressive combination anti-
retroviral therapy (cART) and leads to increased lymph node
fibrosis and T-cell exhaustion, which affects CD4 T-cell
recovery. Chronic immune activation also activates mono-
cytes, which drives local inflammation in tissues and leads to
the development of various end-organ damage and non-
AIDS-defining illnesses including cardiovascular disease
(CVD). Various treatment strategies to attenuate immune
activation or its effects have recently been trialed and are
labeled A to F. These strategies include (A) agents that
promote mucosal repair in the GALT (bovine serum colos-
trum, micronutrient supplementation, probiotics and prebio-
tics); (B) cART treatment intensification (maraviroc and
raltegravir); (C) treatment of coinfections (valgancyclovir,
interferon-a, and ribavirin); (D) agents that reduce pDC
activation (chloroquine and hydroxychloroquine); (E) agents
that reduce transforming growth factor-b1 (TGF-b1)-
mediated lymph node fibrosis (pirfenidone); and (F) immu-
nomodulators [HMG CoA reductase inhibitors, minocycline,
selective cyclooxygenase-2 inhibitors, leflunomide, and
intravenous immunoglobulin (IVIG)]. Modified from [12].
Statins
The use of statins in HIV-infected patients on and off
cART has reported variable changes in T-cell activation
and highly sensitive C-reactive protein (hsCRP) levels
[32–35] but no effect on CD4 T-cell counts [32,33,36].
However, in two large observational studies of cART-
treated patients, the use of statins was associated with
reduced mortality [37] and reduced incidence of non-
Hodgkin lymphoma (NHL) [38]. No immunological
correlates were assessed in these two studies and a greater
understanding of the mechanisms underlying the benefits
of statins is needed.
pyright © Lippincott Williams & Wilkins. Unautho
Chloroquine and hydroxychloroquine
Chloroquine and hydroxychloroquine inhibit endosomal
acidification in plasmacytoid dendritic cells (pDCs) and
Toll-like receptor 7 (TLR-7) signaling by HIV-1 single
stranded (ss)RNA and also inhibit IFN-a production
[88,89]. In vitro, chloroquine inhibited pDC activation
and maturation, reduced IFN-a-mediated CD8 T-cell
activation, and downmodulated indolamine 2–3 dioxy-
genase (IDO) and PD-L1 expression on pDCs, which are
negative regulators of T-cell responses [90].

A recent randomized controlled trial (RCT) in cART-
naive patients (n¼ 13) found chloroquine was associated
with decreased memory CD8 T-cell activation, CD4 and
CD8 T-cell proliferation, and LPS levels compared to
baseline but there were no changes in plasma HIV RNA
[39]. In contrast, a RCTof hydroxychloroquine in cART-
naive patients demonstrated no change in CD8 and CD4
T-cell activation and proliferation, an increase in HIV
RNA, and decrease in CD4 T-cell counts [40]. In a small
nonrandomized study (n¼ 20), administration of hydro-
xychoroquine to patients receiving suppressive cARTwas
associated with a reduction in multiple markers of
immune activation but no significant increase in CD4
T-cell recovery [41]. Given these promising findings,
numerous clinical trials are currently being conducted
with choloroquine (NCT00819390) and hydroxychlor-
oquine (NCT01232660).

Selective cyclooxygenase-2 inhibitors
Selective cyclooxygenase-2 (COX-2) inhibitors are anti-
inflammatory agents that modulate T-cell activation via
inhibition of prostaglandin E2 and the cyclic adenosine
30,50-monophosphate (cAMP)-protein kinase A pathway
([91,92], reviewed in [93]). In cART-treated patients,
selective COX-2 inhibitors were associated with increased
T-cell proliferation [94], a nonsignificant reduction in
T-cell activation, and increased perforin-containing CD8
T cells [42]. A recent RCT of high-dose celecoxib in
untreated HIV-infected patients (n¼ 31) reported a
significant reduction in immune activation levels [43].

