
THE APPLICATION OF COMPONENT-BASED METHODOLOGY IN
DEVELOPING VISUAL POWER SYSTEM ANALYSIS TOOL

Khalid Mohamed Nor Taufiq Abdul Gani Hazlie Mokhlis

Department of Electrical Engineering
Faculty of Engineering, University of Malaya

Kuala Lumpur - Malaysia

Abstract: This paper describes the application of component-
based methodology in developing Visual Power System
Analysis Tool. The Component systems, itself are built from
public domain codes, commercial components and in-house
developed components. Public domain codes and commercial
components are reused to handle electrical diagramming, user
and database access and analytical computation. Other
components such as power system model and analytical
analysis are developed in-house. The tool is built by
architecting component systems, which play role in drawing
one-line diagram, capturing database, and performing analysis
such as load flow, symmetrical and unsymmetrical faults.
By using this approach, a more flexible architecture of power
system software consisting self-contained components, placed
in independence layer is obtained. Changes in one component
will not propagate to others. Therefore, the cost of
development will be reduced.

Keywords: Power system analysis and design, object-oriented
power system model, component-based system development.

I. INTRODUCTION
Many reports have been published on the use of object-

oriented approach in power systems software development,
ranging fi-om power system class libraries for power system
model, analytical analysis, graphical user interfaces, and
database access [1,2,3,4,5,6]. The introduction of object-
oriented methodology with its encapsulation, inheritance, and
polymorphism features has been shown to help shorten coding
time. However, this is only at the source codes level since the
codes still have to be recompiled whenever their functionalities
need to be extended. Classes are still primitive software
artifacts, limited to only one class of programming languages,
so that developers need greater understanding on how to fit the
various pieces of the library into application.

Building better software in less time is the goal of every
developer. Every significant advances in software development
such as high-level language, database management systems,
object technology have improved the way to develop software.
However, these techniques have not increased the degree of
automation in software production, improve quality and reduce
cost and time to market [lo].

A newer approach in software development is the
Component-based Development (CBD) that builds applications
in whole or in part from existing pieces. The essential building
block in CBD is the component, which is a piece of pre-built
software with well-defined interfaces and behaviors, accessible
only via its interface. Other characteristics are encapsulated,

physical implementation is hidden, and reuse of services is not
constrained by physical implementation. Other important
features, software components are independent of development
tool and implementation language [7]. Components allow
cross-language reuse. Components define interaction with
clients independent of the language that they were written.
Using development tool’s visual interface, components can be
placed where it is needed, after which necessary codes to use
its services are then written.

This paper describes the application of CBD in developing
visual tool for power system analysis. In section 1, we explain
the state of the art of software component and CBD. In section
2, we describe how Integrated Development Environment
(IDE) and Rapid Application Development (RAD) tool, which
is commercially available, supports CBD. Our proposed
components systems are presented in section 3, 4, 5 and 6. In
section 7, we present the how the application of Visual Power
System Analysis Tool is assembled. The performance
comparison is presented in section 8. The impacts of applying
CBD in developing power system analysis are presented in
section 9.

11. CBD WITH IDE TOOL
Integrated Development Environments or IDE provides a set

of tools to design, develop, test, debug, and deploy
applications. There are many IDE tools available in the market
today. Borland C* Builder and Microsoft Visual C++ are the
leading IDE and the best choices to develop both of
components and of applications. Others emphasized more in
developing applications.

In this project, we chose Borland C++ Builder because it
offers wide range of components platforms, such as Visual
Component Library (VCL)-produced by Borland itself,
Component Object Model (C0M)-produced by Microsoft, and
Common Object Request Broker Architecture (C0RBA)-
produces by Object Management Group (OMG). Another good
choice would be to use Microsoft Visual C where the
component can be packaged as a Component Object Model
(COM) or Distributed Component Object Model (DCOM).

We use Borland Ctt- Builder, an object oriented, visual
programming environment for rapid application development
of Windows applications. Ctt- Builder provides a
comprehensive class library called the Visual Component
Library (VCL). VCL components are persistent objects and
can be installed in the component palette of the IDE from
where these components can be dragged and drop to be placed
onto a form. In the form, their properties can be changed such
as for display presentation settings or any other control

0-7803-6681-6/01/$10.00 0 2001 IEEE 38

settings. Figure 1 shows the IDE tool where our components,
TPowerSystemModel component, together with other
components, Dbcocx (CAD Component), Menu, and List View
have been placed onto a form. The component palette in the
tool is at that top right-hand comer under the pull-down menu.

