
International Journal of the Physical Sciences Vol. 6(35), pp. 7991 - 8001, 23 December, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS11.1198 
ISSN 1992 - 1950 ©2011 Academic Journals 
 
 
 
 

Full Length Research Paper 

 

Application of artificial neural network on vibration test 
data for damage identification in bridge girder 

 

S. J. S. Hakim* and H. Abdul Razak 
 

1
Department of Civil Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia. 

 
Accepted 11 October, 2011 

 

Structures are exposed to damage during their service life which can severely affect their safety and 
functionality. Thus, it is important to monitor structures for the occurrence, location and extent of 
damage. Artificial neural networks (ANNs) as a numerical technique have been applied increasingly for 
damage identification with varied success. ANNs are inspired by human biological neurons and have 
been used to model some specific problems in many areas of engineering and science to achieve 
reasonable results. ANNs have the ability to learn from examples and then adapt to changing 
situations when sufficient input-output data are available. This paper presents the application of ANNs 
for detection of damage in a steel girder bridge using natural frequencies as dynamic parameters. 
Dynamic parameters are easy to implement for damage assessment and can be directly linked to the 
topology of structure. In this study, the required data for the ANNs in the form of natural frequencies 
will be obtained from experimental modal analysis. This paper also highlights the concept of ANNs 
followed by the detail presentation of the experimental modal analysis for natural frequencies 
extraction. 
 
Key words: Artificial neural networks (ANNs), back propagation (BP), damage identification, natural 
frequency.  

 
 
INTRODUCTION 
 
Damage can be defined as a weakening of the structure 
that adversely affects its current or future performance 
which may cause undesirable displacements, stresses or 
vibrations to the structure. Therefore, one of the most 
important requirements in the evaluation of existing 
structural systems and ensuring a safe performance 
during their service life is damage identification. 

Many techniques have been applied to identify damage 
in civil structures. Visual inspections have always been 
the most common approaches used in detecting damage 
on a structure (Abdul and Choi, 2001). These methods 
are time consuming and cannot indicate that a structure 
is fault-free without testing the entire structure in detail. 
Furthermore, if damage is buried deep within the 
structure it may not be visible or detectable by these 
localized techniques.  
 
 
 
*Corresponding author.  E-mail: jamalhakim@siswa.um.edu.my. 
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Among the structure identification methods that have 
been applied dramatically in recent years are artificial 
neural networks (ANNs) due to its powerful computational 
and excellent pattern recognition ability for detecting 
damage in structural engineering. Once ANNs are 
trained, they are capable of pattern recognition and 
classification, and are robust in the presence of noise. 
These characteristics make ANNs powerful tools for 
vibrational damage identification. By incorporating ANNs, 
accuracy and reliability of damage identification can be 
improved. 

Several authors have applied modal parameters as 
inputs of ANNs in structural damage identification. For 
example, these studies (Suh et al., 2000; Jeyasehar and 
Sumangala, 2006; Kim and Kapania, 2002; Kirkegaard 
and Rytter, 1994) applied ANN for predicting damage 
using natural frequencies. ANNs have been applied by 
Lee et al. (2005) to identify damage in bridges using 
mode shape. Also, Sahin and Shenoi (2003) presented a 
damage assessment algorithm using a combination of 
changes in natural frequencies and curvature mode shapes 
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Figure 1. Schematic structure of an artificial neuron.  

 
 
 
as input in ANNs for the location and severity prediction 
of damage in numerical models of composite beam 
structures. 

The main focus of this research is to investigate the 
feasibility of applying an ANN trained with only natural 
frequency data to identify the damage in steel bridge 
girder structure. Natural frequencies of a structure have 
strong effect on damage and are applied as effective 
input parameters to train the ANN in the present study. 
The required data for the ANNs in form of natural 
frequencies are obtained from experimental modal 
analysis. For this study, it was shown that an ANN trained 
only with natural frequency data can determine the 
severity of damage with less than 6% error, and seems to 
be quite promising in terms of accuracy. 
 
 
ARTIFICIAL NEURAL NETWORKS (ANNS) 
 
ANNs are simplified models of the human brain and 
evolved as one of the most useful mathematical concepts 
used in almost all branches of science and engineering. 
They have the ability to learn from experience in order to 
improve their performance and to adapt themselves to 
changes in the environment (Hola and Schabowicz, 
2005; Mansour et al., 2004). ANNs can provide 
meaningful answers even when the data to be processed 
include errors or are incomplete and can process 
information extremely rapidly when applied to solve real 
problems. 

