metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

{2-[(2-Carbamothiolylhydrazin-1-ylidene- $\kappa^2 N^1$,S)methyl]-6-hydroxyphenolato- κO^1 }(triphenylphosphine- κP)nickel(II) chloride

Hana Bashir Shawish, Kong Wai Tan, M. Jamil Maah* and Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: mjamil@um.edu.my

Received 29 July 2010; accepted 3 August 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.021; wR factor = 0.054; data-to-parameter ratio = 17.2.

The deprotonated Schiff base ligand in the title compound, $[Ni(C_8H_8N_3O_2S)(C_{18}H_{15}P)]Cl$, functions as an *N,O,S*chelating anion to the phosphine-coordinated Ni atom, which exists in a distorted square-planar geometry. The hydroxy group forms an intramolecular $O-H\cdots O$ hydrogen bond. The two amino groups of the cation are hydrogen-bond donors to the chloride anion; the hydrogen bonds generate a chain structure running along the *b* axis.

Related literature

For the crystal structure of 2,3-dihydroxybenzaldehyde thiosemicarbazone hemihydrate, see: Swesi *et al.* (2006). For similar crystal structures containing a nickel(II) atom, see: García-Reynaldos *et al.* (2007).

Experimental

Crystal data $[Ni(C_8H_8N_3O_2S)(C_{18}H_{15}P)]Cl$ $M_r = 566.66$ Orthorhombic, $P2_12_12_1$

a = 7.7902 (4) Åb = 14.6791 (7) Åc = 21.7410 (11) Å $V = 2486.2 (2) \text{ Å}^3$ Z = 4Mo *K*\alpha radiation

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.707, T_{\rm max} = 0.815$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.021 & \text{H atoms treated by a mixture of } \\ wR(F^2) &= 0.054 & \text{independent and constrained} \\ S &= 1.02 & \text{refinement} \\ 5703 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.29 \text{ e } \text{\AA}^{-3} \\ 332 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.21 \text{ e } \text{\AA}^{-3} \\ 4 \text{ restraints} & \text{Absolute structure: Flack (1983),} \\ 2468 \text{ Friedel pairs} \end{split}$$

 $\mu = 1.07 \text{ mm}^{-1}$

 $0.35 \times 0.25 \times 0.20$ mm

24072 measured reflections

5703 independent reflections

Flack parameter: -0.011 (7)

5490 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.028$

Table 1

Selected bond lengths (Å).

Ni1-O1	1.847 (1)	Ni1-P1	2.1998 (4)
Ni1-N1	1.897 (1)	Ni1-S1	2.1416 (4)
Ni1-N1	1.897 (1)	Ni1-S1	2.1416

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H1\cdots O1$ $N2-H2\cdots Cl1$	0.84(1) 0.86(1)	2.11 (3) 2.17 (1)	2.636(2) 3.016(2)	120(2) 167(2)
$N3-H3\cdots Cl1^i$	0.85 (1)	2.46 (1)	3.275 (2)	161 (2)

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the University of Malaya (PS354/2009) and MOHE (FRGS-FP001/2009) for supporting this study. HBS also thanks the Libyan People's Bureau in Malaysia for a scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5315).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- García-Reynaldos, P. X., Hernández-Ortega, S., Toscano, R. A. & Valdés-Martínez, J. (2007). Supramol. Chem. 19, 613–619.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Swesi, A. T., Farina, Y., Kassim, M. & Ng, S. W. (2006). Acta Cryst. E62, o5457– 05458.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2010). E66, m1074 [doi:10.1107/S1600536810031065]

{2-[(2-Carbamothiolylhydrazin-1-ylidene- $\kappa^2 N^1$,S)methyl]-6-hydroxyphenolato- κO^1 }(triphenylphosphine- κP)nickel(II) chloride

