
MOMCC: Market-Oriented Architecture for

Mobile Cloud Computing Based on

Service Oriented Architecture

Saeid Abolfazli1, Zohreh Sanaei2, Abdullah Gani3, Muhammad Shiraz4

Mobile Cloud Computing Research Lab

Faculty of Computer Science and Information Technology

University of Malaya, Kuala Lumpur, Malaysia

Email: abolfazli1, sanaei2,abdullahgani3@ieee.org, muh shiraz@siswa.um.edu.my4

Abstract—The vision of augmenting computing capabilities
of mobile devices, especially smartphones with least cost is
likely transforming to reality leveraging cloud computing. Cloud
exploitation by mobile devices breeds a new research domain
called Mobile Cloud Computing (MCC). However, issues like
portability and interoperability should be addressed for mobile
augmentation which is a non-trivial task using component-
based approaches. Service Oriented Architecture (SOA) is a
promising design philosophy embraced by mobile computing
and cloud computing communities to stimulate portable, complex
application using prefabricated building blocks called Services.
Utilizing distant cloud resources to host and run Services is
hampered by long WAN latency. Exploiting mobile devices in
vicinity alleviates long WAN latency, while creates new set of
issues like Service publishing and discovery as well as client-
server security, reliability, and Service availability. In this pa-
per, we propose a market-oriented architecture based on SOA
to stimulate publishing, discovering, and hosting Services on
nearby mobiles, which reduces long WAN latency and creates a
business opportunity that encourages mobile owners to embrace
Service hosting. Group of mobile phones simulate a nearby
cloud computing platform. We create new role of Service host

by enabling unskilled mobile owners/users to host Services
developed by skilled developers. Evidently, Service availability,
reliability, and Service-oriented mobile application portability
will increase towards green ubiquitous computing in our mobile
cloud infrastructure.

I. INTRODUCTION

Vision of performing computing-intensive tasks on the go

has been around since long and users are increasingly de-

manding rich interaction experience similar to (or even better

than) stationary computers. However, their resource poverty

beside their compact and light nature hinders users’ vision. Re-

searchers in academia and industry endeavour to augment mo-

bile devices in different ways which was studied in our prior

work [1]. We illustrated that mobile augmentation approaches

mainly require external resources such as nearby computing

devices [2], [3] or distant clouds servers[4]. Although nearby

computing devices likely offer lower latency, they are weak

devices that might not be able to perform complex resource-

intensive tasks. Moreover, their services are voluntary and free

that gives them freedom to terminate their services anytime.

These free computing machines can be an attacking point

utilized by an attacker in the absence of monitoring authority.

Hence, their usability is obstructed. Cloud infrastructure are

offering reliable pay-as-you-use services based on a service-

level agreement between service provider and consumer [5].

So, they are likely a better alternative to those free vulnerable

services.

Exploitation of cloud computing by mobile handhelds

breeds a new research domain called Mobile Cloud Computing

(MCC), which is the state-of-the-art computing paradigm com-

prised of three heterogeneous domains of mobile computing,

cloud computing, and networking [6]. Such non-uniformity

stems several challenges such as portability, interoperability,

and fragmentation that are deemed to be alleviated lever-

aging SOA [7] as a promising design philosophy embraced

by mobile computing and cloud computing communities to

stimulate portable, complex application using prefabricated

building blocks called Services. Services are prefabricated

codes that are developed in languages like Java, .Net, and PHP

and are often publicized in a publicly accessible repository

to be discovered and invoked by clients to provide specific

functionality. Currently, services are developed by skilled

developer(s) and hosted on a publicly available server on the

Web and recently on the Clouds. However, storing Services

on the Web and Cloud infrastructure not only increases long

WAN latency and decreases security due to the vulnerability of

the channel of Internet, but also squanders noticeable amount

of energy from the energy-constraint mobile devices.

