pmc logo image
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
Your browser version may not work well with NCBI's web applications. More information here...

Formats:

Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m696.
Published online 2008 April 23. doi: 10.1107/S1600536808010830.
PMCID: PMC2961153
Bis[4-(dimethyl­amino)pyridinium] tetra­bromidodiphenyl­stannate(IV)
Quai Ling Yap,a Kong Mun Lo,a and Seik Weng Nga*
aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: seikweng/at/um.edu.my
Received April 7, 2008; Accepted April 18, 2008.
Abstract
The SnIV atom of the stannate anion in the title salt, (C7H11N2)2[SnBr4(C6H5)2], lies on a center of inversion in a tetra­gonally compressed octa­hedron. The two independent Br atoms in the anion are hydrogen-bond acceptors for the same cation.
Related literature
For the structure of dipyridinium tetra­bromidostannate(II), see: Tuleda & Khan (1991 [triangle]).
Click on image to enlarge
An external file that holds a picture, illustration, etc.
Object name is e-64-0m696-scheme1.jpg Object name is e-64-0m696-scheme1.jpg
Crystal data
  • (C7H11N2)2[SnBr4(C6H5)2]
  • M r = 838.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m696-efi1.jpg
  • a = 10.7803 (2) Å
  • b = 9.3847 (2) Å
  • c = 14.4068 (4) Å
  • β = 94.126 (2)°
  • V = 1453.76 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.40 mm−1
  • T = 100 (2) K
  • 0.24 × 0.18 × 0.12 mm
Data collection
  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.386, T max = 0.514 (expected range = 0.348–0.464)
  • 11853 measured reflections
  • 3334 independent reflections
  • 2688 reflections with I > 2σ(I)
  • R int = 0.035
Refinement
  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.051
  • S = 0.99
  • 3334 reflections
  • 166 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.42 e Å−3
Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).
Table 1
Table 1
Selected geometric parameters (Å, °)
Table 2
Table 2
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808010830/tk2264sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010830/tk2264Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
We thank the University of Malaya for funding this study (SF022155/2007 A) and also for the purchase of the diffractometer.
supplementary crystallographic information
Comment
Bis[4-(dimethylamino)pyridinium] tetrabromidodiphenylstannate(IV), (I) (Fig. 1 and Table 1) was the product of the cleavage of the mixed alkyl/triarylstannate, cyclopentyltriphenyltin, by 4-dimethylaminopyridine hydrobromide perbromide. The stannate has the tin atom in a tetragonally compressed octahedral Br4C2 environment. The anion has also been reported as the centrosymmetric pyridinium salt: Sn–Br = 2.7592 (3), 2.7737 (3) and Sn–C 2.158 (3) Å (Tuleda & Khan, 1991). Connections between ions are of the type N-H···Br (Table 2) so that each independent pair of bromide atoms are linked to the same cation.
Experimental
Cyclopentyltriphenyltin (1.36 g, 3 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (1.1 g, 3 mmol) were heated in chloroform (100 ml) for 3 h. The filtered solution when allowed to evaporate yielded large yellow crystals, m.p. 470–473 K.
Refinement
Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5Ueq(C). The ammonium H atom was refined with a distance restraint of N–H 0.88±0.01 Å; its displacement parameter was freely refined.
Figures
Fig. 1.
Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) plot of [C7H11N]2 [SnBr4(C6H5)2] at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Crystal data
(C7H11N2)2[SnBr4(C6H5)2]F000 = 812
Mr = 838.89Dx = 1.916 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3449 reflections
a = 10.7803 (2) Åθ = 2.3–28.3º
b = 9.3847 (2) ŵ = 6.40 mm1
c = 14.4068 (4) ÅT = 100 (2) K
β = 94.126 (2)ºBlock, colorless
V = 1453.76 (6) Å30.24 × 0.18 × 0.12 mm
Z = 2
Data collection
Bruker SMART APEX diffractometer3334 independent reflections
Radiation source: fine-focus sealed tube2688 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
T = 100(2) Kθmax = 27.5º
ω scansθmin = 2.3º
Absorption correction: Multi-scan(SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.386, Tmax = 0.514k = −12→12
11853 measured reflectionsl = −18→14
Refinement
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051  w = 1/[σ2(Fo2) + (0.0228P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3334 reflectionsΔρmax = 0.47 e Å3
166 parametersΔρmin = −0.42 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
Sn10.50000.50000.50000.01159 (7)
Br10.25635 (2)0.50711 (3)0.43147 (2)0.01591 (7)
Br20.55014 (2)0.71661 (3)0.38004 (2)0.01549 (7)
N10.05057 (19)1.2090 (2)0.45413 (16)0.0168 (5)
N20.2527 (2)0.8608 (3)0.3851 (2)0.0309 (7)
H2N0.296 (3)0.785 (2)0.372 (3)0.057 (12)*
C10.4622 (2)0.6546 (3)0.60374 (19)0.0130 (6)
C20.5344 (2)0.7784 (3)0.6151 (2)0.0185 (6)
H20.60430.79160.57940.022*
C30.5038 (3)0.8816 (3)0.6784 (2)0.0232 (7)
H30.55290.96540.68620.028*
C40.4025 (3)0.8631 (3)0.7301 (2)0.0248 (7)
H40.38070.93540.77220.030*
C50.3325 (3)0.7406 (3)0.7212 (2)0.0219 (7)
H50.26390.72770.75820.026*
C60.3615 (2)0.6360 (3)0.65865 (19)0.0172 (6)
H60.31310.55150.65300.021*
C7−0.0284 (3)1.2845 (3)0.3844 (2)0.0260 (7)
H7A0.02361.33680.34290.039*
H7B−0.08161.35170.41530.039*
H7C−0.08041.21600.34810.039*
C80.0588 (3)1.2631 (3)0.5493 (2)0.0209 (6)
H8A0.03861.18660.59200.031*
H8B−0.00011.34180.55410.031*
H8C0.14351.29720.56570.031*
C90.1188 (2)1.0979 (3)0.4305 (2)0.0141 (6)
C100.1155 (2)1.0461 (3)0.3381 (2)0.0182 (6)
H100.06681.09370.29000.022*
C110.1821 (3)0.9282 (3)0.3182 (2)0.0254 (7)
H110.17860.89320.25620.031*
C120.2617 (3)0.9093 (3)0.4731 (2)0.0280 (8)
H120.31410.86090.51860.034*
C130.1979 (2)1.0250 (3)0.4982 (2)0.0201 (7)
H130.20581.05770.56070.024*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
Sn10.01150 (12)0.01286 (14)0.01055 (14)0.00047 (10)0.00166 (10)0.00068 (11)
Br10.01193 (13)0.01943 (15)0.01628 (15)0.00059 (10)0.00046 (10)0.00031 (12)
Br20.01807 (13)0.01534 (14)0.01326 (14)−0.00163 (11)0.00254 (10)0.00332 (13)
N10.0165 (11)0.0180 (12)0.0155 (13)0.0016 (10)−0.0018 (9)0.0031 (11)
N20.0372 (15)0.0258 (16)0.0305 (17)0.0166 (13)0.0093 (13)0.0049 (14)
C10.0147 (13)0.0135 (14)0.0109 (15)0.0026 (11)0.0011 (11)−0.0007 (12)
C20.0209 (14)0.0194 (15)0.0155 (15)−0.0009 (12)0.0027 (12)0.0045 (13)
C30.0308 (16)0.0152 (16)0.0227 (17)−0.0012 (12)−0.0039 (13)−0.0025 (13)
C40.0339 (17)0.0243 (17)0.0158 (16)0.0109 (14)−0.0004 (13)−0.0078 (14)
C50.0193 (14)0.0345 (19)0.0120 (15)0.0065 (12)0.0012 (12)−0.0018 (14)
C60.0139 (13)0.0235 (16)0.0138 (15)0.0001 (11)−0.0015 (11)−0.0003 (13)