H. B. Shawish, K. W. Tan, M. J. Maah and S. W. Ng

Comment

Substituted 2-hydroxybenzaldehyde thiosemicarbazones are generally doubly-deprotonated in their nickel complexes, the dianion chelating to the metal atom through its nitrogen, oxygen and sulfur atoms. However, with the triphenylphosphine adducts of nickel 2-hydroxybenzaldehyde thiosemicarbonates, the Schiff base is only mono-deprotonated; the positive charge of the cation is balanced by a chloride counterion (García-Reynaldos *et al.*, 2007). The reaction of the 3-hydroxy substituted Schiff base with nickel chloride affords the analogous salt, 3-hydroxy-2-oxidobenzaldehydethiosemicarbazone)(triphenylphosphine)nickel(II) chloride (Scheme I). The coordination environment of nickel is a square plane made up of nitrogen, oxygen, phosphorus and sulfur atoms (Fig. 1). Adjacent ions are linked by N–H…Cl hydrogen bonds to generate a chain structure (Fig. 2).

Experimental

2,3-Dihydroxybenzaldehyde thiosemicarbazone hemihydrate (Swesi *et al.*, 2006) (0.22 g, 1 mmol), triphenylphosphine (0.26, 1 mmol) and nickel chloride (0.13 g, 1 mmol) were heated in a methanol/ethanol (50 ml) for an hour. The brown solution was then set aside for the growth of crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints of N-H 0.86 ± 0.01 and O-H 0.84 ± 0.01 Å; their displacement paramters were freely refined.

Figures

Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2. Hydrogen-bonded chain motif.

{2-[(2-Carbamothiolylhydrazin-1-ylidene- $\kappa^2 N^1$,S)methyl]-6- hydroxyphenolato- κO^1 }(triphenylphosphine- κP)nickel(II) chloride

[Ni(C ₈ H ₈ N ₃ O ₂ S)(C ₁₈ H ₁₅ P)]Cl	F(000) = 1168
$M_r = 566.66$	$D_{\rm x} = 1.514 {\rm ~Mg~m}^{-3}$
Orthorhombic, <i>P</i> 2 ₁ 2 ₁ 2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 9879 reflections
a = 7.7902 (4) Å	$\theta = 2.8 - 28.3^{\circ}$
<i>b</i> = 14.6791 (7) Å	$\mu = 1.07 \text{ mm}^{-1}$
c = 21.7410(11) Å	T = 100 K
$V = 2486.2 (2) \text{ Å}^3$	Block, brown
Z = 4	$0.35 \times 0.25 \times 0.20 \text{ mm}$

Data collection

Bruker SMART APEX diffractometer	5703 independent reflections
Radiation source: fine-focus sealed tube	5490 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.028$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 10$
$T_{\min} = 0.707, \ T_{\max} = 0.815$	$k = -19 \rightarrow 19$
24072 measured reflections	<i>l</i> = −28→28

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.021$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.054$	$w = 1/[\sigma^2(F_0^2) + (0.032P)^2 + 0.4343P]$ where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
5703 reflections	$\Delta \rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$
332 parameters	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
4 restraints	Absolute structure: Flack (1983), 2468 Friedel pairs

Primary atom site location: structure-invariant direct Flack parameter: -0.011 (7)