To alleviate challenges of hosting and running services on

distant servers, nearby mobile devices like smartphones and

Tablets are likely an appropriate alternative if fundamental

requirements like security and reliability achieved. More than

86% of the world population are mobile subscriber and mo-

bile phone market share is rapidly increasing [8]. Although

their computing ability especially battery is very limited,

accumulative power of swarm of mobile devices can turn

them into a giant resource-rich, ubiquitous infrastructure to

not only provide a low-cost, green distributed computing, but

also generate an income source for their owners. Despite of

mobile phones’ ownership and maintenance cost including

subscription, traffic, and energy fee mobile devices are hardly



an income source for their owners. The paid Service hosting

and execution is deemed to be embraced by mobile owners

if issues such as Service publishing and discovery as well as

client-server security, reliability, and Service availability are

addressed. Services can be hosted on a hosting toolkit like [9]

which is a lightweight hosting toolkit for resource-poor mobile

devices.

In this paper, we propose an approach to publish, discover,

and host Services on nearby mobiles, which not only alleviates

aforementioned issues, but also creates a business opportunity

that encourages mobile owners to embrace Service hosting

and execution. We create new role of Service host to enable

unskilled mobile client to host Services developed by skilled

developers. A proper billing system can divide the income

according to a negotiated agreement between engaging parties.

To the best of our knowledge, this is the first proposal that

aims to utilize nearby mobile devices under supervision of

a supervisory body to host and run services based on an

agreement.

The remainder of this article is organized as follows: we

review related works in Section II. Section III briefly describes

Service Oriented Architecture (SOA) followed by Section IV

that presents the proposed architecture. We explain advantages

and disadvantages of our architecture in Section V and paper

is concluded in Section VI.

II. RELATED WORKS

The concept of utilizing remote resources to augment com-

puting capabilities of mobile devices was firstly introduced by

Satyanarayana [2] in pervasive computing. The author visions

to host and run the resource-intensive components of the

mobile application on a nearby, powerful, stationary computer

called surrogates. However, surrogates provide free services

and can terminate their services anytime during runtime. They

also can violate security and privacy of mobile users in the

absence of supervising party. Migrating overhead in the mobile

side and virtualization delay in the surrogate side, hinder

success of cyber foraging [10]. Moreover for every execu-

tion, the code should be offloaded to surrogate machine that

increases the communication overhead and network latency.

The author and his colleagues later envisioned to utilize nearby

computers including mobile devices [3] to overcome the long

WAN latency while running the resource-intensive mobile

applications. However, security of surrogates and execution

latency demand further efforts.

In another effort [9] authors develop a lightweight Service

hosting toolkit for resource-poor mobile devices with ability

to migrate resource-intensive part(s) of the Services to a

remote resource-rich computing device. However, identifying

resource-intensive part(s) of a Service, allocating remote re-

sources, code offloading, and result collection prolong exe-

cution time and dissipate large amount of local resources.

To avoid such Service migration overhead, in our Market-

Oriented Mobile Cloud Computing (MOMCC) architecture,

we restrict mobile hosts to only host those Services that can be

executed without offloading. This step reduces the complexity

of Service hosting on mobile devices.

Hyrax [11], is a Hadoop-based cloud platform consists of

several Android smartphones to simulate a nearby cloud of

smartphones. Hyrax enables direct communication between

mobiles to avoid global network bottleneck and deploys

MapReduce approach to breakdown and assign tasks to each

smartphone. However, due to software engineering approaches

used in Hyrax, there is a tight dependency between code and

underlying platform that exacerbates portability and interop-

erability problems. In [12], authors deploy mobile devices to

create a virtual cloud computing to facilitate resource-intensive

tasks on mobile devices. However, context gathering, resource

sensing, and offloading overhead, largely impose overhead on

naive mobile devices.