Leflunomide
A77 1726, the active metabolite of the antirheumatoid
arthritis agent leflunomide, has anti-HIVactivity [95,96],
inhibits pyrimidine synthesis [96,97], and reduces
proliferation of activated T cells in vitro [98]. A small
RCT in cART-naive patients (ALETHIA, A Study of
Leflunomide to Target Immune Activation in HIV;
n¼ 16), found no significant change in CD4 and CD8
T-cell counts or HIV RNA levels in patients treated with
leflunomide compared to placebo [44]. Furthermore,
more grade 1 and 2 adverse events were reported with
leflunomide. However, short-term leflunomide use was
associated with reduced T-cell cycling and activation. It is
currently unclear whether similar immunological effects
will be seen in patients receiving cART.
rized reproduction of this article is prohibited.



Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

Reducing immune activation in HIV Rajasuriar et al. 1201

T
ab

le
1
.

T
h
er

ap
eu

ti
c

ag
en

ts
/b

io
lo

gi
ca

ls
th

at
h
av

e
b
ee

n
ev

al
u
at

ed
in

H
IV

-i
n
fe

ct
ed

p
at

ie
n
ts

fo
r

th
ei

r
ef

fe
ct

s
o
n

im
m

u
n
e

ac
ti

va
ti

o
n

an
d

as
so

ci
at

ed
m

o
rb

id
it

ie
s.

D
ru

g
n
am

e

Im
m

u
n
e

ac
ti

va
ti

o
n
/

in
fl
am

m
at

o
ry

m
ar

ke
rs

C
li

n
ic

al
o
u
tc

o
m

es

R
ef

T
-c

el
l

ac
ti

va
ti

o
n

(c
o
ex

p
re

ss
io

n
o
f

H
LA

-D
R

an
d

C
D

3
8
)a

So
lu

b
le

ac
ti
va

ti
o
n

m
ar

ke
rs

O
th

er
m

ar
ke

rs

C
D

4
T
-c

el
l

co
u
n
ts

H
IV

R
N

A
le

ve
ls

[a
ss

ay
d
et

ec
ti
o
n

li
m

it
,

co
p
ie

s/
m

l]
b
/

m
ar

ke
rs

o
f

vi
ra

l
p
er

si
st

en
ce

A
ID

S-
d
efi

n
in

g
il

ln
es

s
A

ll
-c

au
se

m
o
rt

al
it

y

H
M

G
C

o
A

re
d
u
ct

as
e

in
h
ib

it
o
rs

St
at

in
u
se

-
-

-
-

-
-

#
[3

7
]

-
-

-
-

-
#(

N
H

L)
-

[3
8
]

-
-

-
$

-
-

-
[3

6
]

A
to

rv
as

ta
ti

n
#:

C
D

8
þ

-
-

$
$

-
-

[3
2
]

#:
C

D
8

R
(C

D
3
8

R
)

$
h
sC

R
P

-
$

-
-

-
[3

3
]

":
C

D
8
þ

(C
D

3
8
þ

)
-

-
#

$
-

-
[6

7
]

R
o
su

va
st

at
in

/P
ra

va
st

at
in

-
$

:
sT

N
FR

-
-

-
-

-
[3

4
]

#:
h
sC

R
P

P
ra

va
st

at
in

-
$

:
h
sC

R
P
,

P
A

I-
1

$
:

P
-s

el
ec

ti
n

-
-

-
-

[3
5
]

C
h
lo

ro
q
u
in

e
#:

C
D

8
þ

-
$

:
K

i-
6
7

ex
p
re

ss
io

n
in

C
D

4
þ

an
d

C
D

8
þ

T
ce

ll
s

-
$

-
-

[3
9
]

H
yd

ro
xy

ch
lo

ro
q
u
in

e
#:

C
D

4
R

#:
IL

-6
-

$
-

-
-

[4
1
]

$
:

C
D

8
R

$
:

T
N

F-
a

$
:

C
D

8
þ

,
C

D
4
þ

$
:

IL
-6

,
D

-d
im

er
$

:
K

i-
6
7

ex
p
re

ss
io

n
in

C
D

4
þ

an
d

C
D

8
þ

T
ce

ll
s

#
"

-
-

[4
0
]

Se
le

ct
iv

e
cy

cl
o
o
xy

ge
n
as

e-
2

in
h
ib

it
o
rs

C
el

ec
o
xi

b
/r

o
fe

co
xi

b
#:

C
D

8
R

c
(H

LA
-D

R
R

an
d

C
D

3
8

R
)

-
-

"d
-

-
-

[4
2
]

C
el

ec
o
xi

b
#:

C
D

8
þ

(C
D

3
8
þ

)
-

-
$

-
-

-
[4

3
]

Le
fl
u
n
o
m

id
e

#:
C

D
8
þ

$
:

D
-d

im
er

,
C

R
P
,

sC
D

1
4

#:
B

rD
U

in
co

rp
o
ra

ti
o
n

in
C

D
4
þ

T
ce

ll
s

$
$

[4
4
]

$
:

C
D

4
þ

In
tr

av
en

o
u
s

im
m

u
n
o
gl

o
b
u
li
n

(I
V

IG
)

$
:

C
D

4
þ

,C
D

8
þ

$
:

C
R

P
$

:
K

i-
6
7

ex
p
re

ss
io

n
in

C
D

4
þ

an
d

C
D

8
þ

T
ce

ll
s

$
$

-
-

[6
8
]

$
:

C
D

4
R

,
C

D
8

R
-

-
-

$
[<

2
]

-
-

[6
9
]

M
in

o
cy

cl
in

e
$

:
C

D
8
þ

(b
lo

o
d

&
C

SF
)

$
:

C
C

L2
(C

SF
),

n
eo

p
te

ri
n

(b
lo

o
d

&
C

SF
)

$
:

C
D

1
6
þ

(b
lo

o
d

&
C

SF
)

#
$

(b
lo

o
d

&
C

SF
)

-
-

[7
0
]

B
o
vi

n
e

co
lo

st
ru

m
-

-
-

"
$

-
-

[7
1
]

-
-

-
"e

-
-

-
[4

5
,4

7
]

$
:

C
D

4
R

,
C

D
8

R
$

:
sC

D
1
4
,

LP
S

$
:

1
6
sr

D
N

A
$

[5
2
]

M
ic

ro
n
u
tr

ie
n
t

su
p
p
le

m
en

ta
ti

o
n

-
-

-
$

$
-

#
[7

2
]

-
-

-
$

-
-

#
[7

3
]

-
-

-
"

#
-

-
[4

8
]

-
-

-
"

-
-

-
[4

9
]



Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

1202 AIDS 2013, Vol 27 No 8

T
ab

le
1

(c
o
n
ti
n
u
ed

)

D
ru

g
n
am

e

Im
m

u
n
e

ac
ti

va
ti

o
n
/

in
fl
am

m
at

o
ry

m
ar

ke
rs

C
li

n
ic

al
o
u
tc

o
m

es

R
ef

T
-c

el
l

ac
ti
va

ti
o
n

(c
o
ex

p
re

ss
io

n
o
f

H
LA

-D
R

an
d

C
D

3
8
)a

So
lu

b
le

ac
ti

va
ti

o
n

m
ar

ke
rs

O
th

er
m

ar
ke

rs

C
D

4
T
-c

el
l

co
u
n
ts

H
IV

R
N

A
le

ve
ls

[a
ss

ay
d
et

ec
ti

o
n

li
m

it
,

co
p
ie

s/
m

l]
b
/

m
ar

ke
rs

o
f

vi
ra

l
p
er

si
st

en
ce

A
ID

S-
d
efi

n
in

g
il

ln
es

s
A

ll
-c

au
se

m
o
rt

al
it

y

P
ro

b
io

ti
cs

B
ifi

d
o
b

ac
te

ri
u
m

b
ifi

d
u
m

,
St

re
p

to
co

cc
u
s

th
er

m
o
p

h
ile

s

-
-

-
"