C70.0217 (15)0.0307 (18)0.0244 (17)0.0081 (13)−0.0072 (13)−0.0020 (15)
C80.0233 (14)0.0217 (16)0.0178 (16)−0.0016 (12)0.0018 (12)−0.0022 (13)
C90.0132 (12)0.0147 (14)0.0147 (15)−0.0048 (10)0.0016 (11)0.0038 (12)
C100.0184 (14)0.0163 (15)0.0197 (16)0.0006 (11)0.0000 (12)0.0056 (13)
C110.0345 (17)0.0237 (17)0.0188 (17)0.0052 (14)0.0073 (14)0.0021 (15)
C120.0271 (16)0.0303 (19)0.0261 (19)0.0057 (14)−0.0014 (14)0.0102 (16)
C130.0192 (13)0.0234 (17)0.0175 (16)−0.0012 (12)0.0010 (12)0.0045 (13)
Geometric parameters (Å, °)
Sn1—C12.143 (3)C4—H40.9500
Sn1—C1i2.143 (3)C5—C61.384 (4)
Sn1—Br12.7395 (2)C5—H50.9500
Sn1—Br1i2.7395 (2)C6—H60.9500
Sn1—Br22.7470 (3)C7—H7A0.9800
Sn1—Br2i2.7470 (3)C7—H7B0.9800
N1—C91.334 (3)C7—H7C0.9800
N1—C71.454 (3)C8—H8A0.9800
N1—C81.459 (4)C8—H8B0.9800
N2—C121.344 (4)C8—H8C0.9800
N2—C111.342 (4)C9—C101.415 (4)
N2—H2N0.879 (10)C9—C131.424 (4)
C1—C61.399 (4)C10—C111.361 (4)
C1—C21.402 (4)C10—H100.9500
C2—C31.387 (4)C11—H110.9500
C2—H20.9500C12—C131.349 (4)
C3—C41.376 (4)C12—H120.9500
C3—H30.9500C13—H130.9500
C4—C51.376 (4)
C1—Sn1—C1i180.0C6—C5—C4120.3 (3)
C1—Sn1—Br190.53 (7)C6—C5—H5119.8
C1—Sn1—Br1i89.47 (7)C4—C5—H5119.8
C1—Sn1—Br289.64 (7)C5—C6—C1120.1 (3)
C1—Sn1—Br2i90.36 (7)C5—C6—H6120.0
C1i—Sn1—Br189.47 (7)C1—C6—H6120.0
C1i—Sn1—Br1i90.53 (7)N1—C7—H7A109.5
C1i—Sn1—Br290.36 (7)N1—C7—H7B109.5
C1i—Sn1—Br2i89.64 (7)H7A—C7—H7B109.5
Br1—Sn1—Br1i180.0N1—C7—H7C109.5
Br1—Sn1—Br288.981 (8)H7A—C7—H7C109.5
Br1—Sn1—Br2i91.019 (8)H7B—C7—H7C109.5
Br1i—Sn1—Br2i88.981 (8)N1—C8—H8A109.5
Br1i—Sn1—Br291.019 (8)N1—C8—H8B109.5
Br2—Sn1—Br2i180.0H8A—C8—H8B109.5
C9—N1—C7120.7 (2)N1—C8—H8C109.5
C9—N1—C8121.0 (2)H8A—C8—H8C109.5
C7—N1—C8118.2 (2)H8B—C8—H8C109.5
C12—N2—C11121.0 (3)N1—C9—C10122.1 (2)
C12—N2—H2N118 (3)N1—C9—C13121.0 (3)
C11—N2—H2N120 (3)C10—C9—C13116.9 (2)
C6—C1—C2118.9 (3)C11—C10—C9120.0 (3)
C6—C1—Sn1120.3 (2)C11—C10—H10120.0
C2—C1—Sn1120.71 (19)C9—C10—H10120.0
C3—C2—C1120.0 (3)N2—C11—C10120.8 (3)
C3—C2—H2120.0N2—C11—H11119.6
C1—C2—H2120.0C10—C11—H11119.6
C4—C3—C2120.2 (3)N2—C12—C13121.5 (3)
C4—C3—H3119.9N2—C12—H12119.3
C2—C3—H3119.9C13—C12—H12119.3
C3—C4—C5120.4 (3)C12—C13—C9119.7 (3)
C3—C4—H4119.8C12—C13—H13120.1
C5—C4—H4119.8C9—C13—H13120.1
Br1i—Sn1—C1—C6−130.5 (2)C2—C1—C6—C51.7 (4)
Br1—Sn1—C1—C649.5 (2)Sn1—C1—C6—C5−175.7 (2)
Br2i—Sn1—C1—C6−41.5 (2)C7—N1—C9—C10−1.6 (4)
Br2—Sn1—C1—C6138.5 (2)C8—N1—C9—C10−178.0 (2)
Br1i—Sn1—C1—C252.2 (2)C7—N1—C9—C13178.9 (2)
Br1—Sn1—C1—C2−127.8 (2)C8—N1—C9—C132.6 (4)
Br2i—Sn1—C1—C2141.2 (2)N1—C9—C10—C11−176.8 (3)
Br2—Sn1—C1—C2−38.8 (2)C13—C9—C10—C112.6 (4)
C6—C1—C2—C3−1.5 (4)C12—N2—C11—C10−1.4 (5)
Sn1—C1—C2—C3175.9 (2)C9—C10—C11—N2−0.9 (4)
C1—C2—C3—C4−0.2 (4)C11—N2—C12—C131.7 (5)
C2—C3—C4—C51.7 (4)N2—C12—C13—C90.2 (5)
C3—C4—C5—C6−1.5 (4)N1—C9—C13—C12177.1 (3)
C4—C5—C6—C1−0.2 (4)C10—C9—C13—C12−2.3 (4)
Symmetry codes: (i) −x+1, −y+1, −z+1.
Hydrogen-bond geometry (Å, °)
D—H···AD—HH···AD···AD—H···A
N2—H2N···Br10.88 (1)2.79 (3)3.385 (3)126 (3)
N2—H2N···Br20.88 (1)2.81 (3)3.485 (3)135 (3)
 
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2264).
References
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
  • Tuleda, D. & Khan, M. A. (1991). J. Chem. Soc. Dalton Trans. pp. 1003–1005.
  • Westrip, S. P. (2008). publCIF In preparation.

See more articles cited in this paragraph