Figure 1 Integrated Development Environment tool

C++ Builder provides a very good environment to reuse the
existing component and derives more specific one that is
needed by applications. TComponent, a member of VCL, is a
base class that provides minimal properties and events
necessary for the components to work in C++ Builder. It means
that if a component developer wants to create a new
component in C++ Builder environment, all he needs is derive
a new class from TComponent or fiom its descendant class.

Components are classes, but component developers work
with objects at a different level from application developers.
When we create new components, we deal with classes in ways
that application developers never need to. The inner workng of
the components are hidden from the developers who will use it.
That is why, component writer need to be aware of more
conventions and think about how application developers will
use the components [6] .

In VCL, there are two basic types of components, visual and
non-visual. The direct ancestor of a component determines
whether the component is visual or non-visual. Specifically, a
component that descends fiom TComponent directly is a non-
visual component. Most non-visual components do not provide
any graphical user interfaces to the user. They are simply
wrappers around reusable functionality. Non-visual
components appear as an icon on the form. The icon is not
visible at runtime, but at design-time, the icon provides access
to the component’s properties and events. Visual components
present a pre-designed presentation interface to the user.
Examples include data grids and charting component [181.

In following sections, we will describes, the design of our
components. CAD Engine is a visual component that provides
user interface facility to design power system diagram. Others
are non- visual component that encapsulate the hc t iona l
services for power system analysis.

111. POWER SYSTEM MODEL COMPONENT
SYSTEMS

Power system model is a representation of real world and
physical power system devices. In power system analysis
software, which design using object oriented approach, devices
are kinds of objects that will interact with other ones such as
actor, GUI objects, files and so on. A device, as an object,
encapsulates data, operations and relationships.

Using class diagram of Unified Modeling Language (UML)
[I71 notation in figure 2, all classes used to model power
system devices and their relationships are drawn.

/TDavls.

pkiqFIpihq pLkT [e/
Figure 2 Device Class Diagram

A class called TDevice is a base class that shares common
data and methods for all of device’s classes such as TBus for
bus’s class, TGenerator for generator’s class and so forth.
TDevice is also an abstract class, which designed to be used as
a template for specifying derived classes rather than objects. In
TDevice, numbers of virtual methods are declared to defined
interfaces for accessing the implementation of methods in its
derive classes. Using this mechanism, also , called
polymorphism, the complexity of power system devices is
simplified, since an object, which calls to a method in device
class, does not have to know the receiving object’s class.

Every device has electrical and graphical data. Electrical
data deal with the values that determine the type of parameter
such as voltage, power, resistance, reactance, and so on. These
values can be divided into two categories. The first one is
transient data and the second is persistent data. Transient data
will be allocated during the process using programming
language. Persistent data can be supported by a database
management system, or file systems. TDevice aggregates two
classes, TBaseTable and TBaseGraph to handle the persistent
mechanism.

TPowerSystemModel class is designed to manage the
devices. The object of this class holds the devices in lists. Each
type of device object has a particular list. Bus’s objects are
stored in BusList, which is an instance of TDeviceList class;
Generator’s objects are stored in GeneratorList, also an
instance of TDeviceList class, and so forth.

TDeviceList class is designed by deriving TList, a member
of VCL. By doing so, the time to write and test the codes for
building linked-list structure is eliminated. Methods to add,
remove nodes are already available since they are declared as
public in TList class. Additional methods are designed to make
easier retrieving of the devices in the list.

39

Up to this point, we can see that TPowerSystemModel class
has encapsulated all power system devices, data methods and
relationship. It means that this class is a representation of the
real world and physical power system devices. This class has to
be defined as a derived class of TComponent. Then, this class,
together with other classes above is grouped into a package and
compiled into a component.

IV. ANALYTICAL ANALYSIS COMPONENT
SYSTEMS

Component as a construct in software development also
gives advantages in developing analytical part of power system
software. Whenever newer or advanced analytical components
become available in market place, developers have the choice
to select the more powerful and suitable one for their
application. Good components can therefore be reused to
extend their capabilities or to meet new technology
development.