ANN is composed of several processing elements, 
namely, neurons that are interconnected with each other. 
Figure 1 shows the model of an artificial neuron which 
consists of a neuron that receives weighted inputs (w) 
that are summed and passed through an activation 
function (f) to produce a single output. 

A typical neural network has three layers, namely, the 
input layer, the hidden layer and the output layer. Signals 
are received at the input layer, pass through the hidden 
layer and reach the output layer. Each layer can have a 
different number of neurons and activation functions, 
such as  sigmoid  and  linear  functions.  All  neurons  are  
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Figure 2. Architecture of a typical multilayer feedforward neural 
network. 

 
 
 
interconnected to the neurons in the next layer through 
their weights. Architecture of an ANN with 4 neurons in 
input layer, 4 neurons in hidden layer and 2 neurons in 
output layer is demonstrated as shown in Figure 2. 

Backpropagation algorithm in multi-layer feed-forward 
supervised networks is considered to be the most 
applicable, due to the mathematical design of the 
learning complex nonlinear relationships (Fonseca and 
Vellasco, 2003). This algorithm has a performance index, 
which is the least mean square error (MSE) (Hakim et al., 
2011; Ince, 2004; Lee, 2003; Rumelhart et al., 1986). In 
MSE algorithm, the error is calculated as the difference 
between the target output and the network output. Among 
various neural networks, multi-layer perceptron (MLP) is 
most commonly used in structural identification problems. 
Their applications to engineering problems have been 
summarized and reported in literature (Chen et al., 1995; 
Ghaboussi and Joghatie, 1995; Wu et al, 2002; Xu et al., 
2002).  
 
 
DAMAGE DETECTION STRATEGY AND 
EXPERIMENTAL MODAL ANALYSIS 
 
When there is damage in a structure, the stiffness in 
general will reduce. Since the natural frequencies of a 
structure depend on stiffness, the natural frequencies will 
also reduce when there is damage. As mentioned earlier, 
the aim of this research is to find out the severity of 
damage in a steel bridge girder using ANNs and 
experimental modal analysis. Therefore, this work 
proposed to apply the first five natural frequencies as 
inputs of ANN for prediction of damage severity. To 
identify the natural frequencies as dynamic properties of 
the bridge girder, experimental modal analysis was 
performed with different damage scenarios.  

In the first stage, modal testing was performed using an 
undamaged bridge girder in order to obtain the modal 
frequencies.  Later,  numerous  damage  scenarios  were
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Figure 3. Test structure. 

 
 

 
Table 1. Frequencies of the first five modes at undamaged state. 

 

Natural frequencies (Hz) 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

110.41 177.2 352.5 428.05 701.4 

 
 
 

Table 2. Cross-section loss of the second moment of area (I) with different damage severity. 

 

Damage severity 
(mm) 

Cross-section loss of the second 
moment of area (I) (%) 

Damage severity 

(mm) 

Cross-section loss of the second 
moment of area (I) (%) 

2 11.5 18 73.78 

4 22.10% 20 78.40 

6 31.85 22 82.44 

8 40.73 24 85.94 

10 48.80 26 88.94 

12 56.10 28 91.48 

14 62.67 30 93.60 

16 68.55 - - 

 
 
 
created by introducing different severity of damage at 
different locations along the bridge girder. 

The results of experimental modal analysis will be use 
as training data for the ANN algorithm. By incorporating 
the training data, ANN will be able to give outputs in 
terms of damage severity using the five first natural 
frequencies.  

The test structure as shown in Figure 3 was fabricated 
from a plate with the dimensions of 1200 mm length 
including a 100 mm overhang at both support ends and 
210 and 5 mm in width and height, respectively. Three 
stiffeners as shown in Figure 3B were fixed along the 
length of plate with dimensions of 1200 × 50 × 5 mm in 
length, width and height, respectively. The modulus of 
elasticity of the steel, the Poisson’s ratio and the density 
were, 2.1×10

11
, 0.2 and 7,850 kg/m

3
, respectively. 

