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General electromagnetic density of modes for a one-dimensional photonic crystal
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In this paper, we present more general, exact, and concise expressions for calculating the electromagnetic
density of modes~EDOM! in one dimension photonic crystal~superlattice! for E and H polarizations. The
expression is used for numerical computation of the EDOM in the lower-index~dielectric constant! layer. We
discuss the difference between the EDOM in high- and low-index layers as due to the presence of waveguiding
modes and evanescent-excited Bloch modes in the higher-index layer. Two methods of computation are
presented to compute the EDOM in the lower-index layer. We suggest the possibility of using the EDOM to
establish population inversion, which may be useful for higher-frequency lasers~e.g., x rays! and control any
radiative processes. We also elaborate on the limitations of the results of Alvarado Rodriguezet al. as due to
the approximation used in the evaluation of]v/]ky,z for ¹kv and comment on the limitations of the one-
dimensional EDOM expression of Bendicksonet al.

PACS number~s!: 42.70.Qs, 71.20.2b
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I. INTRODUCTION

The spontaneous emission rate of atoms~via the Fermi’s
golden rule@1#! and the spectral density of the blackbo
radiation @2# are directly affected by fluctuating vacuu
fields ~VF’s!. Since theelectromagnetic density of mode
~EDOM! characterizes the mode density of the VF’s, know
edge of how to control the EDOM enables us to engineer
VF’s and various quantum-mechanical processes which
pend on it. In the last decade, periodic structures with o
two, and three dimensions@3# have been proposed and fa
ricated. These so-called photonic crystals exhibit photo
band gaps that can be used to modify the EDOM. A sup
lattice is the simplest form of such periodic structure. An
lytical expression of EDOM for one-dimensional~1D! pho-
tonic crystal has been derived for normal-incidence wa
@4#, which adequately describes the spontaneous emissio
photon in only one direction. In reality, the photon can
emitted any direction around 4p sr. Therefore, it is necessar
to obtain an expression of the EDOM which considers
possible directions of photon emission, as in Ref.@5#.

In this paper, we present more general, concise, and e
expressions for the EDOM in a lower dielectric consta
layer of a step index superlattice. Thus the dispersion of
electromagnetic waves is described by the transcende
equation@6#. In Sec. II, we present the derivation of th
EDOM without any approximation. We derive the exact e
pressions for]v/]ky and]v/]kz , from which we obtain the
necessary conditions where these expressions approxima
Eq. ~19! in Ref. @5# for the d-function superlattice model. In
Sec. III, we discuss two numerical approaches and the
essary limit of numerical integration for the constan
frequency surface, which leads to the same final results.
also discuss the contribution of the evanescent-excited B
modes and the waveguiding modes to the EDOM in
higher-dielectric-constant layer, referred as layer 2. In S
IV, we present the computation results for the EDOM
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layer 1 and suggest the possibility of using a modifi
EDOM to facilitate population inversion.

II. ELECTROMAGNETIC DENSITY OF MODES

The k-space volume occupied by each wave vector po
V/(2p)3 is derived by discretizing the wave vector using t
periodic boundary condition and taking the quantization v
ume V to infinity. The number of modes,dN, having fre-
quencies fromv to v1dv is

dN5r~v!dv

5@V/~2p!3#(
n
E

all,k~vn!
d3k

5@V/~2p!3#(
n
E

all,k~vn!
dkndSn , ~1!

wheredSn anddkn are the infinitesimal area and thickness
the surface elements on a constant-frequency surfacek
space, respectively, andn is the band index.

Using (]vnk /]kn)dkn5dv with u¹kvnku5]vnk /]kn and
by takingdv→0, Eq. ~1! becomes

r~v!5dN/dv5@V/~2p!3#(
n
E

all,k~vn!
dSn /u¹kvnku.

~2!

If we confine the Bloch waves in 1D, i.e., normal to th
superlattice, the only possible wave vectors correspond
to each v are 1kB and 2kB . So Eq. ~1! becomes
dN5(L/2p)(

n
*all,k(vn)dkB5(

n
*all,k(vn)(]kB /]v)dv and we

haver(v)5(L/p)]kB /]v, as in Ref.@4#. In the 1D peri-
odic structure~superlattice!, the wave vector in the superla
tice is k5(kB ,ky ,kz) wherekB is the Bloch wave compo-

nent and b5Aky
21kz

2 is the conserved tangential wav
number. Therefore,k5(kB ,b cosw,b sinw), wherew is the
azimuthal angle around thex axis. The group velocity is
expressed as
7405 ©2000 The American Physical Society
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¹kvnk5S ]vnk

