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General electromagnetic density of modes for a one-dimensional photonic crystal
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In this paper, we present more general, exact, and concise expressions for calculating the electromagnetic
density of modegEDOM) in one dimension photonic crystéuperlatticg for E and H polarizations. The
expression is used for numerical computation of the EDOM in the lower-ifdielectric constantlayer. We
discuss the difference between the EDOM in high- and low-index layers as due to the presence of waveguiding
modes and evanescent-excited Bloch modes in the higher-index layer. Two methods of computation are
presented to compute the EDOM in the lower-index layer. We suggest the possibility of using the EDOM to
establish population inversion, which may be useful for higher-frequency lésers x ray$ and control any
radiative processes. We also elaborate on the limitations of the results of Alvarado Ro@tigliezs due to
the approximation used in the evaluationab/dk, , for Vi@ and comment on the limitations of the one-
dimensional EDOM expression of Bendicksenal.

PACS numbeps): 42.70.Qs, 71.26:b

[. INTRODUCTION layer 1 and suggest the possibility of using a modified
EDOM to facilitate population inversion.
The spontaneous emission rate of atgwia the Fermi’s
golden rule[1]) and the spectral density of the blackbody Il. ELECTROMAGNETIC DENSITY OF MODES
radiation [2] are directly affected by fluctuating vacuum , .
fields (VF's). Since theelectromagnetic density of modes  1he Ig—_space_ volume occupied by each wave vector point
(EDOM) characterizes the mode density of the VF’s, knowl-V/(27)" is derived by discretizing the wave vector using the
edge of how to control the EDOM enables us to engineer th@€riodic boundary condition and taking the quantization vol-
VF’s and various quantum-mechanical processes which déimeV to infinity. The number of modesjN, having fre-
pend on it. In the last decade, periodic structures with oneduencies fromw to w+ dw is
two, and three dimensiori8] have been proposed and fab-
ricated. These so-called photonic crystals exhibit photonic ON=p(w)dw
band gaps that can be used to modify the EDOM. A super-
lattice is the simplest form of such periodic structure. Ana- =[V/(27r)3]2 d3k
lytical expression of EDOM for one-dimensiondlD) pho- n Jallklon)
tonic crystal has been derived for normal-incidence waves
[4], which adequately describes the spontaneous emission of =[V/(27T)3]2 dk,ds,, (1)
photon in only one direction. In reality, the photon can be n Jalklen)
emitted any direction aroundmsr. Therefore, it is necessary
to obtain an expression of the EDOM which considers all
possible directions of photon emission, as in RB}. ; : .
In this paper, we present more general, concise, and exagPace: respectively, antis the _band index.

expressions for the EDOM in a lower dielectric constant  SN9 (Owni! 9kn) ko= Sor With |Vwni| = dwoni/ dky and
layer of a step index superlattice. Thus the dispersion of tth taking 5w —0, Eq.(1) becomes
electromagnetic waves is described by the transcendental
equation[6]. In Sec. Il, we present the derivation of the p(w)=dN/dw=[V/(27T)3]2 f dS,/|Viwnd -
EDOM without any approximation. We derive the exact ex- n Jalk(wp)
pressions fobw/ dk, anddw/ Jk,, from which we obtain the (2
necessary conditions where these expressions approximate to . . .
Eq. (19) in Ref.[5] for the &function superlattice model. In IF we conflne the Bloch waves in 1D, i.e., normal to the
Sec. Ill, we discuss two numerical approaches and the ne('s_uperlattlce, the only possible wave vectors corresponding
essary limit of numerical integration for the constant- to each v are +kg and —kg. So Eq. (1) becomes
frequency surface, which leads to the same final results. W&\ = (L/2m) = Jai k() dKe =2 S ail k(w,) (7Kg / dw) Sw and we
also discuss the contribution of the evanescent-excited BIocHaYep(“’):EL/W)‘?kB/f?“” as in Ref.[4]. In the 1D peri-
modes and the waveguiding modes to the EDOM in thePdic structure(superlatticg the wave vector in the superlat-

higher-dielectric-constant layer, referred as layer 2. In Se '

whered S, anddk,, are the infinitesimal area and thickness of
the surface elements on a constant-frequency surfade in

dice is k=(kg,ky,k;) wherekg is the Bloch wave compo-

IV, we present the computation results for the EDOM innent and B:\/k§+ k? is the conserved tangential wave
number. Thereforek= (kg ,B cose,Bsing), wheregp is the
azimuthal angle around the axis. The group velocity is
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FIG. 1. Surface element of a constant-frequency surface for
superlattice.
ky>