The test structure was tested in its undamaged  state  and 

under different damaged states to determine the first five 
natural frequencies. These natural frequencies were 
identified from the frequency response functions (FRF) 
measurements as peaks. Table 1 lists the first five natural 
frequencies for the undamaged bridge girder. 

In the experimental study, various damage scenarios 
were given to the test structure. These scenarios 
consisted of seven locations with fifteen severities for 
each location.  The seven damage locations were at 
L/13, 2L/13, 3L/13, 4L/13, 5L/13, 6L/13 and L/2 of the 
span length. Only one half of the test structure was used 
as damage model due to symmetry.  Damage was 
gradually induced by a grinder to cut a slot from the soffit 
of the middle stiffener of the structure. These damage 
severities correspond to a cross-section loss of the 
second moment of area (I) as shown in Table 2. 

For each damaged severity, five  peaks were  identified 
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Table 3. Natural frequencies of the first five modes for damage at 4L/13. 
 

Damage severity (mm) 
Number of mode shape 

1 2 3 4 5 

2 109.01 176.11 348.07 429.41 699.79 

4 108.16 175.64 344.19 426.49 701.11 

6 107.37 172.18 342.86 426.73 700.76 

8 107.77 173.27 338.48 427.01 697.82 

10 106.93 170.55 337.50 425.60 697.11 

12 106.19 168.12 334.92 423.60 695.81 

14 105.58 167.54 332.10 421.54 692.44 

16 105.23 165.43 331.12 419.65 692.66 

18 104.05 163.87 332.43 418.32 693.12 

20 104.66 164.34 334.41 417.04 693.70 

22 103.44 164.68 332.84 415.65 693.02 

24 102.51 164.20 331.87 412.11 692.91 

26 102.67 163.83 332.11 410.76 691.54 

28 102.29 163.78 330.06 410.06 690.23 

30 102.02 163.36 330.41 408.44 689.21 

 
 
 

Table 4. Range of input parameters. 

 

Input parameter Minimum (Hz) Maximum (Hz) 

1
st
 N.F 98.35 110.87 

2
nd

 N.F  152.38 178.15 

3
rd

 N.F  319.28 353.44 

4
th
 N.F 400.54 430.61 

5
th
 N.F 670.33 701.4 

 

N.F: Natural frequency. 

 
 
 
which were related to the modal frequencies of the 
structure. Table 3 shows the first five frequencies for a 
damage case for the test structure, and it is apparent that 
the natural frequencies drop when damage is induced. 
These results will be used for training ANNs for damage 
severity. 
 
 
DAMAGE DETECTION USING ANN  

 
The first step in ANNs is to prepare suitable and accurate 
data sets that can be used to train a network to recognize 
the pattern from the data set. Ideally, this data set should 
be the actual real life response of the structural model 
test results or through numerical modeling, or a 
combination of all these types of data sets (Chakraborty, 
2005). 

In this study, 203 different sets of data from 
undamaged and damaged of scaled down steel girder 
bridge deck were collected from the experimental modal 
analysis. These data were gathered for damage severity 
of the test structure containing the first five natural 

frequencies. Different neural network models were 
conducted, trained and tested using these available data. 
Out of the 203 data sets, only 139 were used as training 
data sets. The numbers of data sets for testing and the 
validation phase were 32. 

Division of the data was carried out randomly between 
the three sets. The ranges of input parameters are as 
shown in Table 4. The scattering of input information for 
the training phase will affect the accuracy of a neural 
network. Therefore, classification of the input information 
is very important in the training phase. 

 
 
Training of ANN 

 
The training of the ANN with appropriate data set is the 
process of changing the weights systematically in order 
to attain some desired results for a given set of inputs. 
The process of training is successfully completed, when 
the iterative process has converged.  

Presenting the whole set of training samples to the 
network is called iteration, and the number of iterations 
means the number of times that the whole set of samples 
are presented to the network. In this study, feed forward 
back propagation algorithm for ANN training was 
selected. At first an input vector comprising of the first 
five natural frequencies was fed to the input layer. This 
input vector produces a set of output. The difference 
between the given output and the target output is error, 
which will propagate through the network in backward 
step. 

During this process, the mean square error (MSE) will 
be minimized, and consequently, the output of ANN will 
be close to the target  output.  An  accurate  trained  ANN
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Table 5. Damage index values as output of ANN. 
 