	x	у	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Ni1	1.20955 (2)	0.505537 (13)	0.401439 (8)	0.01255 (5)
C11	1.73655 (6)	0.39315 (3)	0.57199 (2)	0.02565 (10)
S1	1.17398 (5)	0.36636 (3)	0.42809 (2)	0.01724 (9)
P1	1.03089 (5)	0.49177 (3)	0.323635 (17)	0.01239 (8)
01	1.24123 (15)	0.62350 (7)	0.37422 (5)	0.0187 (2)
02	1.19946 (19)	0.78945 (8)	0.33035 (6)	0.0287 (3)
N1	1.37566 (17)	0.51529 (9)	0.46493 (6)	0.0149 (3)
N2	1.42733 (19)	0.43510 (10)	0.49349 (7)	0.0185 (3)
N3	1.3866 (2)	0.28145 (11)	0.50486 (8)	0.0241 (3)
C1	1.31436 (19)	0.68926 (10)	0.40627 (7)	0.0142 (3)
C2	1.2891 (2)	0.77878 (11)	0.38354 (8)	0.0176 (3)
C3	1.3508 (2)	0.85370 (11)	0.41499 (8)	0.0190 (3)
H3A	1.3282	0.9134	0.4002	0.023*
C4	1.4466 (3)	0.84135 (12)	0.46872 (8)	0.0240 (4)
H4A	1.4888	0.8928	0.4904	0.029*
C5	1.4800 (2)	0.75525 (13)	0.49031 (8)	0.0214 (4)
Н5	1.5483	0.7476	0.5261	0.026*
C6	1.4135 (2)	0.67776 (11)	0.45966 (7)	0.0155 (3)
C7	1.4512 (2)	0.58908 (11)	0.48329 (8)	0.0170 (3)
H7	1.5366	0.5840	0.5143	0.020*
C8	1.3423 (2)	0.35953 (11)	0.47936 (8)	0.0178 (3)
С9	0.8816 (2)	0.39672 (11)	0.32651 (8)	0.0148 (3)
C10	0.9418 (2)	0.30780 (11)	0.31890 (8)	0.0185 (3)
H10	1.0577	0.2979	0.3071	0.022*
C11	0.8346 (2)	0.23421 (12)	0.32831 (8)	0.0217 (4)
H11	0.8771	0.1740	0.3234	0.026*
C12	0.6650 (2)	0.24820 (12)	0.34488 (8)	0.0233 (4)
H12	0.5919	0.1977	0.3525	0.028*
C13	0.6022 (2)	0.33652 (13)	0.35029 (9)	0.0243 (4)
H13	0.4846	0.3460	0.3599	0.029*
C14	0.7092 (2)	0.41065 (11)	0.34182 (8)	0.0201 (3)
H14	0.6658	0.4708	0.3464	0.024*
C15	1.1516 (2)	0.47966 (10)	0.25280 (7)	0.0137 (3)
C16	1.0725 (2)	0.44338 (11)	0.20070 (8)	0.0186 (3)
H16	0.9612	0.4172	0.2037	0.022*
C17	1.1566 (3)	0.44565 (12)	0.14459 (8)	0.0243 (4)
H17	1.1017	0.4219	0.1090	0.029*
C18	1.3205 (2)	0.48240 (12)	0.13991 (8)	0.0235 (4)
H18	1.3763	0.4851	0.1011	0.028*
C19	1.4021 (2)	0.51502 (12)	0.19194 (8)	0.0216 (3)
H19	1.5158	0.5380	0.1891	0.026*
C20	1.3182 (2)	0.51420 (11)	0.24836 (7)	0.0179 (3)
H20	1.3742	0.5372	0.2839	0.021*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C21	0.8940 (2)	0.59074 (10)	0.31157 (8)	0.0137 (3)
C22	0.8430 (2)	0.64323 (11)	0.36199 (8)	0.0174 (3)
H22	0.8851	0.6291	0.4019	0.021*
C23	0.7311 (2)	0.71597 (12)	0.35396 (8)	0.0205 (4)
H23	0.6977	0.7517	0.3884	0.025*
C24	0.6678 (2)	0.73673 (11)	0.29596 (8)	0.0212 (4)
H24	0.5907	0.7862	0.2907	0.025*
C25	0.7181 (2)	0.68466 (11)	0.24565 (8)	0.0188 (3)
H25	0.6748	0.6986	0.2059	0.023*
