
National Power and Energy Conference (PECon) 2003 Proceedings, Bangi, Malaysia 22

Object Oriented Sparse Linear Solver
Component for Power System Analysis

Hazlie Mokhlis, and Khalid Mohamed Nor, Senior Memher, IEEE

Ahstract--Thls paper describes the develvpment of a sparse
linear solver component for solving linear equation In power
system analysis. The solver Is developed Into a component by
using Object Oriented Programming and Component Based
Development methodologies. This component Is then Integrated
with the load flow and fault analysis components as power
system analysis software. By developing the solver and the
power system analyses Into a different component, the
engineering analysis becomes Independent from the sparse
linear solver. Therefore, the solver can be replaced with other
solver, whlth may be proprietary code, or when better or
Improved solver becomes available In future. The replacement
will not cause any need to modify the load flow and fault
analysls·components. By using Component OilSI'd Development,
the software becomes flexible to be updated alad ex tended.

Keywords--Llnear solver, component, object-oriented Ilower
syslem· model, component-based system devl'lopment,
Nomenclature

I. INTRODUCTION

I
n any type of power system analyses, a sparse linear solver
to solve matrix equation such as inversion is the core part

of such analysis. Without this solver, power system
analyses cantlot be solved. The solver will determine the
accuracy of the solution and also the analysis solution time,
whether slow or fast. Thus, it is very" important to have a
reliable solver, which can solve matrix equation invo lving
various types of large scale sp arse matrices in power system
analysis. The solution time taken in solving matrix equation
also needs to be fast especially for realtime application.

For along time, it has been a practice in power system
analysis software development to combine the electrical
analysis together with the matrix solver such as in load flow

application [3, 4]. This approach made the electrical analysis
and the solver analysis in the program being coupled
together. Modification on particular variable or function may
propagate to the whole source codes of both parts, which
lead to a massive modification. Due to this problem,
software maintenance became difficult, time consuming and
costly. This problem can be avoided by developing the
solver separately from the engineering analysis before
cO"1-bining,them together. In order to develop power system
analysis software from different part, an Object Oriented
Programming (OOP) and Component based development
(CBD) methodologies can be applied.

This work was supported in part by Ihe University of Malaya, KUDla
Lumpur Malaysia, under JRPA grant projett.

Hazlie Mokhlis is with the Department of Electrical Engineering,

University of Malaya, (e-mail: hazll@utH.l·llu.Il1Y).
Khalid Mohamed Nor is with the Department of EICCIrical Enginecri"ll.

University of Malaya (e.mail: khalid@um.edu.my).

0-7803-8208-0/03/$17.00 ©2003 IEEE.

By using
' OOP, the problem of upgrading can be reduced.

There are many reports on the application of OOP for power
system application [5-7]. Although OOP has shown 10 help
in maintaining software, this is only at Ihe source codes level
since the codes still have ,10 be recompiled whenever their
runclionalities need to be extended. These limitations can be
solved by using CBD, where application is built in whole or
in part from existing pieces [8]. Component provides many
.advantageous to software development such as it allow cross
language, simpler to understand and use, and support visual
programming. These advantageous have lead to its usage in
developing power system analysis such as in [7], where OOP
and CBD were both applied. By using CBD, the software
became reusable since each of components inside the
application is independent between each other. Changing on
any component will not affect the rests. The functionality of
the component can also be ex tended wilhout recompiling it.

Since the COO methodology prov ides a wily of
developing software from various components, power
system an<llysis and sparse lincnr solver c<ln be developed
into different components . The engineering analysis will be
able to use the this solver component to solve linear equation
involve in il. However, 10 build from scratch thc solver is
time consuming since it involves complex mathematical
analys is, which may 1I0t be easy to understand and develop
in a short time. Therefore, it is an advantage to lise an
existing solver (source codes) that available in the market or
public domain rather than developing it from scratch. This
solver can be prepared into a component before integrated it
with power system analysis component to be power system
analysis sollwarc.

There are few examples of pub l ic domain solvers such as
'SpooJes', 'SuperLU' and 'Boeing ' (I, 2, 3]. These solvers
have been tested and proven to work in solving various type
of sparse matrix. By using such existing solver, cost and
time of power system software development can be reduced.
Furthermore, the electrical analysis will be beller design
since the developer can concentrate in the engineering part

. and leave the detail of mathematic 10 the mathematicians.
In this project, 'SuperLU' is used as the solver and has

been developed into a component. Although it i§ !I, p.!�blic
domain code , it still has the same capability COir.;:;lc''d to
other in solving sparse linear equation. It lIses many latest
techniques, such as graph reduction technique in matrix
factorization. Furthennore, it can also solve very
unsymmetrical matrices. The package comes with real and
complex matrices solver, in both single and double precision
versions.