Damage severity (mm) Damage index Damage severity (mm) Damage index 

2 0.8850 18 0.2622 

4 0.7790 20 0.2160 

6 0.6815 22 0.1756 

8 0.5927 24 0.1406 

10 0.5520 26 0.1106 

12 0.4390 28 0.0852 

14 0.3733 30 0.0640 

16 0.3145 - - 

 
 
 
gives successful predictions when a new sample is given 
as input. The output parameter of ANN is damage index, 
representing the severity of damage. This damage index 
is the ratio of cross-section loss of the second moment of 
area for damaged case to undamaged case. The value of 
damage index based on different damage severity is 
given in Table 5. 

The network has been trained using the Alyuda 
Neuro Intelligence software, version 2.2. Once the 
network is trained using training data, it is ready for 
predicting the severity of damage in the test structure.  

As mentioned previously, 139 training data sets were 
used for the training process of the network. These data 
were normalized between -1 and 1, and were fed to the 
input neurons. The values of damage index 
corresponding to each set of natural frequencies have 
also been fed to the network as desired outputs. In this 
research study, the training process was stopped when 
any of the following conditions were satisfied: 
 
1. The maximum number of iterations reached 70000.  
2. The mean square error (MSE) of the network for the 
training set reached 0.004. 
 
During the training of ANN, the best network with the 
optimum parameters such as, connectivity weights and 
biases, the numbers of hidden layers and the numbers of 
neurons in each layer, type of activation function in 
hidden and output layers will be determined. Also, the 
rate of learning and momentum value will be specified. 

In this study, different architecture networks having 
different conditions were determined. Architecture 
specifications of 25 most important ANNs in order to 
obtain the final developed ANN architecture are tabulated 
in Table 6. It is obvious from this table that in 
architectures with one hidden layer, that is, networks N1 
to N15, MSE is lower than other networks with two hidden 
layers. Also, in architectures with one hidden layers, MSE 
is less than when there is two hidden layer.  

After trying different networks with one and two hidden 
layers and taking into consideration the network error, 
one hidden layer in the architecture of ANN was decided 
in this study. However, in a network with one hidden 

layer, good convergence has been achieved and the 
back propagation in this research was limited to one 
hidden layer, which yields a total of three layers.  

Thus, the networks N16 to N24 in Table 6 are not 
acceptable for the purpose of this work. The decision on 
how many hidden neurons should be used in hidden 
layer is rather arbitrary, and has been usually decided by 
trial and error. Table 6 shows the effect of different 
number of hidden neurons on MSE.  

It can be seen, that with the increase of hidden 
neurons, training error is reduced, but there are a critical 
number of hidden neurons existing for minimizing error 
rate. The reason is that, with too many hidden neurons, a 
network can simply memorize the correct response to 
each pattern in its training set instead of learning a 
general solution.  

So, in this study with increasing number of hidden 
neurons, MSE is decreased, but variations in MSE values 
for more than 15 neurons are significant. Also, it is 
apparent from this table that in networks N10 and N11, 
error is small, but numbers of hidden neurons and 
connectivity weights are high and computationally 
complicated and take longer time. For example networks 
N10 and N11 have 106 and 113 connectivity weights, 
respectively, with 70000 iterations.  

It can be demonstrated in this table that networks N6 
and N7, have acceptable error and small hidden neurons. 
Also, average training error is lower than other networks. 
Consequently, the correlation of these networks is higher 
than other networks. However, network N7 is selected as 
the best possible architecture in this study. It is important 
to note that utilizing more than 15 neurons in network 
makes the computation process complicated and 
expensive in terms of time. In summary, in order to have 
minimum compatibility cost and high accuracy, the 
number of hidden layer is fixed to 15. 

However, the network architecture decided in this study 
was 5-12-1. This architecture comprises of five neurons 
in the input layer corresponding to the five first natural 
frequencies, one hidden layer with twelve neurons and 
one neuron in the output layer corresponding to severity 
of damage in the test structure. The final architecture for 
this network is depicted in Figure 4. 
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Table 6. Specifications of different ANN architectures. 
 