In our work, component for analytical analysis, such as load
flow and fault calculation are developed. Besides that, various
fine grain components, such as component to solve linear
equations, are also written.

A. Mathematical Solver
The analytical analysis of load flow and fault calculation

required a mathematical solver to handle sparse matrices. The
need of such solver can be see in the load flow, where matrix
equation to be solved is AX = B . While for fault calculation,
the capability to inverse admittance matrix is the key to
analyzing fault.

To perform calculation to solve linear equation system, a
class, called TMathemathicalSolver, which derived from
TComponent become a base class that share a common data
and method to solve linear equation in real and complex data
type with single and double precisions. Four classes,
TSingleReal, TDoubleReal, TSingleComplex, and
TDoubleComplex are derived from TMathemathicalSolver
class for real and complex variables with single or double
precisions. These classes are grouped into one package, and
then compiled as components.

The components can be reused either by application or by
other components. In our application, Load Flow and Fault
Calculation components use one of these components
depending on data type and precisions.

The advantage of delivering these classes in the form of
components as compared to in source codes is that the
components can be installed into integrated development
environment (IDE), such as Borland C+t Builder. By doing so,
it is easier for developer to plug the classes within the
component into other component system or applications

B. Analytical engine
Load flow and fault calculation are the most commonly use

analysis in power system engineering. These analyses are
sometimes updated with the introduction of new devices.
Thus, components based developments are used in the

analytical analysis to make maintenance and upgrading easier
and more convenient.

For the load flow, two methods are being used in this
project, a well-known Newton-Raphson [l l] and Fast-
Decoupled [12] methods. Common adjustments such as
transformer tap voltage control and capacitor or reactor
switching included [13]. The load flow is also enhanced with
capabilities of solving a system contained Unified Power Flow
Controller (UPFC) [14].

Designing classes for analytical analysis, the processes,
formulae and data needed to carry out the calculation are
reviewed. Related processes, formulae and data will be
encapsulated in one class. Processes, formulae and data that
can be shared are public members and the non-common
members are represented as private members of the class. Base
classes are identified to share the common attributes and
methods. The design is drawn on hierarchy class diagram as on
figure 3.

I I

Figure 3 Analytical Analysis Class Hierarchy

TLoadFlow and TFaultCalculation class can use the
common data such as voltage magnitude, voltage angle and
impedance by inheriting from public members of the
TAnalyticalAnalysis class.

Newton Raphson and Fast decoupled are two different
techniques for solving load flow. These techniques are
encapsulated in TNewtonRaphson and TFastDecoupled as sub-
classes to inherit data and methods ftom the ancestor classes.

By inheriting TLoadFlow, adding or changing of any other
solving techniques such as Z matrix and gauss-Seidel can be
done without to write again the common methods such as
calculating active or reactive power mismatch. A part of
single-phase load flow, three-phase load flow and d.c load flow
also can be incorporated easier under TLoadFlow.

There are two type of fault, balanced and unbalanced fault.
These types of fault are encapsulated into TBalanceFault and
TUnbalanceFault to inherit identical methods and data
members from TFaultCalculation. For instance, balanced and
unbalanced fault share a same positive sequence impedance
preparation. In the balanced fault, only the positive sequence
impedance is used in determining the voltage value under fault
condition. While for unbalanced fault, negative and zero
sequence impedance also needed. By using inheritance
mechanism, methods and data members can be used by two
different classes of fault as shown on the figure 3.

40

Under TUnbalancedFault class, there are three common
faults, that being separate at different classes. This separation
will make each type of unbalanced fault independence between
each other. Any changing, will not affect on the other fault
types.

The same as other components system discuss earlier, the
above classes are grouped into a package and compile to a
components and then install to component palette.

On figure 4, Non-visual components, are placed on a form.

Figure 4. PowerSystemModel, Faultcalculation Component on Forms

One of the advantages working with components is that once
the TPowerSystemModel and TFaultCalculation components
are placed on a form, it is unnecessary to declare, allocate and
release the objects since these have been done automatically.
Only component’s services, such as read bus, line data and
others fi-om Power System Model object, need to be written
and sent to Fault Calculation object. Once completed, the
analysis is ready for execution.