]kB
U

b

,
]vnk

]b U
kB

]b

]ky
U

kz

,
]vnk

]b U
kB

]b

]kz
U

ky

D ,

and the constant frequency surface element~Fig. 1! is dSn

52pbdkt , wheredkt5dbA11(dkB /db)2uv. From the tran-
scendental equation~4!, the variableskB , v, and b are
mutually dependent, from which we have]kB /]buv5
2(]v/]bukB

)/(]v/]kBub). Therefore, dSn52pbdb@1

1(]v/]bukB
)2/(]v/]kBub)2#1/2 and u¹kvnku5@(]v/

]bukB
)21(]v/]kBub)2#1/2. Using these relations, Eq.~2! is

reduced to a more concise EDOM expression for each po
ization,

r1
p~v!5@V/~2p!2#2(

n
E

0

A« iv/c
b db/~]v/]kBub

p !, ~3!

where the factor of 2 is due to the upper and lower parts
the constant-frequency surface,i (51,2) is the layer index,
andp (5E,H) is the polarization index.

By using Eq.~3!, the computation of the EDOM is greatl
simplified, since it is not necessary to evaluate the te
]v/]ky and]v/]kz , as was done in Ref.@5#. We only need
to evaluate]v/]kBub using the transcendental equations

coskBa5@~g11/g12!cosa12~g11/g22!cosa2#/4,

~4a!

coskBa5cosa1 cosa22
1

2
~g11/g!sina1 sina2 ,

~4b!

with a65a26a1 , a i5kixdi , kix5@(v/c)2« i2b2#1/2, b
5(v/c)A« i sinui , ge5k1x /k2x , andgh5ge(«2 /«1), where
di , « i , and u i are the thickness, dielectric constant, a
wave vector angle, respectively, in layeri (51,2) of the su-
perlattice, anda5d11d2 is the period or lattice constant.

Using Eq.~4a!, we have the analytical expression of

]v/]kBub54a sinkBa/$@C cosa12D1A1 sina1#

2@C cosa22D2A2 sina2#%, ~5!

where A65(g11/g62), C5]A6 /]v, and D6

5]a6 /]v.

FIG. 1. Surface element of a constant-frequency surface f
superlattice.
r-

f

s

An alternate expression of the EDOM to Eq.~3! can be
obtained by substitutingb(v,u2)5A«2(v/c)sinu2 ~assum-
ing «2.«1! and converting the wave number summation
an angular summation,

r i
p~v!5V~v/2pc!2E

0

u2,i
«2 sin 2u2 du2 /~]v/]kBub

p !,

~6!

where u2,i5sin21A« i /«2 and ]v/]kBub
p now depends ex-

plicitly on u2 instead ofb.
The gradient of the band structure 1/]kB /]vuu2 is related

to ]v/]kBub by

]v/]kBub51/@]kB /]vuu22~]kB /]u2uv!

3~]b/]vuu2!/~]b/]u2uv!#

51/@]kB /]vuu22~]kB /]u2uv tanu2 /v!#. ~7!

In the final part of this section, we use Eq.~4b! to derive the
dispersion relation for thed-function superlatice@5# and ob-
tain exact expressions for]v/]ky and ]v/]kz . The
d-function model defines that the higher-index layer ha
dielectric constant«2 (@«1) and infinitesimal thickness o
d2 (!a), such thatd1'a, a2!p/2, a1'k1xa, and Eq.~4b!
reduces to

coskBa5cosk1xa2V sink1xa, ~8!

whereV5gav2/2c2k1x andg5(«22«1)d2 /a is the grating
strength@5#.

The necessary conditions for Eq.~8! to be valid are

~a! d2~v/c!A«2!p/2 or 12r !1/~4yA«2! ~9a!

and

~b! 2k1x
2 !~v/c!2~«22«1! or «2@3«1 , ~9b!

where y5va/2pc is the dimensionless frequency andr
5d1 /a is the dimensionless thickness of layer 1 by sett
«2.«1 .

The exact expressions of]v/]ky and ]v/]kz for the
d-function model can be obtained by differentiating Eq.~8!
with respect toky ,

]v

]ky

5
c2ky

v«1

@sink1xa1V~cosk1xa2sin~k1xa!#

@~11g/«1!sin~k1xa!1V~cosk1xa2sin~k1xa!#
.