No. of 
network 

Architecture 
No. of 

weights 

Network error 

(MSE) 

Average 
training error 

Average 
validation error 

Average testing 

error 
Correlation 

N1 5-6-1 43 0.004917 0.062950 0.067014 0.056536 0.934458 

N2 5-7-1 50 0.004818 0.061358 0.060565 0.063842 0.968471 

N3 5-8-1 57 0.004687 0.059020 0.075203 0.062626 0.971163 

N4 5-9-1 64 0.004729 0.060415 0.070857 0.059195 0.965405 

N5 5-10-1 71 0.004911 0.065210 0.054702 0.065236 0.965412 

N6 5-11-1 78 0.004213 0.057827 0.062257 0.073811 0.970089 

N7 5-12-1 85 0.004046 0.056199 0.077919 0.062532 0.973051 

N8 5-13-1 92 0.004012 0.060152 0.060649 0.062061 0.966636 

N9 5-14-1 99 0.004911 0.059528 0.069692 0.060437 0.971859 

N10 5-15-1 106 0.004316 0.057448 0.06793 0.066905 0.972319 

N11 5-16-1 113 0.004301 0.056598 0.057525 0.060834 0.967632 

N12 5-17-1 120 0.004817 0.062765 0.061197 0.068115 0.968176 

N13 5-18-1 127 0.004781 0.059691 0.067138 0.055565 0.968839 

N14 5-19-1 134 0.005071 0.063384 0.052247 0.06726 0.967966 

N15 5-20-1 141 0.004824 0.059392 0.065052 0.064687 0.967888 

N16 5-5-2-1 45 0.005002 0.062950 0.067014 0.056536 0.934458 

N17 5-5-3-1 52 0.005187 0.064880 0.065875 0.067295 0.927854 

N18 5-5-4-1 59 0.004916 0.060600 0.063102 0.061959 0.937129 

N19 5-5-5-1 66 0.006179 0.071418 0.080273 0.086346 0.907112 

N20 5-6-3-1 61 0.005119 0.062688 0.067576 0.064606 0.930475 

N21 5-6-6-1 85 0.005814 0.068288 0.063493 0.064204 0.933829 

N22 5-8-4-1 89 0.004788 0.059434 0.076234 0.056695 0.935407 

N23 5-10-5-1 121 0.004615 0.059642 0.069583 0.055554 0.939118 

N24 5-12-6-1 157 0.007614 0.079762 0.070728 0.072397 0.891491 

N25 5-12-8-1 185 0.007517 0.078607 0.073338 0.068069 0.911243 

 
 
 
Different combinations of momentum value and learning 
rate using trial and error  ً have been executed for this 
architecture. Results showed that constructed ANN with 
learning rate 0.2 and 0.6 for momentum parameter, yields 
minimum error. Therefore, these values have been found 
to be most suitable for selected network in this study. In 
this network, Hyperbolic Tangent Sigmoid and Log-
Sigmoid functions were applied in hidden and output 
layer as activation functions, respectively. 

The network is then trained for 70,000 iterations until 
the training error reach minimum and the network is 
stable. In short, training of this architecture (5-12-1) with 
value of 0.2 and 0.6 for learning rate and momentum, 
respectively has been continued till 70,000 iterations and 
the average training error reaches 5.6%. After that, the 
network was saved and the corresponding connectivity 
weights were saved. Comparison of predicted damage 
severity by ANN and actual value from experimental 
testing (target value) is depicted in Figure 5. 

 For more clarity, experimental and predicted values in 
training sets by considering MSE for new data sets are 
tabulated in Table 7. Calculation of average training error 
as demonstrated in Table 6, shows that ANN predicted 
damage  severity  with  average percentage error of 5.6% 

 for training data sets. 
As can be seen in Table 6, the selected network was 

capable in providing good correlation between the natural 
frequency information and extent of damage in terms of 
damage index for a given set of natural frequencies. This 
network has minimum error and maximum correlation, 
that is, 0.973 as compared to other networks according to 
Table 6. 
 
 
Neural network testing 
 
The testing set is used to visually inspect performance 
after training. After the network was trained, testing of 
ANN was carried out to avoid over-fitting and to assess 
the confidence in the performance of the trained network. 
In this step, the trained network is tested with data, which 
were not present in the training data set. After training, 
the network has learnt the samples and when tested with 
new data, it should be able to predict the severity of 
damage with an acceptable error. The testing process 
has been done using a total of 32 data sets. 