This paper will present a report on the development of an
object oriented matrix solver component. Its appl icat ion in
load flow ond fault analyses application will a lso be
discussed.

II. INTRODUCTION TO SUPERt..U

SuperLU is a general purpose library for the direct
solution of large, sparse, non-symmetric systems of linear
equations on high performance machines. It was developed
by the University of California, through Lawrence Berkeley
National Laboratory. It is a license free, which can be used
for research with particular conditions. The library is written
in ANSI C lind is callable from either C or FORTRAN.
Since it is implemented in ANSI C, it need to be compiled
with standard ANSI C compilers.

SuperLU contains a set of subroutines libraries for solving
sparse linear system of

A-X = B (I)
where A is a square, nonsingular, n x n sparse matrix and X
and B are dense 11 x nrhs matrices, where nrhs is the number
of right-hand sides and also the solution vectors. SuperLU
provides functionality to solve equation I for both real and
complex matrices, in both single and double precision.

Basically, SuperLU uses LU decomposition technique in
solving linear equation. The library routines perfonn LU
decomposition with partial pivoting. Matrix A is factorized
to decompose into Land U matrices as follow,

A . X = (L . U) . X = B (2)
by first solving for vector y such that

L· Y = B (3)
and then solving

U· X = Y (4)
to get the solution of X. Equation 3 and 4 are solved using
forward and back substitution. The LU factorization routines
can handle non-square matrices of A but the solution for
equation 3 and 4 are performed only for square matrices.
Matrix A can be in a symmetrical or very unsymmetrical
structure.

SuperLU also provides routines to improve backward
stability, equilibrate the system, estimate the condition
number, calculate the relative backward error, and estimate
error bounds for the refined solutions.

III. CLASSES fOR SPARSE LINEAR SOLVER

In this project, the SuperLU source codes are rewritten
into OOp since the original codes are based on ANSI C with
a structural programming. There are also some modification
in the codes such as changing the maximum number of
precision that allowed for a double data type. This is because
the library was built under UNIX system, which is different
from a PC (Personal computer).

The source codes in the SuperLU package are grouped
into partiCUlar classes. This grouping is based on the data
type of the matrices, whether complex number or real
number and also the type of accuracy required for the
analysis, whether s.ingle or double precision. The classes and
it relationship is shown in Figure 1.

23
Four types of classes that are TSingleReal, TDoubleReal,

TSingleComplex, and TDoubleComplex are derived from
the base class, which is the TMathemathicalSolver class.
This relationship between the base class and derived classes
is called inheritance. The base class contains common
attributes of data and methods (functions) for the derived
classes such as the type of number for data, whether real or
complex number. Therefore, the same methods that required
in the derived classes do not need to be rewritten again in
those classes.

The derived classes are defined with polymorphism
relationship with the base class. By doing so, user can access
a same method with different operation depending on the
defined object, whether single or double precision. Besides
the existing functions in the solver, other bask operations
such as multiplication and addition involve one-dimensional
sparse matrix were also added into this solver classes. As an
example fragment of C++ code (header file) for single real
solver. is presented as follows,

class PACKAGE TSingleReal : public TMathematicalSolver

{
private:
protected:
public:

void sCreate_CompCol_Matrix (.. .);
void sCreate_Dense_Matrix (...);
void sCreate_SuperNode_Matrix (...) ;

The above header file shows so me examples of the
methods (functions) inside the Single Real class. These
methods have it own task in solving the equation. The
method of sCreate_CompCol_Matrix and
sCreate_Del1se_Matrix for instance are called to set up
matrices A and B, respectively, in the data structure
internally used by SuperLU. Since the Single Real class is
derived from the base class of the Mathematical Solver
class, all the data and methods, which was defined as a
public or protected type. in the base class can be accessed
directly by it. This also applied for other derived classes i.e
Double Real, Single Complex and Double Complex. By
using classes, the solver becomes reusable that can be
extended with other functionility.

IV. COMPONENT DEVELOPMENT AND INTEGRATION

The discussed mathematical solver classes are packed into
a package. In C++ Builder, a package is a special dynamic
link library used by C++ application and the Integrated
Development Environment (IDE), or both. This package
consists of files with the extension type' of BPL, BPI, OB1,
and LIB. This package is then installed so as it will be
registered in the IDE component palette. The same
procedures were applied in developing load flow and fault
analysis components. The component palettes are now ready
to be used.

In order to deliver components to user, both 'BPI' and
'BPL' files as well header files with the extension 'h' need
to be supplied. These files are sufficient for application that

r--....L.-........., use component in runtime application. However,
'-------' applications that are linked statically to a component,

Fig 1 Sparse Linear Solver Class Diagram additional files with extension of 'LIB' and '081' type are
also need to be supplied. The supplied header files contain
only public members with their protected and private

members are taken out. The reason is to hide members that
are not accessible in the derived classes from misused.