Another advantage is the opportunity to replace existing
components with an improved version or ii-om alternative
source. The components may be purchased or self-developed
to improve on previous code. Changes will only occur at the
interfaces between Power System Model object and Fault
Calculation objects. The inner codes of Power System Model
and Fault Calculation are isolated and remain stabilized.

V. CAD ENGINE COMPONENT SYSTEM
Visually, users interact with power system model through

the graph of power system device. Menus that can be accessed
using mouse and keyboard drive the interactions. User may
draw devices on graphic window and determine the
connectivity among devices.

An ActiveX component, DbCAD dev from ABACO s.r.1 is
imported to VCL component and given a name TDbcocx. The
classes of this component has functionalities peculiar to
Computer-aided-design, CAD, allowing developers to
safeguard their know-how, even when they have to develop
applications integrating vectorial drawings, raster and
alphanumeric databases. The class has numerous methods to
draw entities on drawing windows and store the vectorial
entities in graphic database.

We defined two classes, one for handle drawing windows
and the other for handling vectorial entities in graphic database.
Both of classes hold a reference to an instance of TDbcocx
class, as a CAD Engine. Drawing Windows component is
placed in user interface layer and TGraphicDatabase
components placed in data access layer.

41

VI. PERSISTENT DATA COMPONENT SYSTEMS
Power system devices explained above deals with a huge

amount of data. The data must be managed to provide a
reliable, persistent data storage facility and the mechanism for
efficient, convenient data access and retrieval. The data can be
categorized into network database and graphic database. The
network database stores all connectivity and electrical
parameter of devices. The graphic database stores graphical
entities of devices displayed in graphic window.

Once user draw a device on graphic window, the graphical
information is saved to graphic database. Connectivity’s
among devices are captured and information about them saved
in the network database. Other information such as electrical
parameter is entered through a dialog box (user interface) and
then network database is updated.

Some classes are used as a link between power system
devices and data storage through database management system.
The instance of classes or object must be able to translate any
data-related request fi-om power system devices into
appropriate protocol for data access. Furthermore, The object
also must be able to translate retrieved data into the appropriate
power system device.

Engine used to manage network database and graphic
database is different. CAD Engine, which is an instance of
TDbcocx class, manages graphic database. Since the given
services are too primitive and low level, we have to create a
more high-level component called TGraphicDatabase
component that hold the reference to CAD Engine. Engine that
establishes the connection to network database is encapsulated
by a TDatabase component. Since we need other features to
create table to store persistent value of power system device,
we design TDataAccess component by reusing TDatabase.

Classes of power system device, which have persistent data,
will be mapped to access classes. For each of device classes
such as TBus, TGenerator, and so forth will be mapped
respectively into one access class and one graph class. Both of
TBaseGraph and of TBaseTable are abstract classes with
numbers of virtual methods declared. The implementations of
such methods are different among devices.

VII. ASSEMBLING COMPONENTS TO
APPLICATION

The complexity of Visual Power System Analysis Software
can be simplified by defining flexible architecture. Software
architecture defines the static organization of software into
subsystems interconnected through interfaces and defines at
signifizant level how nodes executing those software systems
interact with each other [101. Successful object-oriented
systems are characterized by a component-based architecture
with clearly defined graphical user interface (GUI), business
object model and physical data store layers [9]. This
conceptual model has been popularized as the 3-tiered
application architecture. Using this architecture, developers are
able to create components that represent tangible elements of
the business yet are completely independent of how they are
represented to the user (through an interface) or how they are

physically stored (in a database). The three-layered approach
consists of a view or user interface layer, a business layer and
an access layer, as shown by figure 5.

Matrix Size

236 x 236
600 x 600

1328 x 1328

[F j (F] User Interface Layer

CPU time(in seconds) Difference

Component Non-component
%

0.031 0.025 24.0
0.44 0.33 33.3
2.17 2.17 27.6

Business Layer

118 Bus
300 Bus
664 Bus

[e] (..-..I system Layer

Figure 5. Layered Architecture of Power System Analysis Software

Component Non Component
0.019 0.012 58.3
0.058 0.039 48.7
0.129 0.082 51.3

The user interface layer such as graphical user interfaces
(forms, menu component etc) and graphic window component
is used as interface to user. The business layer consists of
components that solve the power system problems. Access
layer consists to components that provide accessibility to
storage system. At the bottom, system layer consists to base
components that used to create higher level ones. These
components interact with more primitive ones like system
operation, database engine etc.