Figure 6 shows the comparison between predicted 
damage  severity  and  the  experimental  data,  when the 
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Figure 4. Final architecture of ANN.  
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Figure 5. Comparison of damage severity predicted by ANN and experimental for training sets. 

 
 
 
network has been constructed to predict 32 number of 
new data set. From this figure it can be highlighted that 
there is a good agreement between the predicted values 
and that of the experimental data. 

ANN was successful in predicting the severity of  damage 

 
with MSE of 6.2% for testing sets and was very close to 
actual output. However, in predicting the severity of 
damage, the network could not predict accurately for a 
few samples. This observation may be due to the fact 
that the  ANN  was  not being provided with large number  
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Table 7. Comparison between experimental and predicted values in training. 
 

Data set 
Target value 

(Experimental) 

Network value 

(Predicted) 

Mean square 
error 

Percentage of 
error 

1 0.779 0.756294 0.022706 2.91471 

2 0.6815 0.636513 0.044987 6.601113 

3 0.552 0.474069 0.077931 14.11802 

4 0.552 0.554102 0.002102 0.38077 

5 0.3733 0.327399 0.045901 12.29612 

6 1 0.914769 0.085231 8.523133 

7 0.2622 0.258852 0.003348 1.276875 

8 0.1756 0.14161 0.03399 19.35667 

9 0.1106 0.101941 0.008659 7.829482 

10 0.1106 0.102159 0.008441 7.632046 

11 0.0852 0.10055 0.01535 18.01664 

12 1 0.912039 0.087961 8.796062 

13 0.885 0.90436 0.01936 2.187516 

14 0.779 0.670656 0.108344 13.90805 

15 0.5927 0.565533 0.027167 4.583656 

16 0.552 0.453006 0.098994 17.93374 

17 0.439 0.348461 0.090539 20.62401 

18 1 0.92439 0.07561 7.56102 

19 0.216 0.147551 0.068449 31.68936 

20 0.1756 0.194219 0.018619 10.60321 
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Figure 6. Comparison of damage severity predicted by ANN and experimental for testing sets.  
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Figure 7. Comparison of damage severity predicted by ANN and experimental for validation sets  
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Figure 8. Comparison of average error of the training and validation sets versus number of iterations.  

 
 

 

of data sets for different location of damage for training. It 
is a fact that the ANN can learn better and predict better 
when it is trained with more data. 
 
 
Validation phase 

 
The validation set is applied as a further check for the 
generalization of the neural network and to examine the 
accuracy of the selected architecture. The plot of 

predicted damage severity in validation sets against 
experimental data is as shown in Figure 7. It is clear from 
this figure that there is good agreement between the 
results predicted and target results. These results 
demonstrate that ANN was successful in training the 
relationship between the input and output data with the 
MSE of 7.79%. 

Comparison between average error of the training and 
validation data sets versus the number of iteration is 
depicted in Figure 8. As can  be  seen  in  this  figure,  the  
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Figure 9. Correlation between training and validation data sets versus number of iterations.  

 
 
 
results are fairly reasonable and the validation sets error 
has very similar characteristics and there is no over 
fitting. Figure 8 shows that the neural network model has 
an average error of about  5.62% for the training data and 
an error of about 7.79% for the validation data sets.  

Also, the progress of the training was examined by 
plotting the correlations for training and validation data 
sets as shown in Figure 9. This figure also indicates that 
the results of training and validation are close and neural 
network was successful in learning the relationship 
between the different input parameters and damage 
severity as output. 
 
 
Conclusion 
 
In this research, the details of a study on using ANNs for 
prediction of damage severity in a model steel girder 
bridge are described. The dynamic tests conducted on 
the damaged and undamaged test structure showed that 
the reduction in stiffness during the damage lead to a 
reduction in natural frequencies for different modes. The 
experimentally obtained natural frequencies of the first 
five modes of the undamaged and damaged bridge 
model have been successfully applied as the training 
samples for the ANN.  

According to results in this study, ANN could predict the 
damage severity with an error of 5.6, 6.25 and 7.79% for 
training, testing and validation, respectively. The 
feasibility of ANNs as a powerful tool for predicting the 
severity of damage in a structure is investigated. 

Therefore, it is concluded that an ANN trained with just 
natural frequencies obtained from experimental modal 
analysis as inputs can very well be used to assess the 
severity of damage in a structure. 
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