In order to integrate the components, all the required
components need to be installed first. Then, a main program
application is created and all the required functions of the
components ate called in the main program. Besides the
usual application under DOS environment, the load flow and
fault component also have been successfully integrated with
Graphical User Interface (GU1) components and other
component as user-friendly Visual Power System Analysis
Tool software [8]. This tool is built by architecting
componcnt systcms that piny the lItain role in dl'llwing OIlC­
line diagram, capturing database, and performing analysis
such as load flow, symmetrical and unsymmetrical faults.

The interactions between these components in the developed
software are shown in Figure 2.

Lond Flaw
Component

legends
OCompono"
[::1 FunctJc;ms -

Sp.rs< Un ...
Solver

Component

Fault C.lcul,tion
Component

Fig 2 Interactions between Components

In the above figure, the load flow and fault components
use sparse linear solver component. The functions of the
solver can used to solve equation by calling them in the load
flow and fault components. In order to do this, the solver is
defined in both component. For fault component, it can
receives analysis result from the load flow component such
as the voltage on buses , or it can also analyze data directly
from the data input.

The data for ana lysis are supplied by user through the data
input component. This component could be a database or a
group of functions to read text files. In our data input
component, user has the choice to provide data by reading
text files in the fonnat of IEEE or from database. The
supplied data will be processed first in the Data preparation
function inside the load flow and fault component. These
data will be prepared according to the data structure uses in
load flow and fault analysis. By having these function, load
flow and fault analyses components are independent from
the structure of the data supplied to it. Thus, any data with
different data structure can be supplied as long as it is the
right data. The functions can also be considered as an
interfac''1..l�er for other application or components to
communicate with the load flow and fault components.

The interaction between components shows independency
between components. Modification in any of the analysis
components or the solver component inside this application
will not affect each other. The solver component call also be
replaced with other suitable one without affectillg the load
flow and fault analysis components. Therefore, at any time a
better solver could be chosen to replace the existing
component in the application.

24
By developing application based on components, adding,

changing or modifying any componenl in the application is
possible without affecting other components. Because of
this, other data input component based on other data fonnat
likes PSSE or other types of' analysis such as stability
analysis components can also be integrated into this
application. Another important advantage of Ilsing
component is that it can be added with other derived classes

without need to recompile the existing component. For an
example, if we want to create a new function such as to get
an inversion matrix, what we need to do is to create a new
componcnt �Ia" by deriving it fml\llhe base cluss. Only this
component is compiled and not the base class .

V. TIlE i\1'1'1.1Ci\TIUN OF MATRIX SOI.VER COMI'ONENl

In order to lISC SuperLU solver, the involve matrices in
load flow and fault analyses need to be prepared according
to the matrix storage format use in SuperLU. The storage
format is called compressed column format. Basically, the
matrix A in the equation 1 needs to be stored in three
different one dimensional arrays. The arrays are referred to
as II[], asub[] and Xlln, which stores the nonzero coefficients
of matrix A, their row indices, and the indices indicating the
beginning of each column in the coefficient and row index
arrays. The total number of the nonzero element of the
matrix A also needs to be specified.

A. Fault Analysis Application
In fault analysis, matrix inversion is required to get a bus

impedance matrix. This matrix is obtained by inversing bus
admittance matrix of the power system network. The
diagonal elements of the bus impedance matrix, which are
the Thevenin impedances of the network is used to calculate
the fault current at various buses.

Unfortunately, the SuperLU package does not provide an
inversion operation since it uses the LU decomposition
technique in solving equation I, which not involving any
inversion process. However, we can manipulate the
functions provided in SuperLU to develop a function for
inversion purpose. Using the LU decomposition provided by
SuperLU and baek substituti on routines, it is possible to find
the inverse of a matrix column by column. To explain this,
consider a linear set of system of equation I with matrix A
has dimensional of n x n. The developed inversion function
will factorize matrix A once to develop Land U matrices.
Matrix B is supplied with a value of 1 in the first row and
the rest of the elements are zero. These matrices then are
supplied into a SuperLU solving routine to get the X matrix

. of the equation. The result of this X matrix is the elements of
the first column of the inverse of matrix A. The same
process is repeated by changing �he value one of matrix B
into the second row to get the second column of the inverse
matrix A. These processes are continued ulltil all the
columns ofth(l. inverse matrix A are obtained .