-
-

-
[5

0
]

La
ct

o
b

ac
ill

u
s

rh
am

n
o
su

s/
La

ct
o
b

ac
ill

u
s

re
u
te

ri
-

-
-

"
-

-
-

[4
6
]

-
-

-
$

-
-

-
[7

4
]

La
ct

o
b

ac
ill

u
s

rh
am

n
o
su

s
-

-
-

"
-

-
-

[5
1
]

P
re

b
io

ti
cs

O
li
go

sa
cc

h
ar

id
e

m
ix

tu
re

f
$

:
C

D
8
þ

(C
D

3
8
þ

)
#:

sC
D

1
4

#:
C

D
4
þ

C
D

2
5
þ

T
ce

ll
s

$
-

-
-

[7
5
]

R
al

te
gr

av
ir

tr
ea

tm
en

t
in

te
n
si

fi
ca

ti
o
n

$
:

C
D

8
R

,
C

D
4

R
-

-
"

$
:

SC
A

,
2
-L

T
R

,
H

IV
D

N
A

-
-

[5
3
,7

6
]

$
:

C
D

8
R

-
-

$
$

:
U

se
n

H
IV

R
N

A
,

ce
ll

-a
ss

o
ci

at
ed

H
IV

R
N

A
,

H
IV

D
N

A

-
-

[5
4
]

#:
C

D
8

R
g

-
-

$
$

:
SC

A
,

H
IV

D
N

A
-

-
[5

9
]

":
2
-L

T
R

g

$
:

C
D

8
R

$
:

sC
D

1
4
,

LP
S

$
:

1
6
sr

D
N

A
$

$
:

U
se

n
H

IV
R

N
A

-
-

[5
2
]

#:
C

D
8

R
(b

lo
o
d

&
G

I
tr

ac
t)

-
-

"(
ti

ss
u
e)

/$
(b

lo
o
d
)
#:

U
S

H
IV

R
N

A
(t

is
su

e)
-

-
[5

5
]

$
:

U
S

H
IV

R
N

A
,

U
se

n
H

IV
R

N
A

,
H

IV
D

N
A

(b
lo

o
d

&
ti

ss
u
e)

$
:

C
D

8
R

(b
lo

o
d

&
C

SF
),

C
D

4
R

(C
SF

)
$

:
n
eo

p
te

ri
n

(C
SF

&
b
lo

o
d
)

-
-

$
:

SC
A

(C
SF

&
b
lo

o
d
)

-
-

[5
6
]

":
C

D
4

R
(b

lo
o
d
)

-
-

-
$

$
:

H
IV

D
N

A
(t

is
su

e
&

b
lo

o
d
)

-
-

[5
7
]

-
$

:
b

2
-

m
ic

ro
gl

o
b
u
li

n
(b

lo
o
d

&
C

SF
),

n
eo

p
te

ri
n

(b
lo

o
d

&
C

SF
)

-
$

$
:

H
IV

R
N

A
[<

2
0
]

(C
SF

&
b
lo

o
d
)

-
-

[5
8
]

#:
C

D
8

R
#:

LP
S

-
$

#:
IU

P
M

in
m

em
o
ry

C
D

4
R

T
ce

ll
s

-
-

[6
0
]

$
:

C
D

4
R

$
:

sC
D

1
4

$
:

SC
A

,
2
-L

T
R

M
ar

av
ir

o
c

tr
ea

tm
en

t
in

te
n
si

fi
ca

ti
o
n

#:
C

D
4

R
,

C
D

8
R

":
sC

D
1
4
,

LP
S

-
$

$
:

SC
A

,2
-L

T
R

-
-

[6
1
]

":
C

D
8

R
(b

lo
o
d

&
ti

ss
u
e)

#:
LP

S
-

$
$

SC
A

-
-

[6
4
]

":
sC

D
1
4

#:
C

D
4

R
,

C
D

8
R

-
":

C
D

5
7

R
$

-
-

-
[6

2
]

