Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(3,5-Di-*tert*-butyl-4-hydroxybenzyl)sulfanyl]-*N*'-isopropylideneacetohydrazide

Wagee A. Yehye, Azhar Ariffin and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 25 February 2009; accepted 4 March 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.135; data-to-parameter ratio = 20.6.

The title compound, $C_{20}H_{32}N_2O_2S$, the condensation product of a thioacetohydrazine and acetone, has a two-coordinate S atom and the angle at this atom is 100.7 (1)°. The (CH₃)C=N-NH-C(O)- substituent engages in N-H···O hydrogen-bonding interactions with the substituent of an adjacent molecule across a center of inversion, generating a dimeric structure.

Related literature

There are several structural studies of $(CH_3)C=N-NH-C(O)-X$ compounds; for *N*-acetyl-*N'*-isopropylidenehydrazine, see: Khusainova *et al.* (2004). For the synthesis of the thioacetohydrazine reactant, see: MacLeay & Meyers (1989); Myers & MacLeay (1989).

Experimental

Crystal data

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.960, T_{max} = 0.984$

Refinement

ł

v

5

$R[F^2 > 2\sigma(F^2)] = 0.047$	237 parameters
$\nu R(F^2) = 0.135$	H-atom parameters constrained
t = 1.05	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
886 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

14652 measured reflections

 $R_{\rm int} = 0.052$

4886 independent reflections

3240 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $N1-H1\cdots O2^i$ 0.882.102.940 (2)159Summary standard (i)i=1i=1

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2379).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Khusainova, N. G., Mostovaya, O. M., Azancheev, N. M., Litvinov, I. A., Krivolapov, B. D. & Cherkasov, R. A. (2004). *Mendeleev Commun.* 14, 212– 214.
- MacLeay, R. E. & Meyers, T. D. (1989). Eur. Patent EP 303986 A2 19890222. Myers, T. D. & MacLeay, R. E. (1989). Eur. Patent EP 306729 A1 19890315.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

Acta Cryst. (2009). E65, 0730 [doi:10.1107/S1600536809007843]

2-[(3,5-Di-tert-butyl-4-hydroxybenzyl)sulfanyl]-N'-isopropylideneacetohydrazide

W. A. Yehye, A. Ariffin and S. W. Ng

Comment

(type here to add)

Experimental

2-(3,5-Di-*tert*-butyl-4-hydroxybenzylthio)acetohydrazine (0.5 g, 1.54 mmol) and acetone (10 ml) were heated for 6 h; several drops of acetic acid were added to the reaction. The solvent was removed and the product recrystallized from hexane.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95-0.99 Å) and were included in the refinement in the riding model approximation with U(H) set to 1.2-1.5U(C). The oxygen- and nitrogen-bound H-atoms were similarly treated (O–H 0.84 and N–H 0.88 Å).

The hydroxy H-atom does not form a hydrogen bond; it is probably disordered over several positions. In one position, it is less than 2 Å from a hydrogen atom of the C14 methyl group. The two *tert*-butyl groups are probably also disordered, but the disorder could not be resolved into multiple positions.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{20}H_{32}N_2O_2S$ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.

2-[(3,5-Di-tert-butyl-4-hydroxybenzyl)sulfanyl]-N'- isopropylideneacetohydrazide

Crystal data	
$C_{20}H_{32}N_2O_2S$	$F_{000} = 1584$
$M_r = 364.54$	$D_{\rm x} = 1.129 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 1963 reflections
a = 30.8643 (10) Å	$\theta = 2.6 - 26.3^{\circ}$
b = 10.0128 (3) Å	$\mu = 0.17 \text{ mm}^{-1}$
c = 13.9596 (5) Å	T = 100 K

 $\beta = 96.227 (2)^{\circ}$ $V = 4288.6 (2) \text{ Å}^3$ Z = 8

Data collection

Bruker SMART APEX diffractometer	4886 independent reflections
Radiation source: fine-focus sealed tube	3240 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.052$
T = 100 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.3^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -39 \rightarrow 40$
$T_{\min} = 0.960, \ T_{\max} = 0.984$	$k = -13 \rightarrow 13$
14652 measured reflections	$l = -18 \rightarrow 14$