and the constant frequency surface elem@&ig. 1) is dS,
=2mBdk, wheresk,= 68\/1+ (5kg/5B)?|,,. From the tran-

scendental equatiod), the variableskg, o, and B8 are
mutually dependent, from which we havékg/dB|,=
— (9wl dBli) ! (dwldkg|g).  Therefore, dS,=2mpdp[1
+ (9wl dB,)* (dwl kgl 1" and Vol =[(dw!/
Bli)*+ (dwl dkg| 5)*1V% Using these relations, EqR) is
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reduced to a more concise EDOM expression for each polar-

ization,

\/giwlc
P =viem23 [ papiolael, @
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An alternate expression of the EDOM to E®) can be
obtained by substituting3(w, 6,) = Ve ,(w/c)sin 6, (assum-
ing ,>¢4) and converting the wave number summation to
an angular summation,

02
p,p(a))=V(a)/27TC)2j 2Y82 sin 202d02/(3(1)/(?k3|%),
0
(6)

where 02Vi:Sin71\/8i/82 and aw/é’kB|z now depends ex-
plicitly on 6, instead ofg.

The gradient of the band structure)}/dw|,, is related
lo dwl IKg| g by

(90)/(9'(3'32 1/[(9kB/(?(!)| 92— (ﬂkB/(?t92|w)
X (9Bl dw|g2)(9B1305],)]

=l/[(?k3/(9w|92—(ﬁk3/002|wtan02/co)] (7)

In the final part of this section, we use Hgb) to derive the
dispersion relation for thé-function superlatic¢5] and ob-
tain exact expressions fodw/dk, and dw/dk,. The
Ssfunction model defines that the higher-index layer has a
dielectric constant, (>¢4) and infinitesimal thickness of
d, (<a), such thatd;~a, a,<m/2, a;~ky,@a, and Eq.(4b)
reduces to

coskga=cosk;,a—Q sink,,a,

®

whereQ =gaw?/2c?k,, andg=(e,—¢,)d,/a is the grating
strength[5].
The necessary conditions for E@) to be valid are

(a) dy(wlc)e,<m/2 or 1-r<1/(4y\e,) (9a

where the factor of 2 is due to the upper and lower parts of

the constant-frequency surfadg,=1,2) is the layer index,
andp (=E,H) is the polarization index.
By using Eq.(3), the computation of the EDOM is greatly

simplified, since it is not necessary to evaluate the terms

dwl Jk, anddwl/ dk,, as was done in Ref5]. We only need
to evaluatedw/dkg| 5 using the transcendental equations

coskga=[(y+ 1lly+2)cosa,—(y+1lly—2)cosa_]l/4,

(4a)
1 . .
coskga=CcoSa; COSap— 5(7+ 1/y)sinaq sinas,
(4b)
With a.=a,*a;, aj=kydi, kx=[(w/c)%;—p4 Y B

=(w/c)\e; SiNG, Yo=Ky /Koy, andyn= ve(£,/e1), Where

di, &, and ¢, are the thickness, dielectric constant, and

wave vector angle, respectively, in layigf=1,2) of the su-
perlattice, anca=d; +d, is the period or lattice constant.
Using Eq.(4a), we have the analytical expression of

dwl dkg| = 4asinkga/{[C cosa —D A, sina,]

—[Ccosa_—D_A_sina_]}, (5)

where A.=(y+1/yx2), and D.

=da.liw.

C=0A.liw,

and

(b) 2ki,<(w/c)* (2~ &1)
Where y=wal/27rc is the dimensionless frequency amd
=d,/a is the dimensionless thickness of layer 1 by setting
£o>¢€1.

The exact expressions afw/dk, and dw/dk, for the
&function model can be obtained by differentiating E8).
with respect t,,

or £,>3g4, (9b)

Jw
aky

¢k [sink;,a+ Q(coskya—sin(k,a)]
" weq [(1+9leq)sin(kya) + Q(coskya—sin(k,a)]”

(10)

Exactly the same form of expression is obtainedder ok, .