#:
ca

sp
as

e3
R

,
B

cl
-2



Copyright © Lippincott Williams & Wilkins. Unaut

Reducing immune activation in HIV Rajasuriar et al. 1203
#:

C
D

8
R

-
-

"
$

:
H

IV
D

N
A

,
U

se
n

H
IV

R
N

A
[6

3
]

$
:

C
D

4
R

V
al

ga
n
cy

cl
o
vi

r
#:

C
D

8
R

$
:

h
sC

R
P
,

IL
-6

,
D

-d
im

er
,

sC
D

1
4
,

cy
st

at
in

C

-
$

$
-

-
[6

5
]

IF
N

-a
þ

ri
b
av

ir
in

#:
C

D
8

R
(C

D
3
8

R
),

C
D

4
R

(C
D

3
8

R
)

-
-

#h
-

-
-

[6
6
]

C
R

P
,C

-r
ea

ct
iv

e
p
ro

te
in

;C
SF

,c
er

eb
ro

sp
in

al
fl
u
id

;L
P
S,

li
p
o
p
o
ly

sa
cc

h
ar

id
e;

LT
R

,l
o
n
g-

te
rm

in
al

re
p
ea

t;
N

H
L,

n
o
n
-H

o
d
gk

in
ly

m
p
h
o
m

a;
P
A

I-
1
,p

la
sm

in
o
ge

n
ac

ti
va

to
r
in

h
ib

it
o
r-

1
;S

C
A

,s
in

gl
e-

co
p
y

as
sa

y;
T
N

F,
tu

m
o
r

n
ec

ro
si

s
fa

ct
o
r;

U
S,

u
n
sp

li
ce

d
;

U
se

n
,

u
lt

ra
se

n
si

ti
ve

.
B

o
ld

fo
n
ts

in
d
ic

at
e

st
u
d
ie

s
th

at
w

er
e

d
o
n
e

in
cA

R
T
-t

re
at

ed
p
at

ie
n
ts

,
w

h
er

ea
s

n
o
rm

al
te

xt
in

d
ic

at
es

st
u
d
ie

s
th

at
w

er
e

p
er

fo
rm

ed
in

tr
ea

tm
en

t-
n
ai

ve
H

IV
-i

n
fe

ct
ed

in
d
iv

id
u
al

s.
a
T
-c

el
l

ac
ti
va

ti
o
n

m
ar

ke
rs

re
p
re

se
n
t

co
ex

p
re

ss
io

n
o
f

C
D

3
8
þ

H
LA

-D
R
þ

o
n

T
ce

ll
s,

u
n
le

ss
o
th

er
w

is
e

sp
ec

ifi
ed

.
b
A

ss
ay

d
et

ec
ti

o
n

li
m

it
<

5
0

co
p
ie

s/
m

l,
u
n
le

ss
o
th

er
w

is
e

sp
ec

ifi
ed

.
c
O

n
ly

in
vi

re
m

ic
p
at

ie
n
ts

.
d
O

n
ly

in
av

ir
em

ic
p
at

ie
n
ts

.
e
C

o
n
co

m
it

an
t

re
d
u
ct

io
n

in
H

IV
-a

ss
o
ci

at
ed

d
ia

rr
h
ea

.
f M

ix
tu

re
o
f

sh
o
rt

-c
h
ai

n
ga

la
ct

o
-o

li
go

sa
cc

h
ar

id
es

,
lo

n
g-

ch
ai

n
fr

u
ct

o
-o

li
go

sa
cc

h
ar

id
es

,
p
ec

ti
n
-h

yd
ro

ly
sa

te
-d

er
iv

ed
ac

id
ic

o
li

go
sa

cc
h
ar

id
es

.
g
In

a
su

b
se

t
o
f

p
at

ie
n
ts

.
h
T
ra

n
si

en
t.
Biological agents

Bovine colostrum, micronutrients, and
prebiotics/probiotics
Multiple approaches are now being taken to directly
reduce microbial load and translocation in HIV patients.
These include supplementation with micronutrients,
bovine colostrum, probiotics, and prebiotics, all of which
have previously been shown to reduce HIV-associated
diarrhea [99–101,45,46]. These strategies may also alter
the composition of gut microflora, which may be
important in modulating microbial translocation-driven
immune activation [102,103]. Most of these studies have
been in cART-naive patients and some have reported
increases in CD4 T-cell counts [45,46,47–51] (Table 1).
In a RCT of orally administered hyperimmune bovine
colostrum (that contains antibodies to LPS), there was no
effect on immune activation or CD4 T-cell recovery in
patients receiving suppressive cART [52].