Block, colorless

 $0.25\times0.15\times0.10~mm$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.135$	$w = 1/[\sigma^2(F_o^2) + (0.0627P)^2 + 0.8959P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\text{max}} = 0.001$
4886 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
237 parameters	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.394869 (18)	0.18708 (5)	0.52819 (4)	0.02810 (16)
01	0.32415 (5)	0.04431 (14)	0.08151 (10)	0.0287 (4)
H1O	0.3479	0.0304	0.0591	0.066 (10)*
O2	0.45752 (5)	0.41852 (14)	0.43360 (10)	0.0284 (4)
N1	0.49822 (5)	0.32105 (16)	0.55791 (12)	0.0228 (4)
H1	0.5109	0.3970	0.5762	0.033 (6)*
N2	0.51037 (5)	0.20268 (16)	0.60634 (12)	0.0233 (4)
C1	0.34695 (6)	0.22530 (19)	0.35011 (14)	0.0212 (4)
C2	0.31851 (6)	0.11801 (18)	0.33503 (15)	0.0208 (4)
H2	0.3045	0.0851	0.3876	0.025*
C3	0.30992 (6)	0.05737 (18)	0.24556 (15)	0.0205 (4)
C4	0.33196 (6)	0.10754 (18)	0.17019 (14)	0.0207 (4)
C5	0.35919 (6)	0.21967 (19)	0.18074 (14)	0.0206 (4)
C6	0.36638 (6)	0.27540 (19)	0.27299 (14)	0.0213 (4)

H6	0.3853	0.3502	0.283	0	0.026*	
C7	0.27708 (7)	-0.0579 (2)) 0.229	32 (15)	0.0257 (5)	
C8	0.25474 (7)	-0.0877 (2)) 0.319	63 (16)	0.0326 (5)	
H8A	0.2394	-0.0077	0.338	3	0.049*	
H8B	0.2767	-0.1138	0.372	.3	0.049*	
H8C	0.2338	-0.1606	0.306	1	0.049*	
С9	0.30019 (9)	-0.1865 (2)) 0.203	3 (2)	0.0425 (6)	
H9A	0.2790	-0.2594	0.194	.6	0.064*	
H9B	0.3229	-0.2093	0.255	4	0.064*	
Н9С	0.3135	-0.1729	0.143	5	0.064*	
C10	0.24093 (7)	-0.0210 (2)) 0.149	12 (17)	0.0360 (6)	
H10A	0.2260	0.0600	0.167	4	0.054*	
H10B	0.2199	-0.0945	0.139	8	0.054*	
H10C	0.2538	-0.0049	0.089	0	0.054*	
C11	0.38057 (7)	0.2813 (2)	0.096	18 (16)	0.0284 (5)	
C12	0.40558 (9)	0.4089 (2)	0.126	23 (17)	0.0404 (6)	
H12A	0.4293	0.3879	0.176	4	0.061*	
H12B	0.3858	0.4734	0.151	3	0.061*	
H12C	0.4177	0.4472	0.070	3	0.061*	
C13	0.34528 (10)	0.3206 (3)	0.014	78 (18)	0.0480 (7)	
H13A	0.3255	0.3861	0.039	0	0.072*	
H13B	0.3287	0.2410	-0.00	078	0.072*	
H13C	0.3591	0.3596	-0.03	87	0.072*	
C14	0.41348 (10)	0.1852 (2)	0.059	4 (2)	0.0544 (8)	
H14A	0.4342	0.1558	0.113	5	0.082*	
H14B	0.4292	0.2307	0.011	6	0.082*	
H14C	0.3981	0.1075	0.029	7	0.082*	
C15	0.35698 (7)	0.2863 (2)	0.448	56 (14)	0.0242 (5)	
H15A	0.3295	0.2968	0.478	3	0.029*	
H15B	0.3695	0.3764	0.441	7	0.029*	
C16	0 44235 (7)	0 18946 (19	0.462	39 (16)	0.0258 (5)	
H16A	0.4615	0 1128	0 482	3	0.031*	
H16B	0.4332	0.1816	0.392	4	0.031*	
C17	0.46677 (6)	0.3174 (2)	0.482	58 (14)	0.0221 (4)	
C18	0.54119 (7)	0.2084 (2)	0.675	22 (15)	0.0252 (5)	
C19	0.55491 (8)	0.0790 (2)	0.722	61 (16)	0.0328 (5)	
H19A	0.5361	0.0070	0.694	6	0.049*	
H19B	0.5524	0.0852	0.791	9	0.049*	
H19C	0.5852	0.0600	0.712	4	0.049*	
C20	0.56467 (8)	0.3315 (2)	0.711	90 (17)	0.0376 (6)	
H20A	0.5435	0.4023	0.720	3	0.056*	
H20B	0 5844	0.3607	0.665	5	0.056*	
H20C	0.5816	0.3124	0.773	9	0.056*	
	0.0010	0.0121	01772	-	0.000	
Atomic displacer	nent parameters	(\AA^2)				
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0292 (3)	0.0299 (3)	0.0231 (3)	-0.0090 (2)	-0.0063 (2)	0.0075 (2)