(10)

Exactly the same form of expression is obtained for]v/]kz .
We only have the approximation of]v/]ky'c2ky /v«1

and]v/]kz'c2kz /v«1 @as in Eq.~27! of Ref. @5## when the
difference between the bracketed numerator and denomin
of Eq. ~10! is much smaller than the bracketed numerat
i.e.,

D5u~11g/«1!sink1xa1V~cosk1xa2sinck1xa!u

2~g/«1!usink1xau@0. ~11!

a
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SinceV andk1x depend explicitly on frequency and prop
gation angle throughky and kz , the approximation yields
good EDOM results only when condition~11! is satisfied for
all possible propagation angles for a specific frequency
structural parametersdi /a and « i . If D is close to zero or
negative, condition~11! is not satisfied and the approxima
tion becomes invalid.

III. COMPUTATION OF THE EDOM

Equation~3! can be evaluated numerically by wave num
berb summation for each frequency pointv. Any propagat-
ing mode that can be created at a particular space point in
superlattice will contribute to the EDOM at that point. Th
the summation range ofb50→(v/c) corresponds to the
propagating Bloch modes with realk1x , k2x , andkB that can
be created by a radiative source from outside as well as
side the superlattice. The summation range ofb5(v/c)
→(v/c)A«1 also corresponds to realk1x , k2x , andkB , but
can only be excited from within the superlattice. The su
mation range ofb5(v/c)A«12(v/c)A«2 corresponds to
modes with imaginaryk1x and realk2x . However,kB is real
only for a frequency below a certain threshold, which c
also be excited by the evanescent fields in layer 1. Bey
this threshold,kB becomes imaginary since the evanesc
fields in layer 1 decay too rapidly and cannot excite
Bloch modes. Here the fields from two adjacent layers 2
not couple. The electromagnetic fields within layer 2 u
dergo repeated total internal reflection. The propaga
Bloch modes become waveguide modes. These modes
tribute to the EDOM of layer 2 only. The modes correspon
ing to imaginaryk1x can only be excited in the higher-inde
layer ~layer 2! and not in layer 1, and therefore do not co
tribute to the EDOM of layer 1. Thus the EDOM for layers
and 2 require the overall summation range ofb50
→(v/c)A«1 and b5→(v/c)A«2, respectively, for «2
.«1 . In this paper, we discuss the results for the EDOM
layer 1 only.

In the limit «22«1→0, where the superlattice becomes
homogeneous medium, we show that Eq.~4a! still gives cor-
rect results. The constant-frequency surface becomes sp
cal and dispersionless. From Eq.~4a!, we havekB'k1x

'k2x5kx5A«(v/c)cosum, while the tangential componen
remains as b5A«(v/c)sinum. By differentiation of
«(v/c)25kB

21b2, we have ]v/]kBub5(c cosum)/A«,
]v/]bukB

5(c sinum)/A«, and the group velocity is

u¹kvnku5c/A«, with wave vectork5(kB ,b). By substitut-
ing ]v/]kBub into Eq. ~6!, we have the EDOM for a homo
geneous medium,

r~v!5V«3/2v2/2p2c3. ~12!

We observe that the EDOM is enhanced in a high dielec
medium. In free space, Eq.~12! reduces to r0(v)
5Vv2/2p2c3 for each polarization.

IV. RESULTS AND DISCUSSION

Figures 2–4 show the plot of dimensionless frequen
va/2pc versus EDOM~arbitrary scale! for layer 1 ~lower
dielectric constant! of the superlattice. The numerical inte
d
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gration results obtained from Eq.~3! by wave number sum-
mation and from Eq.~6! by angular summation are exact
the same. However, the angular summation approach
quires less computation time due to the constant upper l
of the integration.

Figures 2~a! and 2~b! show the existence of high-contra
EDOM profiles~with sharp peaks, each resembles the Di
d function! for the case of extremely high dielectric contra
between layers 1 and 2. ForE polarization@see Fig. 2~a!# the
EDOM vanishes at certain ranges of frequencies, ca
EDOM gaps. These gaps are useful for the suppression o
spontaneous emission of atoms located in layer 1, while
sharp peaks~similar to Van Hove singularities! are useful for
spontaneous emission enhancement. The EDOM gap e
at the lower-frequency region only. As the frequency
creases, the gap becomes smaller and vanishes. ForH polar-
ization @see Fig. 2~b!# we hardly observe any EDOM gap o
finite size for any choice of parameters. The EDOM dro
very steeply to near zero at the lower-frequency side of
Van Hove peaks, with gradient]r/]v approaching infinity.
This feature is very useful since the gradient can be m
extremely steep by using extremely high-dielectric-const

FIG. 2. Dimensionless frequency versus EDOM with extrem
high index contrast«151, «2550, andr 50.5, for ~a! E polariza-
tion and ~b! H polarization. The solid line shows the EDOM fo
unpolarized light in a vacuum.
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«2 material in layer 2, such as ferroelectrics@7#. Another
interesting feature of Figs. 2~a! and 2~b! is the constant spac
ing between adjacent peaks.