Antiretroviral intensification
Chronic immune activation in patients receiving cART
may also be driven by low-level HIV viremia
[15,16,104,105]. In multiple observational and RCT
studies, the addition of raltegravir to suppressive cART
resulted in no significant immune activation reduction in
plasma, cerebrospinal fluid, or tissue [52,53–58] nor any
change in endothelial function, a surrogate marker of
cardiovascular disease [106]. There have, however, been
two studies that have shown that the addition of raltegravir
led to a significant reduction in T-cell activation markers in
a subset of patients and a reduction in reservoir size [59,60].
Further larger randomized studies are still needed to
definitively determine the impact of raltegravir intensi-
fication on immune activation.

Several studies of maraviroc intensification have shown a
reduction in immune activation [61–63]; however, one
study reported an unexpected increase in immune
activation [64] (Table 1). CCR5 antagonists inhibit the
binding and signaling of CCR5 ligands (including CCL3,
CCL4, and CCL5) leading to an increase in their plasma
concentration. This increase could potentially activate
monocytes/macrophages via CCR1 [62] and/or increase
antigen-specific T-cell and antibody responses, which has
been observed in some [107] but not all studies [108].
Further studies are needed to better characterize the
immunological changes associated with maraviroc use.

The timing of cART initiation may be an important
parameter that influences immune activation. Studies of
patients treated during chronic infection have demon-
strated persistently elevated immune activation levels
post-cART compared to uninfected controls [2–4]. A
recent prospective study of cART initiated during acute
infection demonstrated reduced immune activation to
normal levels after 48 weeks [109]. Prospective or
randomized trials need to be performed to determine the
horized reproduction of this article is prohibited.
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Table 2. Therapeutic agents currently in or being considered for clinical trial to reduce immune activation levels in HIV.

Drug name/
compounds
(trial number)a Proposed mechanism of action (references) Target group Primary end-point studied

Rifaximin
(NCT01466595)

Poorly absorbed antibiotic shown to reduce
bacterial load in the gastrointestinal tract [77].
In combination with sulfasalazine
(non-absorbable anti-inflammatory agent),
shown to reduce markers of microbial
translocation, immune activation,
inflammation, and coagulation; viral load
and mucosal CD4 T-cell depletion in acute
SIV infection of pigtail macaques [78]

cART-treated patients with
suboptimal CD4 T-cell
recovery

Change in CD8þ T-cell
activation at 4 weeks
from baseline

Pyridostigmine
(NCT 00518154)

Acetylcholine esterase inhibitor shown to
reduce T-cell activation, proliferation, and
IFN-g production [79].

cART-treated patients with
suboptimal CD4 T-cell
recovery

Change in CD4þ T-cell
counts at 12 weeks
from baseline

Sevelemer carbonate
(NCT01543958)

Non-calcium phosphate binder shown to
reduce endotoxin-driven production of IL-6,
hsCRP, LPS, and sCD14 levels [80]

cART-naive patients Change in sCD14 and
endotoxin levels at
8 weeks from baseline

Meselamine
(NCT 01090102)

Poorly absorbed anti-inflammatory agent
shown to reduce non-infectious colitis [81].

cART-treated patients Change in CD8þ T-cell
activation at 12 weeks
vs. placebo

Lisinopril
(NCT01535235)

Angiotensin-converting enzyme inhibitor
shown to reduce markers of inflammation
(hsCRP, TNF-a) [82] and inhibit
TGF-b1-mediated fibrosis [83]

cART-treated patients Change in HIV RNA
(copies/million CD4) and
mean baseline GALT RNA
at 24 weeks vs. placebo

Methotrexate
(NCT00000834)

Immunosuppressive agent used in the
treatment of autoimmune diseases including
rheumatoid arthritis.