01	0.0321 (9)	0.0280 (8)	0.0264 (9)	-0.0086 (7)	0.0057 (7)	-0.0100 (6)
O2	0.0270 (8)	0.0279 (8)	0.0286 (9)	-0.0029 (6)	-0.0044 (7)	0.0037 (6)
N1	0.0219 (9)	0.0237 (8)	0.0219 (9)	-0.0034 (7)	-0.0018 (7)	-0.0016 (7)
N2	0.0237 (9)	0.0257 (9)	0.0203 (9)	0.0017 (7)	0.0019 (7)	0.0006 (7)
C1	0.0188 (10)	0.0232 (9)	0.0207 (11)	0.0016 (8)	-0.0024 (8)	0.0014 (8)
C2	0.0174 (10)	0.0224 (9)	0.0223 (11)	0.0006 (8)	0.0009 (8)	0.0044 (8)
C3	0.0170 (10)	0.0193 (9)	0.0243 (11)	0.0003 (8)	-0.0015 (8)	0.0014 (8)
C4	0.0200 (10)	0.0199 (9)	0.0214 (11)	-0.0004 (8)	-0.0012 (8)	-0.0024 (8)
C5	0.0208 (10)	0.0201 (9)	0.0208 (11)	0.0006 (8)	0.0015 (8)	0.0007 (8)
C6	0.0190 (10)	0.0193 (9)	0.0244 (11)	-0.0026 (8)	-0.0031 (8)	0.0013 (8)
C7	0.0237 (11)	0.0250 (10)	0.0282 (12)	-0.0071 (9)	0.0023 (9)	-0.0018 (9)
C8	0.0303 (12)	0.0305 (11)	0.0373 (14)	-0.0113 (10)	0.0048 (10)	0.0031 (10)
C9	0.0496 (16)	0.0223 (11)	0.0580 (18)	-0.0087 (11)	0.0172 (13)	-0.0045 (11)
C10	0.0269 (12)	0.0433 (13)	0.0359 (14)	-0.0155 (11)	-0.0046 (10)	-0.0016 (11)
C11	0.0367 (13)	0.0260 (11)	0.0232 (12)	-0.0095 (9)	0.0066 (10)	0.0000 (9)
C12	0.0553 (16)	0.0360 (13)	0.0310 (14)	-0.0208 (12)	0.0096 (12)	0.0026 (10)
C13	0.0673 (19)	0.0478 (15)	0.0261 (14)	-0.0202 (14)	-0.0072 (13)	0.0108 (11)
C14	0.0605 (18)	0.0398 (14)	0.071 (2)	-0.0102 (13)	0.0424 (16)	-0.0037 (14)
C15	0.0231 (11)	0.0274 (10)	0.0214 (11)	-0.0001 (9)	-0.0013 (9)	0.0000 (8)
C16	0.0252 (11)	0.0233 (10)	0.0270 (12)	0.0028 (9)	-0.0065 (9)	-0.0036 (9)
C17	0.0181 (10)	0.0275 (10)	0.0207 (11)	-0.0004 (8)	0.0024 (8)	-0.0024 (9)
C18	0.0276 (11)	0.0279 (11)	0.0199 (11)	0.0001 (9)	0.0018 (9)	-0.0020 (8)
C19	0.0395 (13)	0.0323 (12)	0.0253 (13)	0.0048 (10)	-0.0031 (10)	-0.0029 (9)
C20	0.0441 (14)	0.0353 (12)	0.0294 (13)	-0.0072 (11)	-0.0145 (11)	0.0031 (10)