III. SERVICE ORIENTED ARCHITECTURE (SOA)

SOA is a design philosophy that follows ultimate aim of

reducing development time, cost, and complexity using pre-

fabricated building blocks called Services, while facilitates ap-

plication maintenance [13]. In this design philosophy, several

sequential or parallel Services are bind together to build a new

complex functionality. SOA has been utilized in computing

domains such as grid computing [14] or was cornerstone for

technologies such as cloud computing to alleviate several fun-

damental challenges such as portability, interoperability, and

integration of applications and software systems. This is due

to the fact that Services are autonomous and platform-neutral

meaning that different Services running on heterogeneous

platforms can still collaborate toward fulfilling a complex task.

Service are providing higher-level abstraction compared with

components which makes them suitable technology for large

scale computing domains such as MCC.

To alleviate several problems like portability and interop-

erability in MCC that are exacerbated by heterogeneity [6],

SOA is one of the best approaches by which online, platform-

neutral, interoperable mobile applications can be built and

ported to several mobile platforms with minimal modification

and editing. A natural approach to leverage SOA in MCC is

to deploy computing Services in the cloud and invoke them

in runtime. However, this is impeded by several challenges

such as long WAN latency, security risks of utilizing the

wireless network as well as the channel of Internet, and energy

deficiency of mobile clients.

An alternative approach to utilize SOA in MCC is to deploy

Services on nearby mobile devices to be invoked with reduced

latency (utilizing alternative communication technologies such

as cellular networks and Wi-Fi can enhance performance)

without accessing the risky channel of Internet. Nevertheless,

there is no publicly acceptable incentive and motivation neither

for Service developer nor mobile hosts (except volunteers

who are willing to collaborate freely). Developers are re-

quired to build publicly available, reusable Services to be

utilized by other programmers in creating complex systems

and applications, while mobile owners are needed to lease

their computational resources such as CPU, memory, and most



importantly battery to host and run the Services. In order

to encourage the public and realize the vision of utilizing

resources of nearby mobile devices (such as smartphones and

Tablets), we propose a market-oriented architecture in which

Service developers, brokers, and hosts can earn for their public

Services whereas Service consumers should pay as they use

(similar to the concept of Cloud computing and utility).

IV. MARKET-ORIENTED MOBILE CLOUD ARCHITECTURE

Figure 1a depicts our proposed layered architectural model

consists of four entities, namely Service developer, governor,

host, and requester/aggregator. The functional relationship

between these four building blocks are depicted in Figure

1b. Initially, the Service developer registers and publishes its

Service(s) to the Service governor which plays the role of

UDDI for Web Services. Service host communicates with

the Service governor to browse available Services and re-

quest for hosting. In runtime, the requester or aggregator

(program developer who aggregates services to quickly build

new composite applications) will query the required Service

against the Service governor to identify the nearby Service

host. Once found, the requester can directly invoke and bind

the Service. Service developer has also direct link with the

Service host to maintain and update the Service if required.

Service governor monitors the performance and reliability

of the Service host for future desicions. In this architecture

there is no direct communication between service requester

and developer. Anonymity of Service requester will likely

discourage attackers and likely protect privacy of hosts against

potential malicious Service developer.

A. Service Developer

Service developer is an organization or individual developer

responsible for design and development of the specific Service

offered to the requesters. Service developers are able to earn

money when their publicly defined Services are available and

utilized by consumer. Service complexity varies from a small

mathematical function to a complex enterprise task. However,

Services should be lightweight building blocks executable

on resource-constrained mobile devices with least possible

footprint. In MOMCC, resource-intensive Services will be

broken down into small sub-Services to avoid runtime code

migration and offloading. However, invoking overhead is an

important factor while defining Service granularity, because

invoking fine grained Services imposes excessive processing

and communication overheads that prolongs overall execution

time leads to Service consumer’s resource drainage.