Antiretroviral (zidovudine
and lamivudine)-treated
patients

Phase I study to determine
safety profile in
HIV-infected patients

Pirfenidone
(not in clinical trial)

Shown to reduce TGF-b1 signaling pathway
and collagen production [27].

- -

Sifalimumab
(not in clinical trial)

Anti-IFN-a monoclonal antibody for the
treatment of systemic lupus erythematosus
(SLE) has been shown to reduce type-I IFN
mRNAs (IL-10, TNF-a, IL-1b, GM-CSF) [84–86].

- -

cART, combination antiretroviral therapy; GM-CSF, granulocyte-macrophage colony-stimulating factor; hsCRP, highly-sensitive C-reactive
protein; IFN, interferon; LPS, lipopolysaccharide; SIV, simian immunodeficiency virus; TNF, tumor necrosis factor; TGF, transforming growth
factor.
aActive clinical studies referenced from clintrials.gov.
effect of early versus delayed cARTon immune activation
in patients with chronic infection.

Treatment of coinfections
Anti-cytomegalovirus treatment: valgancyclovir
Increased CMV-specific antibodies and/or T cells have
been associated with atherosclerosis [110,111] and
impaired CD4 T-cell reconstitution [112] in HIV-infected
patients on cART, suggesting that CMV coinfection may
be a driver of persistent immune activation. A RCTwith
valgancyclovir in CMV-seropositive cART-treated
patients (n¼ 30) found that both CMV DNA and
expression of CD38þHLA DRþ on T cells declined
significantly during valgancyclovir therapy [65]. It is
currently unclear whether this approach will translate to
clinical benefits and the feasibility of prolonged admin-
istration of valgancyclovir may be limited by significant
toxicities of the drug.

Anti-hepatitis C virus treatment: interferon alpha and
ribavirin
HCV-specific treatment with IFN-a and ribavirin in
HIV/HCV coinfected patients receiving cART has been
associated with a significant reduction in markers of T-cell
pyright © Lippincott Williams & Wilkins. Unautho
activation [66] and endothelial dysfunction [113];
however, its impact on clinical end-points is currently
unknown.

Other strategies including treatment with intravenous
immunoglobulin (IVIG) and minocycline have also been
trialed in small studies but have yielded negative results
(see Table 1).
Challenges in designing clinical trials to
reduce immune activation

There are multiple challenges in designing clinical trials to
reduce chronic immune activation in patients receiving
suppressive cART. First, these studies will require patients
who are otherwise clinically well to take an additional
drug(s) that may be associated with toxicities. Therefore,
the risks and benefits need to be carefully assessed.
Second, there are multiple markers of immune acti-
vation and inflammation that have been studied and
it is currently unclear which best predicts AIDS and
non-AIDS-related morbidities in patients receiving
rized reproduction of this article is prohibited.
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suppressive cART. Biomarkers such as IL-6, D-dimer,
and sCD14 show promise as they are relatively easy to
standardize from measurements in plasma but whether
they are indeed robust markers for predicting clinical
outcomes following specific interventions needs further
evaluation. Finally, given that clinical events are rare in
patients on suppressive cART, relatively large samples
sizes will be required to demonstrate a clinically relevant
impact of any intervention to reduce immune activation.
Conclusion

To date, most studies aimed at reducing immune
activation have only included a small number of patients
and/or shown an effect on biomarkers of immune
activation and have not had the power to assess any effects
on clinical outcomes. Given that there are several
candidate approaches that have shown promise in small
proof-of-concept trials, these compounds warrant evalu-
ation in larger randomized clinical trials that system-
atically evaluate both immune activation biomarkers and
clinical outcomes.
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