Geometric parameters (Å, °)

S1—C16	1.812 (2)	C10—H10A	0.9800
S1—C15	1.819 (2)	C10—H10B	0.9800
O1—C4	1.388 (2)	C10—H10C	0.9800
01—H10	0.8400	C11—C14	1.528 (3)
O2—C17	1.237 (2)	C11—C12	1.527 (3)
N1—C17	1.352 (2)	C11—C13	1.537 (3)
N1—N2	1.396 (2)	C12—H12A	0.9800
N1—H1	0.8800	C12—H12B	0.9800
N2-C18	1.278 (3)	C12—H12C	0.9800
C1—C6	1.382 (3)	C13—H13A	0.9800
C1—C2	1.389 (3)	C13—H13B	0.9800
C1—C15	1.505 (3)	C13—H13C	0.9800
C2—C3	1.388 (3)	C14—H14A	0.9800
C2—H2	0.9500	C14—H14B	0.9800
C3—C4	1.406 (3)	C14—H14C	0.9800
С3—С7	1.536 (3)	C15—H15A	0.9900
C4—C5	1.401 (3)	C15—H15B	0.9900
C5—C6	1.399 (3)	C16—C17	1.498 (3)
C5—C11	1.542 (3)	C16—H16A	0.9900
С6—Н6	0.9500	C16—H16B	0.9900
С7—С8	1.531 (3)	C18—C20	1.493 (3)
С7—С9	1.535 (3)	C18—C19	1.495 (3)

C7—C10	1.537 (3)	C19—H19A	0.9800
C8—H8A	0.9800	C19—H19B	0.9800
C8—H8B	0.9800	С19—Н19С	0.9800
C8—H8C	0.9800	C20—H20A	0.9800
С9—Н9А	0.9800	C20—H20B	0.9800
С9—Н9В	0.9800	С20—Н20С	0.9800
С9—Н9С	0.9800		
C16—S1—C15	100.65 (10)	C14—C11—C5	111.09 (18)
C4—O1—H1O	109.5	C12—C11—C5	111.70 (17)
C17—N1—N2	119.11 (16)	C13—C11—C5	109.91 (19)
C17—N1—H1	120.4	C11—C12—H12A	109.5
N2—N1—H1	120.4	C11—C12—H12B	109.5
C18—N2—N1	117.74 (17)	H12A—C12—H12B	109.5
C6—C1—C2	118.89 (18)	C11—C12—H12C	109.5
C6-C1-C15	120.02 (18)	H12A - C12 - H12C	109.5
C_{2} — C_{1} — C_{15}	121.09(18)	H12B-C12-H12C	109.5
C_{3} C_{2} C_{1}	122.04 (19)	C11—C13—H13A	109.5
C_{3} C_{2} H_{2}	119.0	C11—C13—H13B	109.5
C1_C2_H2	119.0	H13A_C13_H13B	109.5
$C_{1}^{2} - C_{2}^{3} - C_{4}^{3}$	117.15 (17)	C11_C13_H13C	109.5
$C_2 = C_3 = C_7$	117.13(17) 121.32(18)	$H_{13} - C_{13} - H_{13} C$	109.5
$C_2 = C_3 = C_7$	121.32(18) 121.52(17)	H13R C13 H13C	109.5
$C_{4} = C_{5} = C_{7}$	121.32(17) 120.24(17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
01 - C4 - C3	120.24(17)	$C_{11} = C_{14} = H_{14} R$	109.5
$C_{1} = C_{4} = C_{3}$	110.94(17) 122.76(18)		109.5
C_{3}	122.70(18)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{0} = C_{3} = C_{4}$	110.74(10) 120.44(17)		109.5
$C_0 = C_5 = C_{11}$	120.44(17)	H14A - C14 - H14C	109.5
C4 = C5 = C11	122.82(17)	$\mathbf{H}_{\mathbf{H}}^{\mathbf{H}} = \mathbf{H}_{\mathbf{H}}^{\mathbf{H}} = \mathbf{H}_{\mathbf{H}}^{\mathbf{H}} = \mathbf{H}_{\mathbf{H}}^{\mathbf{H}}$	109.5
CI = C6 = C3	122.24 (18)	C1 = C15 = S1	115.01 (14)
C1	118.9	CI-CI5-HISA	109.0
C3-C6-H8	118.9	SI-CI5-HISA	109.0
$C_{8} = C_{7} = C_{9}$	107.00 (18)	CI-CI5-HI5B	109.0
C_{8}	111.95 (17)		109.0
$C_{9} = C_{1} = C_{3}$	110.44 (17)	HISA—CIS—HISB	107.8
	106.88 (18)	C17 - C16 - S1	109.51 (14)
C9_C/_C10	110.41 (19)	С1/—С16—Н16А	109.8
C3	110.01 (17)	SI-Clo-HI6A	109.8
C/	109.5	СГ/—С16—Н16В	109.8
C7—C8—H8B	109.5	S1—C16—H16B	109.8
H8A—C8—H8B	109.5	H16A—C16—H16B	108.2
C7—C8—H8C	109.5	02—C17—N1	120.74 (18)
H8A—C8—H8C	109.5	O2—C17—C16	120.97 (18)
H8B-C8-H8C	109.5	N1—C17—C16	118.26 (18)
С7—С9—Н9А	109.5	N2—C18—C20	126.07 (19)
С7—С9—Н9В	109.5	N2	116.51 (19)
Н9А—С9—Н9В	109.5	C20—C18—C19	117.41 (19)
С7—С9—Н9С	109.5	C18—C19—H19A	109.5
Н9А—С9—Н9С	109.5	C18—C19—H19B	109.5
H9B—C9—H9C	109.5	H19A—C19—H19B	109.5