We only have the approximation @fw/dky~c?k,/we;
anddw/ dk,~c?k,/we, [as in Eq.(27) of Ref.[5]] when the
difference between the bracketed numerator and denominator
of Eqg. (10) is much smaller than the bracketed numerator,
ie.,

D=|(1+g/eq)sinky,a+ Q(cosks@a—sinck,a)]

—(g/&,)|sinky,al>0. (11)
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Since() andk,, depend explicitly on frequency and propa- 3 - -
gation angle through, andk,, the approximation yields 0'941/"
good EDOM results only when conditigil) is satisfied for

all possible propagation angles for a specific frequency and
structural parameterd;/a ande;. If D is close to zero or
negative, conditior(11) is not satisfied and the approxima-

tion becomes invalid. ®a

1X:]

2nc
I1l. COMPUTATION OF THE EDOM

Equation(3) can be evaluated numerically by wave num-
ber 8 summation for each frequency poiat Any propagat-
ing mode that can be created at a particular space point in the

superlattice will contribute to the EDOM at that point. Thus % . 5 . : . . >
the summation range o8=0—(w/c) corresponds to the EDOM (Arbitrary unit)
propagating Bloch modes with relg, , ko, , andkg that can a)

be created by a radiative source from outside as well as in-
side the superlattice. The summation range £of (w/c)
—(wl/c) /e, also corresponds to rekl,, k,,, andkg, but

can only be excited from within the superlattice. The sum-
mation range of8=(w/c)\e,— (w/c) e, corresponds to

modes with imaginark,, and realk,, . However kg is real

only for a frequency below a certain threshold, which can

also be excited by the evanescent fields in layer 1. Beyond ¢a
this threshold kg becomes imaginary since the evanescent 7 -~
fields in layer 1 decay too rapidly and cannot excite the
Bloch modes. Here the fields from two adjacent layers 2 do

not couple. The electromagnetic fields within layer 2 un-
dergo repeated total internal reflection. The propagating
Bloch modes become waveguide modes. These modes con- 0
tribute to the EDOM of layer 2 only. The modes correspond-

ing to imaginaryk,, can only be excited in the higher-index

layer (layer 2 and not in layer 1, and therefore do not con-

tribute to the EDOM of layer 1. Thus the EDOM for layers 1 b)

and 2 require the overall summation range p=0 FIG. 2. Dimensionless frequency versus EDOM with extremely
—(w/c)\Je; and B=—(wlc)\e, respectively, fore, high index contrast,=1, £,=50, andr=0.5, for (a) E polariza-
>e;. In this paper, we discuss the results for the EDOM intion and(b) H polarization. The solid line shows the EDOM for
layer 1 only. unpolarized light in a vacuum.

In the limit e ,— e;— 0, where the superlattice becomes a
homogeneous medium, we show that Etg) still gives cor-  gration results obtained from E¢B) by wave number sum-
rect results. The constant-frequency surface becomes sphegation and from Eq(6) by angular summation are exactly
cal and dispersionless. From E(a), we havekg~Kyx  the same. However, the angular summation approach re-
~kax= ky= /e (w/c)cos,, while the tangential component quires less computation time due to the constant upper limit
remains as B=e(w/c)sing,. By differentiation of of the integration.
s(w/c)2=k§+ B?, we have ﬁw/ak3|ﬁ=(c cosb,)/\e, Figures 2a) and 2b) show the existence of high-contrast
dwldB|y,= (csin 6.)/\Je, and the group velocity is EDOM profiles(with sharp peaks, each resembles the Dirac
|V wmd =¢/ e, with wave vectok=(kg,3). By substitut- é function) for the case of extremely high dielectric contrast

ing dw! oks| 5 into Eq. (6), we have the EDOM for a homo- between Iay_ers 1 and 2. FE_rpoIarization[see Fig. 2_a)] the
geneous medium, EDOM vanishes at certain ranges of frequencies, called

EDOM gaps. These gaps are useful for the suppression of the
p(w)=Ve¥2w?/2m2c3. (120  spontaneous emission of atoms located in layer 1, while the
sharp peakssimilar to Van Hove singularitigsare useful for
We observe that the EDOM is enhanced in a high dielectrispontaneous emission enhancement. The EDOM gap exists
medium. In free space, EQ(12) reduces to py(w) at the lower-frequency region only. As the frequency in-

s n n L . "
] 0.5 1 1.5 2 25 3 3.5

EDOM (Arbitrary unit)

=Vw?/27%c® for each polarization. creases, the gap becomes smaller and vanishesd pofar-
ization[see Fig. 2b)] we hardly observe any EDOM gap of
IV. RESULTS AND DISCUSSION finite size for any choice of parameters. The EDOM drops

very steeply to near zero at the lower-frequency side of the

Figures 2—4 show the plot of dimensionless frequencyan Hove peaks, with gradiemip/dw approaching infinity.
wal2mwc versus EDOM(arbitrary scalg for layer 1 (lower  This feature is very useful since the gradient can be made
dielectric constantof the superlattice. The numerical inte- extremely steep by using extremely high-dielectric-constant
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FIG. 3. Dimensionless frequency versus EDOM Eopolariza-
tion with index contrast ofa) high contrastg;=1, £,=10, andr
=0.5, (b) medium contrasts ;= 3, £,=10, andr =0.5, and(c) low

contraste =8, £,=10, andr =0.5 superimposed with the vacuum

EDOM (solid line and averaged medium EDONHotted ling
[from Eg.(12)] for unpolarized light.

e, material in layer 2, such as ferroelectrigg]. Another
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FIG. 4. Dimensionless frequency versus EDOM [opolariza-
tion with (a) high index in an extremely narrow layes; =1, ¢,
=50, andr=0.99, and(b) high index in an extremely thick layer,
e,=1, ¢,=50, andr=0.01. The solid line shows the vacuum
EDOM for unpolarized light.