C26	0.8313 (2)	0.61229 (11)	0.25321 (8)	0.0159 (3)
H26	0.8661	0.5774	0.2186	0.019*
H1	1.167 (4)	0.7369 (10)	0.3206 (13)	0.066 (9)*
H2	1.5176 (19)	0.4328 (14)	0.5163 (8)	0.024 (5)*
H3	1.345 (3)	0.2305 (10)	0.4935 (10)	0.034 (6)*
H4	1.470 (2)	0.2785 (16)	0.5305 (9)	0.041 (7)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01379 (9)	0.01142 (9)	0.01246 (9)	0.00043 (8)	-0.00276 (7)	0.00082 (8)
Cl1	0.0260 (2)	0.0220 (2)	0.0290 (2)	0.00243 (16)	-0.01141 (18)	-0.00098 (17)
S1	0.01566 (18)	0.01508 (18)	0.0210 (2)	-0.00126 (15)	-0.00263 (16)	0.00560 (15)
P1	0.01259 (17)	0.01158 (18)	0.01300 (18)	-0.00005 (16)	-0.00142 (13)	-0.00061 (15)
01	0.0255 (6)	0.0114 (5)	0.0190 (6)	-0.0023 (5)	-0.0093 (5)	0.0008 (4)
O2	0.0330 (7)	0.0164 (6)	0.0368 (7)	-0.0018 (6)	-0.0196 (6)	0.0063 (5)
N1	0.0150 (6)	0.0171 (7)	0.0126 (6)	0.0033 (5)	-0.0011 (5)	0.0028 (5)
N2	0.0188 (7)	0.0198 (7)	0.0168 (7)	0.0026 (6)	-0.0063 (6)	0.0040 (6)
N3	0.0264 (9)	0.0198 (8)	0.0261 (8)	0.0011 (6)	-0.0061 (7)	0.0075 (7)
C1	0.0125 (7)	0.0153 (7)	0.0148 (7)	-0.0003 (6)	0.0006 (6)	-0.0014 (6)
C2	0.0137 (7)	0.0168 (7)	0.0223 (8)	-0.0001 (6)	-0.0007 (7)	-0.0003 (6)
C3	0.0189 (8)	0.0138 (7)	0.0242 (9)	-0.0015 (6)	0.0055 (7)	-0.0019 (6)
C4	0.0313 (10)	0.0225 (9)	0.0183 (9)	-0.0107 (8)	0.0045 (7)	-0.0054 (7)
C5	0.0259 (9)	0.0244 (8)	0.0140 (8)	-0.0078 (7)	-0.0005 (7)	-0.0015 (7)
C6	0.0142 (7)	0.0183 (8)	0.0139 (8)	-0.0018 (6)	0.0002 (6)	-0.0011 (6)
C7	0.0164 (8)	0.0239 (8)	0.0108 (7)	-0.0009 (6)	-0.0014 (6)	0.0004 (6)
C8	0.0182 (8)	0.0186 (8)	0.0166 (8)	0.0013 (6)	0.0009 (6)	0.0041 (6)
C9	0.0147 (7)	0.0150 (7)	0.0146 (8)	-0.0040 (6)	-0.0027 (6)	-0.0019 (6)
C10	0.0165 (8)	0.0180 (8)	0.0209 (9)	0.0008 (7)	-0.0012 (7)	-0.0018 (6)
C11	0.0238 (9)	0.0143 (8)	0.0268 (9)	-0.0003 (7)	-0.0037 (8)	-0.0026 (7)
C12	0.0225 (9)	0.0226 (9)	0.0249 (9)	-0.0088 (7)	-0.0005 (7)	0.0014 (7)
C13	0.0149 (8)	0.0270 (9)	0.0312 (10)	-0.0025 (7)	0.0042 (7)	-0.0028 (8)
C14	0.0184 (8)	0.0180 (8)	0.0239 (9)	0.0020 (7)	0.0002 (7)	-0.0032 (6)
C15	0.0156 (7)	0.0109 (7)	0.0147 (7)	0.0024 (5)	-0.0006 (6)	-0.0004 (5)
C16	0.0182 (8)	0.0184 (8)	0.0191 (8)	0.0007 (6)	-0.0012 (7)	-0.0032 (6)
C17	0.0301 (10)	0.0252 (9)	0.0175 (8)	0.0055 (8)	-0.0033 (7)	-0.0079 (7)
C18	0.0286 (9)	0.0234 (9)	0.0187 (8)	0.0102 (7)	0.0080(7)	-0.0007 (6)
C19	0.0176 (8)	0.0186 (8)	0.0286 (9)	0.0015 (7)	0.0051 (7)	0.0007 (7)
C20	0.0180 (8)	0.0157 (7)	0.0200 (7)	0.0011 (6)	-0.0008 (6)	-0.0024 (6)