For an example of practical application, we consider t
hyperfine splitted energy levelsEd andEu which spontane-
ously emit photons of frequenciesvd and vu5vd1Dv,
respectively, when relaxing to a common ground levelEg .

FIG. 3. Dimensionless frequency versus EDOM forE polariza-
tion with index contrast of~a! high contrast,«151, «2510, andr
50.5, ~b! medium contrast,«153, «2510, andr 50.5, and~c! low
contrast,«158, «2510, andr 50.5 superimposed with the vacuum
EDOM ~solid line! and averaged medium EDOM~dotted line!
@from Eq. ~12!# for unpolarized light.
o

The frequenciesvd andvu can be made to coincide with th
EDOM peak and EDOM gap edge, respectively. By doi
so, theEd level which corresponds to a very high EDOM
becomes lowly populated, whileEu becomes highly popu-
lated, thus creating a population inversion. The transit
Eu→Ed can be triggered by eithereliminating or reversing
the EDOM contrast between the two levels. This can
done, for example, by electrically tuning the dielectric co
stant of one of the layers. Thus coherent emission of phot
at any frequency corresponding to two energy levels can
created. The periodic structure provides a way of using
hyperfine-split energy levels for ultralow-frequency lasers
well as very large electronic band gaps for higher-freque
~e.g., x-ray! lasers. In principle, an engineered EDOM can
used to control essentially any radiative-transition proce
ranging from the transition in molecular rotational energy
nuclear hyperfine transitions.

Figures 3~a!–3~c! show that as the dielectric contra

FIG. 4. Dimensionless frequency versus EDOM forE polariza-
tion with ~a! high index in an extremely narrow layer,«151, «2

550, andr 50.99, and~b! high index in an extremely thick layer
«151, «2550, and r 50.01. The solid line shows the vacuum
EDOM for unpolarized light.
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(«22«1) reduce, the EDOM profile becomes smoother a
nearer to the effective homogeneous medium profile, w
less peak-valley contrast and a nonzero EDOM for all f
quencies. For comparison, the homogeneous med
EDOM, Eq. ~12!, is only superimposed in Fig. 2~c! where
the dielectric contrast is small and« assumes the effectiv
dielectric constant,«1r 1«2(12r ).

We observe that Figs. 4~a! and 4~b! ~with very large«2
2«1 and extreme values ofr! hardly display many EDOM
gaps. Thus the combination of large dielectric contrast«2
2«1) and moderate layer ratio thickness~r! is necessary for
creating the EDOM gaps. The EDOM of Fig. 4~a! corre-

FIG. 5. Analysis for valid approximation for ad function model
@Fig. 4~a!, D @condition~11!# versusu1 , the incidence angle in laye
1, for several values ofy (5va/2pc).
-
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e
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sponds to thed-function superlattice, as modeled in Ref.@5#,
since it has the structure parameters that satisfy condition~9!
for (y5va/2pc)!3.54 and with a grating strength ofg
50.49 @Eq. ~8!#. As such, the EDOM profile of Fig. 4~a!
should closely match that of Fig. 5 in Ref.@5#. In fact, it does
for va/2pc below about 0.4, except for the EDOM dip~gap!
at aroundva/2pc'0.5 @see Fig. 4~a!#, which is not found in
Fig. 5 of @5#. This is because the necessary condition~11! for
the approximation is not satisfied. This can be verified
plotting D from condition~11! versusu1 ~see Fig. 5!, where
we have usedkix5(v/c)A«1 cosu1. In the vicinity of
va/2pc'0.5, we have a wide range ofu1 whereD is nega-
tive, i.e., when the approximation is invalid. However, f
y,0.4, the approximation is good, andD is positive for any
angle of incidence. Figure 4~b! shows the EDOM with an
equally spaced ‘‘abyss’’ for a superlattice with the structu
which complements that of thed-function superlattice of Fig.
4~a!.

V. CONCLUSION

We have presented general, exact, and more concise
pressions for calculating the EDOM in a lower-index layer
a one-dimension photonic crystal~superlattice! for both E
andH polarizations. The expression@Eq. ~6!# has been used
to compute the EDOM in the lower-index layer. We su
gested the possibility of using an engineered EDOM to
tablish population inversion and to control essentially a
radiative process, with the potential usage in extreme
quency lasers. We have derived the dispersion relation
the d-function superlattice of Ref.@5#. We have also quanti-
tatively explained and analyzed the differences and simil
ties between our results@Figs. 4~a! and 5# and that of Ref.@5#
~Fig. 5 therein!.
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