The frequenciesy andw,, can be made to coincide with the
EDOM peak and EDOM gap edge, respectively. By doing
so, theE, level which corresponds to a very high EDOM
becomes lowly populated, while, becomes highly popu-
lated, thus creating a population inversion. The transition
E,—E4 can be triggered by eithesliminating or reversing

the EDOM contrast between the two levels. This can be
done, for example, by electrically tuning the dielectric con-
stant of one of the layers. Thus coherent emission of photons
at any frequency corresponding to two energy levels can be
created. The periodic structure provides a way of using the
hyperfine-split energy levels for ultralow-frequency lasers as

interesting feature of Figs(& and 2b) is the constant spac- well as very large electronic band gaps for higher-frequency

ing between adjacent peaks.

(e.g., x-ray lasers. In principle, an engineered EDOM can be

For an example of practical application, we consider twoused to control essentially any radiative-transition process,

hyperfine splitted energy levels; and E, which spontane-

ously emit photons of frequenciesy and w,= wyt+Aw,
respectively, when relaxing to a common ground leigl

ranging from the transition in molecular rotational energy to
nuclear hyperfine transitions.
Figures 3a)—3(c) show that as the dielectric contrast
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sponds to the-function superlattice, as modeled in REH],

14l N +++++++ + ] since it has the structure parameters that satisfy condi@pn
o R iy y=0°3'1 for (y=wal2mc)<3.54 and with a grating strength of
ot . 000 }j)s 1 =0.49[Eq. (8)]. As such, the EDOM profile of Fig.(4)
W o | y;=6,7 . should closely match that of Fig. 5 in R€8]. In fact, it does
b | for wa/2mc below about 0.4, except for the EDOM digap
560600000 at aroundwa/2mwc~0.5[see Fig. 4a)], which is not found in
00000 0006000 Fig. 5 of[5]. This is because the necessary conditibt) for
ERERCH 4 the approximation is not satisfied. This can be verified by
Trek, . OOOO | plotting D from condition(11) versus#, (see Fig. % where
e % we have usedki,=(w/c)\e,cosh;. In the vicinity of
++ n wal2mc~0.5, we have a wide range 6f whereD is nega-
o2t \/ +++++++ 1 tive, i.e., when the approximation is invalid. However, for

. , . . . . ) y<0.4, the approximation is good, amdis positive for any

0 10 20 3 4 50 60 70 8 90 angle of incidence. Figure(d) shows the EDOM with an
equally spaced “abyss” for a superlattice with the structure

01/ degree which complements that of th&function superlattice of Fig.

FIG. 5. Analysis for valid approximation for &function model 4@.
[Fig. 4(a), D [condition(11)] versusé , the incidence angle in layer V. CONCLUSION
1, for several values of (= wa/2wcC).

We have presented general, exact, and more concise ex-

(e2—&4) reduce, the EDOM profile becomes smoother andpressions for calculating the EDOM in a lower-index layer of
nearer to the effective homogeneous medium profile, witha one-dimension photonic crystéuperlatticg for both E
less peak-valley contrast and a nonzero EDOM for all fre-andH polarizations. The expressig&q. (6)] has been used
quencies. For comparison, the homogeneous mediund compute the EDOM in the lower-index layer. We sug-
EDOM, Eq.(12), is only superimposed in Fig.(@ where gested the possibility of using an engineered EDOM to es-
the dielectric contrast is small andassumes the effective tablish population inversion and to control essentially any
dielectric constantg r +e,(1—r). radiative process, with the potential usage in extreme fre-

We observe that Figs.(d and 4b) (with very largee, quency lasers. We have derived the dispersion relation for
—g; and extreme values af) hardly display many EDOM the &function superlattice of Ref5]. We have also quanti-
gaps. Thus the combination of large dielectric contrast ( tatively explained and analyzed the differences and similari-
—¢&4) and moderate layer ratio thickneg$ is necessary for ties between our resulffigs. 4a) and § and that of Ref[5]
creating the EDOM gaps. The EDOM of Fig(a# corre-  (Fig. 5 therein.
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