B. Billing and Access Control

In this architecture, Service developing and hosting are paid

Services. Hence, billing and access control block is responsible

to control and audit service consumption, maintain billing

process, and negotiate among service developers, hosts, and

requesters to establish a mutual agreement similar to the

cloud Service-level agreement [5]. The negotiations happen

in various stages. Initially, Service provider can negotiate

with the billing unit at the time of registration, while Service

host can negotiate prior to Service hosting. In this case,

Service hosts neither negotiate with developer nor requester

and consume native resources for Service execution only.

C. Service Governor

Service governor is an entity located on a centralized server

responsible for monitoring and supervision tasks. Considering

huge number of Services, developers, hosts, and requesters

the need for a supervising and monitoring entity is vital

for the success of the whole system. Service governor is

the main governing entity in MOMCC with several crucial

responsibilities that are briefed as follows:

- Service Registry: Service registry acts as a public Service

repository similar to UDDI (Universal Description Discovery

Integration). Service registry maintains a local database called

’Service Database’ to store and retrieve available Service

descriptions, corresponding providers, and hosting entities. In

order to enhance security of both mobile host and service

consumer, the Service code is scrutinized against malicious

codes by the service registry. When a programmer develops a

Service, the Service should be registered with Service registry

to be exposed to future programmers. While registering a

Service as a business entity, Service developers state Service

functionality, input, output, binding method, security level,

and minimum required hardware or platform by exchanging

a SOAP (simple Object Access Protocol) message with the

Service registry. A part of a sample SOAP message to declare

minimum requirements is shown in Listing 1. From security

point of view, Services can be classified into various cate-

gories like low, medium, and high depends on the nature of

their functionality and engaging data. Service registry also is

responsible to check the service database to find the requested

Service (using Service name or its description) and reply to

the requesters.

Listing 1: Service requirement specification in a sample SOAP

message

<? xml v e r s i o n =” 1 . 0 ” encod ing =”UTF−8” ?>
. . .
<Hos tRequi rment s>

<P l a t f o r m>

<OS>Android< / OS>
<MinVers ion>3 . 2< / MinVers ion>

< / P l a t f o r m>

<MinRequi r edResources>
<CPU>512< /CPU>
<Memory>2< / Memory>
<S t o r a g e>5< / S t o r a g e>
<Energy>500< / Energy>

< / MinRequi r edResources>
< / Hos tRequi rment s>

- Service Profiler: Service profiler monitors the overall

functionality and performance of various Services. Service

provider is responsible to maintain the Service in case of any

malfunction. However, to enhance the quality of the Services,

their overall functionality, availability, and vulnerability is



(a) Layered Architecture of MOMCC (b) The Block Diagram of MOMCC

Fig. 1: The Architecture of Market-Oriented Mobile Cloud Computing (MOMCC)

monitored by Service profiler to substitute low quality services

with more efficient ones if required.

- Host Registry: Every host should communicate with the

public Service registry to browse available Services to be

hosted. The host must choose the Services with less resource

requirement than its available resources. For example, a ser-

vice with 2 MB memory need cannot be hosted on a device

with 1 MB memory. The host registry is responsible to validate

host demands and refuse inappropriate allocation requests.

Once the host allocation request is validated, the Service reg-

istry will communicate with the Security governor to evaluate

host’s Security Certificate (SC). The equal or higher SC can

be considered acceptable which means, a medium-sensitivity

Service can be executed either on a medium or high secure

host. For every host, all hosting Services are recorded in the

host database and will be utilized to address Service requests.

- Host Profiler: Upon registration of a mobile device as host,

the code will be accessible to the device to be hosted locally.

For every Service request, the binding procedure is undertaken

and Service can be invoked by the mobile Service consumer.

The history of Services hosted in every mobile host, including

its overall performance, availability, reliability, and security

will be collected (using a received execution report after each

attempt) and stored in a host database to be utilized for

periodic efficiency assessment of each host. The host database

is the shared data storage between host registry, profiler, and

security governor.