С7—С10—Н10А	109.5	C18—C19—H19C	109.5
С7—С10—Н10В	109.5	H19A—C19—H19C	109.5
H10A-C10-H10B	109.5	H19B—C19—H19C	109.5
С7—С10—Н10С	109.5	C18-C20-H20A	109.5
H10A-C10-H10C	109.5	C18—C20—H20B	109.5
H10B-C10-H10C	109.5	H20A—C20—H20B	109.5
C14—C11—C12	106.5 (2)	C18—C20—H20C	109.5
C14—C11—C13	110.9 (2)	H20A—C20—H20C	109.5
C12—C11—C13	106.61 (18)	H20B—C20—H20C	109.5
C17—N1—N2—C18	177.73 (18)	C4—C3—C7—C9	65.2 (3)
C6—C1—C2—C3	1.8 (3)	C2—C3—C7—C10	122.0 (2)
C15—C1—C2—C3	-177.81 (18)	C4—C3—C7—C10	-56.9 (2)
C1—C2—C3—C4	1.2 (3)	C6-C5-C11-C14	114.5 (2)
C1—C2—C3—C7	-177.73 (18)	C4—C5—C11—C14	-65.8 (3)
C2—C3—C4—O1	178.34 (17)	C6-C5-C11-C12	-4.3 (3)
C7—C3—C4—O1	-2.8 (3)	C4—C5—C11—C12	175.47 (19)
C2—C3—C4—C5	-4.5 (3)	C6-C5-C11-C13	-122.4 (2)
C7—C3—C4—C5	174.38 (18)	C4—C5—C11—C13	57.3 (3)
O1—C4—C5—C6	-178.28 (17)	C6-C1-C15-S1	-102.63 (19)
C3—C4—C5—C6	4.7 (3)	C2-C1-C15-S1	77.0 (2)
O1—C4—C5—C11	1.9 (3)	C16—S1—C15—C1	61.45 (16)
C3—C4—C5—C11	-175.14 (19)	C15—S1—C16—C17	81.49 (15)
C2-C1-C6-C5	-1.6 (3)	N2—N1—C17—O2	-174.54 (18)
C15—C1—C6—C5	178.00 (18)	N2-N1-C17-C16	7.7 (3)
C4—C5—C6—C1	-1.5 (3)	S1—C16—C17—O2	-87.7 (2)
C11—C5—C6—C1	178.29 (18)	S1-C16-C17-N1	89.99 (19)
C2—C3—C7—C8	3.3 (3)	N1-N2-C18-C20	2.5 (3)
C4—C3—C7—C8	-175.55 (18)	N1-N2-C18-C19	-177.17 (17)
C2—C3—C7—C9	-115.9 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
N1—H1···O2 ⁱ	0.88	2.10	2.940 (2)	159
Symmetry codes: (i) $-x+1, -y+1, -z+1$.				

Fig. 1