C21	0.0117 (7)	0.0115 (7)	0.0178 (8)	-0.0005 (6)	-0.0003 (6)	0.0005 (6)
C22	0.0187 (8)	0.0165 (8)	0.0170 (8)	-0.0006 (6)	0.0004 (6)	-0.0002 (6)
C23	0.0200 (9)	0.0176 (7)	0.0237 (9)	0.0017 (7)	0.0073 (7)	-0.0015 (7)
C24	0.0147 (8)	0.0142 (7)	0.0346 (10)	0.0025 (6)	0.0032 (7)	0.0041 (7)
C25	0.0157 (8)	0.0179 (7)	0.0228 (8)	-0.0020(7)	-0.0031 (7)	0.0041 (6)
C26	0.0156 (7)	0.0154 (7)	0.0169 (7)	-0.0007 (6)	-0.0019 (6)	-0.0001 (6)
Geometric paran	neters (Å, °)					
Ni1—O1		1.847 (1)	C10—	-C11	1.381	(2)
Ni1—N1		1.897 (1)	C10—	-H10	0.9500)
Ni1—P1		2.1998 (4)	C11—	-C12	1.384	(3)
Ni1—S1		2.1416 (4)	C11—	-H11	0.9500)
S1—C8		1.7240 (17)	C12—	-C13	1.391	(3)
P1-C15		1.8134 (16)	C12—	-H12	0.9500)
Р1—С9		1.8176 (17)	C13—	-C14	1.383	(2)
P1-C21		1.8211 (16)	C13—	-H13	0.9500)
01—C1		1.3198 (18)	C14—	-H14	0.9500)
O2—C2		1.360 (2)	C15—	-C16	1.395	(2)
O2—H1		0.839 (10)	C15—	-C20	1.396	(2)
N1—C7		1.296 (2)	C16—	-C17	1.385	(2)
N1—N2		1.3904 (19)	C16—	-H16	0.9500)
N2—C8		1.328 (2)	C17—	-C18	1.390	(3)
N2—H2		0.861 (9)	C17—	-H17	0.9500)
N3—C8		1.319 (2)	C18—	-C19	1.383	(3)
N3—H3		0.850 (10)	C18—	-H18	0.9500)
N3—H4		0.857 (10)	C19—	-C20	1.390	(2)
C1—C6		1.405 (2)	C19—	-H19	0.9500)
C1—C2		1.418 (2)	C20—	-H20	0.9500)
C2—C3		1.381 (2)	C21—	-C26	1.396	(2)
C3—C4		1.398 (2)	C21—	-C22	1.397	(2)
С3—НЗА		0.9500	C22—	-C23	1.390	(2)
C4—C5		1.373 (3)	C22—	-H22	0.9500)
C4—H4A		0.9500	C23—	-C24	1.388	(3)
C5—C6		1.416 (2)	C23—	-H23	0.9500)
C5—H5		0.9500	C24—	-C25	1.391	(2)
C6—C7		1.430 (2)	C24—	-H24	0.9500)
С/—Н/		0.9500	C25—	-C26	1.391	(2)
C9—C10		1.397 (2)	C25—	-H25	0.9500)
C9—C14		1.399 (2)	C26—	-H26	0.9500)
01—Ni1—N1		94.09 (5)	C11—	-C10C9	120.68	8 (16)
01—Ni1—S1		176.98 (4)	C11—	-C10—H10	119.7	
N1—Ni1—S1		87.90 (4)	C9—0	C10—H10	119.7	
Ol—Nil—Pl		85.66 (4)	C10-	-C11—C12	119.98	3 (16)
NI—NII—PI		176.19 (4)	C10-	-CII—HII	120.0	
SI—N11—P1		92.207 (17)	C12—	-C11—H11	120.0	(17)
C8—S1—Ni1		97.58 (6)	C11—	-C12—C13	119.74	l (17)
C15—P1—C9		106.62 (7)	C11—	-C12—H12	120.1	
C15—P1—C21		105.05 (7)	C13—	-C12—H12	120.1	