- Security Governor Security is one of the most important

concerns among Service consumers, especially in the wireless

domain. In this architecture, mobile hosts receives a SC upon

successful registry. The trust between security governor and

mobile host can be achieved in various ways like reputation

trust or identity trust. According to the reputation trust [15],

a nascent mobile host will be issued the lowest security trust

to host low-sensitive Services only due to lack of reputation

and prior experience. For every Service execution, the overall

behaviour of the host will be monitored and captured by

the host profiler, which will be used to promote or demote

host’s SC. The Service consumer also can rate the quality

of Service, which would be an incentive for good hosting.

The better and longer execution history, the higher degree

of trust. However, this model is subject to sudden change in

device/owner’s behaviour and might lead to security violation

in the absence of solid identity of the host. An alternative

trust model can be based on the identity of device holder in the

presence of an authentication system. At the time of registering

for a Service, the device owner’s identity will be verified to

discourage possible security attack and a set of credential will

be issued. For cellular clients such as smartphones, the SIM

card detail can be exploited as an identity and authentication

token [16].

D. Mobile Service Host

A mobile host is a mobile device like smartphone or Tablet

which is able and desired to host the implemented Service

code and execute it for Service requester on demand. The host

activity is a trade-off between resource and money. In order

to host a Service, a mobile device must communicate with the

Service Governor to find the appropriate Services according

to its computing abilities and benefits. In this architecture,

Service hosting is a paid Service, hence, Service governor

should negotiate with developer (if wishes to provide paid

Services), requester, and host to agree on a certain revenue

percentage. In generic SOA, Service provider implements or

purchase Service implementation, supply its description, and

provide technical and business maintenance [17]. However,

due to lack of mobile owners/users’ technical competency, we

argue that majority of technical and business maintenance of

the Services should be accomplished by the Service provider.

Every functional and non-functional failure should be reported

to the Service provider for escalation.

Beside finacial benefits of hosting a Service, mobile device

will become voulnerable to attack and privacy violation. To

avoid such threats, certain mechanisms such as Sandboxing

and Service signing (signing Service code by the service

governor) can be deployed.



E. Service Requester/Aggregator

The ultimate aim of SOA is to reduce development time,

cost, and complexity using prefabricated building blocked

called Services, while facilitates application maintenance. In

this design philosophy, several sequential or parallel prefab-

ricated Services are bound together to provide a new com-

plex functionality. Service requester can be the mobile end-

consumers of paid Services (there might be some free Services

as well) that augments its device processing abilities, Service

aggregator. Service aggregator is a Service requester that hosts

another Service. Figure 2 depicts relationship between Service

requester, aggregator, and provider.

Software Engineering Enforcement:The service governor

might enforce software engineering principals to increase

reusability, portability, and interoperability while assuring re-

source efficiency of Services for mobile host. Due to resource

limitation of mobile devices, Services should be developed

with minimum footprint to consume fewer resources from the

hosting devices. Excessive resource consumption by a weakly-

designed Service causes extra cost and ultimately will be

removed from the popular Service stack.

Law Enforcement: In near future, governments’ rules and

regulation such as tax and insurance policies as well as QoS

metrics are expected to be enforced on Service developers and

hosts, which can be performed by Service governor.

Fig. 2: The role of Service Aggregator

A scenario is illustrated in Figure 3. A ’host’ requests a list

of available Services to decide the best available option(s) in

terms of resource consumption and financial benefits. A list

of available Services will be sent back to the ’host’ as a reply.

Upon deciding a particular Service, ’host’ sends a message to

the ’host registry’ to request hosting of the Service. In order

to confirm the ’host’ request, the ’host registry’ component

should verify security level of Service and the SC of the ’host’.