In order to assemble the Suite of Visual Tool for Power
System Analysis we have install all necessary components onto
the IDE component palette. To start assembling an empty form
is created. On the form, component such as TMainMenu and
TPopupMenu from VCL, TDbcocx from Dbcad, and
TGraphicWindow, TDataAccess, TGraphicDatabase,
TPowerSystemModel, TLoadFlow, and TFaultCalculation are
placed.

The next step is to place and arrange visual components such
as buttons and list boxes and on the form design to obtain the
look and feel of a graphical user interfaces. Properties and
events of every object of the components appear in object
inspector. The underlying values of properties are set up to
determined the objects' appearances. The underlying codes of
events are used to notify the object to perform certain task.

Figure 6 shows One-Line Diagram for 14-bus IEEE-test data
where load flow analysis results are displayed against diagram.

VIII. PERFORMANCE COMPARISON OF
EXECUTION TIMES

Tests were carried out to show the impact of component-
based development on execution time. Tables 1, 2 and 3
showed comparison of execution time of a component based
application versus a non-component application. The tests were
carried out on a Pentium 111, 450 MHz, 128 MB RAM, and
developed with C++ Borland Builder version 5.0.

Table 2. Fast-decoupled Load Flow CPU Time I System I CPU time (in seconds) I Difference% I

System CPU time (in seconds Difference%

118 Bus
300 Bus 2.30 3 1.43
664 Bus 11.15 8.56 30.25

The above algorithms are written in object oriented class.
The difference between component and non component is that
the matrix factorisation and multiplication are separate
component in component-based application and part of a single
executable program in non-component application.

IX. IMPACT OF CBD IN DEVELOPING POWER
SYSTEM ANALYSIS SOFTWARE

The sample tests carried out showed an increase of
execution time of analytical algorithm by component-based
development. In absolute time, there is only a slight increase of
execution time. As computing technology advances the speed
of computers, the increase of execution time will be
insignificant to users.

High quality power system analysis software with intuitive
and user-fr-iendly graphical interface as well as other
productivity features requires multi disciplinary development.
Input from diverse area such as power system engineering,
mathematic, software engineering, database, computer-aided
design, user interface design have to be integrated to develop
such software. It is almost impossible to find an engineer with
all-round capability to undertake such development.

Currently, with the availability of many high quality non-
power system components, power engineers can now
concentrate on the engineering analysis and design of power
system. Power engineers only need to know how to assemble

42

the components into applications and invoke the services
without need to know the underlying code the implementation.

For years, developers of power system analysis software
have only one choice to market their products, which is by
executable files or compiler specific libraries. End users are
only able to set the software’s to suit their environments.
However, in some cases the software’s are not flexible, thus
users have to change their environments and businesses.

Component-based development can increase the efficiency
of the commercial offering of power system software.
Developer may build and deliver only a piece of fimctionality
elements of power system software. Therefore not only suites
of power system analysis software can be sold, but also
software components such as component for drawing one-line
diagram, performing load flow, fault calculation, and so on.

X. CONCLUSION
This paper presented the case for Component-based

development in Power System software tools. The designs of a
number of base components for visual tool for power system
analysis have been described. The assembly of the components
into application has also been described. The approach has
been applied to develop a visual power system analysis
application which has the capabilities of constructing one-line
diagram, capturing network and graphical database and
performing load flow and fault calculation. The application is
scaleable to meet the new requirements.

We have developed components of various degree of
granularity. A fine grain component but coarser than VCL
component such as the command button is the mathematical
linear solver component. A coarser component is the load flow
and fault analysis engine component.

The development illustrates the point that Software
components can be commercialized as off-the-shelf products.
Power System Software developer can therefore maximize his
time and energy on components of his expertise, letting other
experts, the non-power system components developers,
develop and extend functionalities of other components. This
will minimize the cost of developing and maintaining high
quality software.

1.

2.

3.

4.

5.