C9—P1—C21	104.04 (7)	C14—C13—C12	120.68 (17)
C15—P1—Ni1	109.50 (5)	C14—C13—H13	119.7
C9—P1—Ni1	116.68 (5)	C12—C13—H13	119.7
C21—P1—Ni1	114.07 (5)	C13—C14—C9	119.68 (16)
C1—O1—Ni1	125.06 (10)	C13—C14—H14	120.2
C2—O2—H1	105 (2)	C9—C14—H14	120.2
C7—N1—N2	116.02 (13)	C16-C15-C20	119.55 (15)
C7—N1—Ni1	126.64 (12)	C16—C15—P1	119.83 (12)
N2—N1—Ni1	117.29 (10)	C20-C15-P1	120.34 (12)
C8—N2—N1	117.35 (13)	C17—C16—C15	119.78 (16)
C8—N2—H2	120.6 (14)	C17—C16—H16	120.1
N1—N2—H2	121.7 (14)	C15—C16—H16	120.1
C8—N3—H3	122.9 (16)	C16—C17—C18	120.56 (16)
C8—N3—H4	121.0 (17)	С16—С17—Н17	119.7
H3—N3—H4	115 (2)	C18—C17—H17	119.7
O1—C1—C6	125.86 (14)	C19—C18—C17	119.80 (16)
O1—C1—C2	115.72 (14)	C19—C18—H18	120.1
C6—C1—C2	118.42 (14)	C17—C18—H18	120.1
O2—C2—C3	120.53 (15)	C18—C19—C20	120.15 (16)
O2—C2—C1	118.33 (14)	С18—С19—Н19	119.9
C3—C2—C1	121.13 (15)	С20—С19—Н19	119.9
C2—C3—C4	119.75 (16)	C19—C20—C15	120.09 (15)
С2—С3—НЗА	120.1	C19—C20—H20	120.0
С4—С3—НЗА	120.1	С15—С20—Н20	120.0
C5—C4—C3	120.41 (16)	C26—C21—C22	119.25 (15)
C5—C4—H4A	119.8	C26—C21—P1	121.10 (12)
C3—C4—H4A	119.8	C22—C21—P1	119.55 (13)
C4—C5—C6	120.62 (16)	C23—C22—C21	120.22 (15)
С4—С5—Н5	119.7	С23—С22—Н22	119.9
С6—С5—Н5	119.7	C21—C22—H22	119.9
C1—C6—C5	119.56 (15)	C24—C23—C22	120.38 (16)
C1—C6—C7	121.27 (15)	C24—C23—H23	119.8
C5—C6—C7	119.17 (15)	С22—С23—Н23	119.8
N1—C7—C6	123.88 (15)	C23—C24—C25	119.62 (15)
N1—C7—H7	118.1	C23—C24—H24	120.2
С6—С7—Н7	118.1	C25—C24—H24	120.2
N3—C8—N2	119.87 (16)	C24—C25—C26	120.36 (16)
N3—C8—S1	121.41 (14)	C24—C25—H25	119.8
N2—C8—S1	118.71 (12)	C26—C25—H25	119.8
C10—C9—C14	119.17 (16)	C25—C26—C21	120.16 (16)
C10—C9—P1	119.88 (13)	C25—C26—H26	119.9
C14—C9—P1	120.69 (13)	C21—C26—H26	119.9
N1—Ni1—S1—C8	-8.42 (7)	C21—P1—C9—C10	162.94 (14)
P1—Ni1—S1—C8	167.76 (6)	Ni1—P1—C9—C10	-70.45 (15)
O1—Ni1—P1—C15	76.20 (7)	C15—P1—C9—C14	-133.63 (14)
S1—Ni1—P1—C15	-101.67 (5)	C21—P1—C9—C14	-22.91 (16)
O1—Ni1—P1—C9	-162.64 (7)	Ni1—P1—C9—C14	103.70 (14)
S1—Ni1—P1—C9	19.49 (6)	C14—C9—C10—C11	-2.2 (3)
O1—Ni1—P1—C21	-41.18 (7)	P1-C9-C10-C11	172.08 (13)