Hence, the ’host registry’ sends a request to the ’security

governor’ for the SC of the corresponding ’host.’ The ’security

governor’ checks the ’host database’ and forwards the SC of

the ’host’ to the ’host registry.’ If there is no available SC

for the ’host’, the ’security governor’ contacts the ’host’ to

establish a trust and issue the SC. Once the SC is issued and

passed to the ’host registry’, the Service is allocated to the

’host’ and a confirmation message forwarded to the ’host’.

V. ADVANTAGE AND DISADVANTAGES

In this section we describe benefits and limitation of our

MOMCC architecture.

A. Advantages

• Increased Resource Availability: By leveraging large

number of nearby mobile devices in public places like shop-

ping mall, cinema, and airport the Service availability is

increasing noticeably.

• Unskilled Hosting: Mobile owner does not need IT

skills to host and run Services, because majority of low-level

communication and negotiation can be done automatically

without user inference, while the service implementation and

maintenance is provided by Service developer.

• Enhanced Security and Reliability: Nearby mobile devices

can directly communicate using WLAN without entering the

risky channel of Internet which can often save energy too.

The Service provider is unable to identify its consumer(s)

which dissuade malicious developers from violating end-users

privacy. The Service provider also is discouraged to add

malicious code to the Service since the Service governor

verifies its credibility.

• Reduced Long WAN Latency:Exploiting resources of de-

vices in vicinity magnificently reduces the long WAN latency.

For computation-intensive applications utilizing Bluetooth or

WLAN technologies not only reduced the latency, but also

save more energy, while communication-intensive applications

are likely using cellular networks [18].

• Increased Low-cost Resources: Utilizing computing re-

sources of nearby mobile hosts, does not need an upfront

investment since they have already being acquired by their

owners. The ownership cost also will be shrunk with resource

sharing and earning.

• Green Computing: Contemporary mobile devices have

become a luxury device for public and are usually maintain

for lightweight tasks such as web browsing, social networking,

or basic gaming. Therefore, unused resources can be utilized

by heavy applications toward a greener computing.

B. Disadvantages

• Host Computing Limitation: One of the drawbacks of

MOMCC architecture is that complexity of Services is highly

dependent on computing capabilities of hosting devices which

are not very high. Heavy enterprise applications might found

MOMMC difficult to utilize. In our future work, we will

utilize resource-rich stationary devices to serve enterprise and

resource-intensive applications.

• Fine granularity of Services: Due to limitation of host,

Services are often fine in granularity which causes extra

execution overhead on mobile hosts. Such overhead prolongs

execution time and increases communication traffic as well

which will be investigated in our future work.

• Unusable in Remote Area: This architecture is highly

dependent on nearby computing devices and will be affected

in the remote environment such as mountain or jungles where

less mobile devices exist.

• No Offline Usability Applications built on MOMCC

architecture, like other Service-based software, are highly

dependent on networking and communication with external

devices. Application will not be useful in offline mode.

VI. CONCLUSIONS

In this paper we employ SOA and propose a Market-

Oriented architecture for mobile cloud computing which is the



Fig. 3: The Collaborative Scenario among Major Entities

first of its own to the best of our knowledge. This architecture

consists of four major entities, namely Service developer,

host, governor, and requester. Service developer and host are

clearly detached from each other to not only facilitate and

encourage Service hosting by unskilled mobile users, but

also to increase privacy of the Service requester (consumers).

A cloud of mobile devices including smartphones, Tablets,

and sundry mobile devices is created where devices with

heterogeneous platforms, hardware, and manufacturers can co-

exist and collaborate. We encourage Service development and

hosting by providing monetary incentive for programmers and

mobile owners to stimulate mobile Service hosting. Based on

Service governor responsibilities we argue that mobile network

operators are likely the best candidate to serve as the Service

governor, because they are centralized, well-established, and

reputed organizations that have been serving mobile users

since long and could establish high degree of trust with users.