XI. REFERENCES
Jun Zhu, David L.Lubkeman, “Object-Oriented Development of
Software Svstems for Power System Simulation.” IEEE
Transactio; On Power Systems, Vol. 12, No. 2, May 1997
A.F. Neyer, F.F. Wu and K. Imhof, “Object Oriented
Programming For Flexible Software: Example of A Load Flow”,
IEEE Transaction On Power Systems, Vol. 5, No. 3, August
1990
E.Z. Zhou, “Object-oriented Programming, C++ and Power
System Simulation”, IEEE Transaction On Power Systems,
Vol.ll,No. 1,February 1996.
B. Hakavik, A.T.Holen, “Power System Modeling and Sparse
Matrix Operations Using Object-Oriented programming”, IEEE
Tran. On Power System, Vol. 9, No. 2, May. 1994
A. Manzonil, A.S. e Silva, LC.Decker, “Power System Dynamics
Simulation Using Object-Oriented Programming”, IEEE
Transactions on Power Systems, Vol. 14, No. 1, February 1999.

6. Foley M., Bose A., Mitchell W. and Faustini A.: “An Object
Based Graphical User Interface for Power Systems”, IEEE
Transactions on Power Systems, Vol. 8, No. 1, February 1993.

7. Chappel, David, “The Next Wave: Component Software Enters
The Mainstream”, White Papers, http://www.rational.com

8. Buttler Group, “Component Based Development Management
Guide”, April 1998

9. Ali Bahrami, “Object Oriented Systems Development Using The
Unified Modeling Language”, McGraw-Hill, USA, 1999.

10. Jacobson, Ivar et. al, “Software Reuse: Architecture, Process and
Organizations for Business Success”, ACM Press, New York
,1997.

1 1. W.F Tinney and C.E Hart, “Power flow solution by Newton’s
method”, IEEE Trans. (Power App. Sys), vol. PAS-86, pp.1449-
1456, Nov. 1967.

12. B. Stott and 0. Asac, “Fast Decoupled Load Flow “, IEEE Trans.
(Power App. Sys), vol. PAS-93, pp.859-869, MayIJune. 1974.

13. Show-Kang Chang and Vladimir Brandwajn, “Adjusted solutions
in Fast Decoupled Load Flow”, IEEE Trans. (Power App. Sys),

14. C.R. Fuerte-Esquivel and E.Acha, “Unified power flow
controller: a critical comparison of Newton-Raphson UPFC
algorithms in power flow studies”, IEEE Proc.vo1 144, pp 437-
444.

15. Inprise Corporation, “Borland C + + Builder for Windows
2000/98/95/NT : Developer Guide”, Inprise Corporation, USA,

16. ABACO s.r.1. “DbCADev : User and Reference Guide”,
ABACO s.r.1 . 1999

17. OMG, “Unified Modeling Language Specification Ver 1.3,” June
1999

18. Ray Konopka, Andrew Pharoah, Chris Brooke, “Creating
Commercial Components (Borland VCL Framework)”,
September 15,2000,
http://www.componentsource.com/BuildWCLWhitePaper.asp

vol. 3, pp.726-733.

2ooo r,

XII. BIOGRAPHIES

Khalid Mohamed Nor was born in Sungai Pelong in Selangor,
Malaysia. He graduated with First Class Honors in Bachelor of
Engineering)om the University of Liverpool, England. He later
obtained his MSc in 1978 and PhD in 1981 ji-om the University of
Manchester Institute of Science and Technoloa, England. He joined
the University of Malaya, Malaysia as a lecturer in 1981 and
currently is a professor in the department of electrical engineering in
the said university. He is a Senior Member of IEEE.

Taufiq Abdul G a d was born in Banda Aceh, Indonesia in 1969. He
graduated)om Department of Computer Engineering at ITS,
Surabaya-Indonesia in 1994. He joined the University of Syiah Kuala,
Banda Aceh, Indonesia as lecturer in 1995. Currently he is pursuing
Master of Engineering and Science at Department of Electrical
Engineering, University of Malaya, Kuala Lumpur. His major
interests are Application of Computer in Power System and Sofhvare
Engineering.

Hazlie Mokhlis was born in Sungai Besar, Selangor, Malaysia in
1976. He graduated in Bachelor of Engineering fiom Department of
Electrical, University of Malaya, Kuala Lumpur. Currently, He is
pursuing Master of Engineering and Science at the same department.
His major interest is power system simulation.

43

http://www.rational.com
http://www.componentsource.com/BuildWCLWhitePaper.asp