S1—Ni1—P1—C21	140.95 (6)	C9—C10—C11—C12	0.6 (3)
N1—Ni1—O1—C1	-18.45 (13)	C10-C11-C12-C13	1.8 (3)
P1—Ni1—O1—C1	165.37 (13)	C11-C12-C13-C14	-2.7 (3)
O1—Ni1—N1—C7	9.88 (14)	C12—C13—C14—C9	1.2 (3)
S1—Ni1—N1—C7	-172.40 (14)	C10-C9-C14-C13	1.2 (3)
O1—Ni1—N1—N2	-167.58 (11)	P1-C9-C14-C13	-172.98 (14)
S1—Ni1—N1—N2	10.15 (11)	C9—P1—C15—C16	33.87 (15)
C7—N1—N2—C8	174.49 (15)	C21—P1—C15—C16	-76.15 (14)
Ni1—N1—N2—C8	-7.78 (19)	Ni1—P1—C15—C16	160.94 (11)
Ni1—O1—C1—C6	15.1 (2)	C9—P1—C15—C20	-152.17 (12)
Ni1—O1—C1—C2	-165.23 (11)	C21—P1—C15—C20	97.81 (13)
O1—C1—C2—O2	-2.6 (2)	Ni1—P1—C15—C20	-25.10 (13)
C6—C1—C2—O2	177.13 (15)	C20-C15-C16-C17	-2.9 (2)
O1—C1—C2—C3	176.23 (15)	P1-C15-C16-C17	171.13 (13)
C6—C1—C2—C3	-4.0 (2)	C15-C16-C17-C18	1.1 (3)
O2—C2—C3—C4	-178.30 (16)	C16-C17-C18-C19	1.6 (3)
C1—C2—C3—C4	2.9 (3)	C17—C18—C19—C20	-2.4 (3)
C2—C3—C4—C5	0.2 (3)	C18—C19—C20—C15	0.6 (2)
C3—C4—C5—C6	-2.0 (3)	C16—C15—C20—C19	2.0 (2)
O1—C1—C6—C5	-178.13 (16)	P1-C15-C20-C19	-171.93 (12)
C2—C1—C6—C5	2.2 (2)	C15—P1—C21—C26	31.84 (15)
O1—C1—C6—C7	2.8 (3)	C9—P1—C21—C26	-80.02 (14)
C2—C1—C6—C7	-176.86 (16)	Ni1—P1—C21—C26	151.76 (12)
C4—C5—C6—C1	0.8 (3)	C15—P1—C21—C22	-151.69 (13)
C4—C5—C6—C7	179.84 (17)	C9—P1—C21—C22	96.45 (14)
N2—N1—C7—C6	-179.36 (15)	Ni1—P1—C21—C22	-31.77 (14)
Ni1—N1—C7—C6	3.2 (2)	C26—C21—C22—C23	0.1 (2)
C1—C6—C7—N1	-12.3 (3)	P1-C21-C22-C23	-176.48 (13)
C5—C6—C7—N1	168.62 (16)	C21—C22—C23—C24	0.5 (3)
N1—N2—C8—N3	179.62 (15)	C22—C23—C24—C25	-0.5 (3)
N1—N2—C8—S1	-0.9 (2)	C23—C24—C25—C26	-0.2 (3)
Ni1—S1—C8—N3	-173.17 (14)	C24—C25—C26—C21	0.7 (2)
Ni1—S1—C8—N2	7.37 (14)	C22—C21—C26—C25	-0.7 (2)
C15—P1—C9—C10	52.22 (15)	P1-C21-C26-C25	175.82 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H1…O1	0.84 (1)	2.11 (3)	2.636 (2)	120 (2)
N2—H2···Cl1	0.86 (1)	2.17 (1)	3.016 (2)	167 (2)
N3—H3···Cl1 ⁱ	0.85 (1)	2.46 (1)	3.275 (2)	161 (2)
Symmetry codes: (i) $x-1/2, -y+1/2, -z+1$.				

Fig. 1