Successful mobile Service hosting architecture can be utilized

in various domains such as supply chain management in which

various organizations (e.g. billing and transport) can collabo-

rate to perform a business activity. A Service hosted on a

driver’s mobile can notify customer orders and update delivery

scheduling to the recipient. However, MOMCC architecture

is more suitable for computing-intensive tasks since different

hosts share their computational resources. Data-intensive tasks

are less likely addressable in this architecture.

In our future work, we will implement the proposed

MOMCC architecture and accommodate data-intensive and

complex enterprise applications by employing resourceful

computing devices in near and far distance. Utilizing certified

surrogate machines (by security governor) and Cloud infras-

tructures will enable Service developer to build computational-

and data-intensive applications.

ACKNOWLEDGMENT

This work is funded by the Malaysian Ministry of Higher

Education under the University of Malaya High Impact Re-

search Grant UM.C/HIR/MOHE/FCSIT/03.

REFERENCES

[1] S. Abolfazli, Z. Sanaei, and A. Gani, “Mobile cloud computing: A
review on smartphone augmentation approaches,” in Proc. CISCO, 2012.

[2] M. Satyanarayanan, “Pervasive computing: vision and challenges,” Per-

sonal Communications, IEEE, vol. 8, no. 4, pp. 10–17, 2001.
[3] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for

vm-based cloudlets in mobile computing,” Pervasive Computing, vol. 8,
no. 4, pp. 14–23, 2009.

[4] X. W. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an
elastic application model for augmenting the computing capabilities of
mobile devices with cloud computing,” Mobile Networks & Applications,
vol. 16, no. 3, pp. 270–284, 2011.

[5] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation Computer

Systems, vol. 25, no. 6, pp. 599–616, 2009.
[6] Z. Sanaei, S. Abolfazli, A. Gani, and R. H. Khokhar, “Tripod of

requirements in horizontal heterogeneous mobile cloud computing,” in
Proc. CISCO, 2012.

[7] T. Erl, Service-oriented architecture: concepts, technology, and design.
Prentice Hall PTR, 2005.

[8] Gartner. (2012, Feb) Worldwide smartphone sales soared in fourth
quarter of 2011 with 47 percent growth. Gartner. [Online]. Available:
http://www.gartner.com/it/page.jsp?id=1924314

[9] M. Asif, S. Majumdar, and R. Dragnea, “Hosting web services on
resource constrained devices,” in Proc. ICWS, July 2007, pp. 583–590.

[10] M. Sharifi, S. Kafaie, and O. Kashefi, “A survey and taxonomy of
cyber foraging of mobile devices,” Communications Surveys & Tutorials,

IEEE, vol. PP, no. 99, pp. 1–12, 2011.
[11] E. Marinelli, “Hyrax: cloud computing on mobile devices using mapre-

duce,” Master Thesis, Computer Science Deptartment, CMU, 2009.
[12] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for

mobile devices,” in Proc. MCS. ACM, 2010, pp. 6:1–6:5.
[13] M. Papazoglou and W. Van Den Heuvel, “Service oriented architectures:

approaches, technologies and research issues,” The VLDB journal,
vol. 16, no. 3, pp. 389–415, 2007.

[14] L. Srinivasan and J. Treadwell, “An overview of service-oriented archi-
tecture, web services and grid computing,” HP Software Global Business

Unit, vol. 2, 2005.
[15] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and reputation

systems for online service provision,” Decision support systems, vol. 43,
no. 2, pp. 618–644, 2007.

[16] C. Rust, S. Salsano, and L. Schnake, “The sim card as an enabler for
security, privacy, and trust in mobile services,” in Proceedings of the
conference on ICT-MobileSummit, 2008.

[17] M. Papazoglou and D. Georgakopoulos, “Service-oriented computing,”
Communications of the ACM, vol. 46, no. 10, pp. 25–28, 2003.

[18] G. P. Perrucci, F. H. P. Fitzek, and J. Widmer, “Survey on energy
consumption entities on the smartphone platform,” in Proc. VTC Spring,
2011, pp. 1–6.