B. Load Flow Application
Different front fault analysis applicati on , load flow

application would be able to lise directly the routines
provided in SuperLU to solve the involve equation. For
Newlon Raphson (N R) load now analysis, the involve
equation is [9]:

(6)

whereas for Fast Decoupled (FD) method, it has the same
form of equation as in NR but with two decoupled equations
[10]:

(7) [L\QIV) = [B"][L\V) (8)
Where ,
C!P,6.Q : active and reactive power mismatch vectors

/), V,/)' e : voltage magnitude and angle correction vectors

B;� = 11 Xi� B;� = Xik I(Rj; + Xi�) (9)
B;j=-LIIXik B;;=-L.B;�+SjkI2 (10)

jEIc jet
(R and X are the resistance and reactance of transmission
line)

In order to solve equation 6, 7 and 8 of the NR and FD
methods using the sparse linear solver solver component, the
Jacobian matrix ofNR and FD methods need to be prepared
first according to the SuperLU format. A function called
Constrllct structure is developed in both component to
prepare the asub[J and xa[) arrays, Functions to develop one
dimensional arrays for Jacobiall[], B'[] and B"[] are also
developed in the load flow component.

The process of developing the data structure according to
SuperLU format for NR method is shown in the flow chart
of Figure 3. The flow chart. shows how data structure for H
and J matrices of the Jacobian matrix are determined. The
process is starts by setting three variables to their initial
value. These variables are col, which represented the column
number of matrices Hand J, the index indicates the index
number of asub, and the nonzero variable indicates for the
total number of non-zero elements in the Jacobian matrix.
Then, the connections between two busses (send bus and
receive bus) are checked whether they are equal to the col
value or not. If one of them is equal to the col, the receive
bus is then checked whether equal to color not, and then the
aSlib is taken value accordingly as shown in the flow chart

and the nonzero value is increased by one. This process is
repeated until all the branch data have been checked (i is
equal to the total number of branch). After this, a sorting
process is done to rearrange the aSllb array according to the
order of row number of the matrix. This is because the
connections data between two busses usually not in
appropriate order.

Y------<.. i:=:Tota1 branch?
I
I
I
I �------------------
.. -------- ---------1
I I I I I I I For J elemen t I
I >-'N"'o---� I I I �------------------

25

No c:oI;:;Tolal bus
'---------<:... numb@r ')

r------------
--.I Other algorUthm f(){ creat,lng :

L2t::'�u��_N!.:_���_1

Fig 3 Data structure development in NR method

The next process is to develop the structure of the matrix
J. For this the asub of the H matrix, which has been found
are used. After all the aSllb of the nonzero element of the J
matrix have been found, t�e xa indicates the total number of
non zero values in one column of the Jacobian matrix is
taken the index value. The process is end when all the col
value is equal to the total bus number of the system.

For the Nand L matrices, the data structure development
is by manipulating all the result obtained from Hand J
matrices. Similar process is also taken in developing bus
admittance matrix in fault analysis to fulfill the storage
format of SuperLU.

VI. COMPONENT PERFORMANCE EVALUATION
The objective of this test is to evaluate the performance of

the software that developed based on the component over
the non component software in term of execution time. For
this purpose, two software applications are devt'lpp�9 .. using
C++ Borland Builder version 6.0 for solving load flow
analysis. The first one is integrated from the discussed
components and another one is developed based on OOP
only. The execution times are taken for solving load flow
analysis using both methods and matrix factorization
operation involve in the NR method. The test is carried out
by using Pentium III, 450 Mhz, RAM 64 MB (Personal
Computer). The data tests are from IEEE test data involving
I 18 and 300 bus system and TNB data of 664 bus systems.

Table 2 Newton Raphson Load Flow Execution Time
System CPU time (in seconds)

Component Non Component
118 Bus 0.16 0.10

300 Uus 1.93 \.3(,

664 Bus 11.81 10.49

Tn bl e 3 Fasl Decolll'Jco ExeCUlion Timc
System CPU lime (In s!.col1d� ___ ._._�

Componenl Non Component
118 flus 0.01') 0.012

300 Uus 0.058 0.039

664 !Jus 0.129 0.082

Tnbl� 4 Mutrix I'ncturizatiuns �nd hlYcl'siun Exeeutiun Time
M.trix Sile CPU IIme(ln Seconds)

Component Non on]lonent
236 x 236 0,05 0.04
600 x 600 0.64 0.45

J328x13Z8 3.89 3.18

All the load flow analysis tests show convergence creteria,
which prove the ability of SuperLU in solving matrix
equation involving large scale sparse matrices, The
execution time of solution is presented in table 2,3 and 4. Its
clear that execution time of application based on component
requires more time compared to the non-component. The
extra execution time is caused by the overhead given by
object oriented classes, where a lot of passing massages are
involved, As the number of busses increase, the difference in
execution time became smaller. Moreover if the test is run
under a more powerful processor, the execution time can be
reduced.

VII, CONCLUSION

This paper has presented the application of publ ie domain
Source code, which was del/eloped into a sparse linear solver
component. The integration of the component with load flow
and fault components has been explained. Although the
perfonnance test shows an extra execution time, it not so
significant compared with the benefits offered by CBD,
Writing more efficient codes or using more powerful

computer can reduce the extra time. Since computer
processor speed continues to increase, execution time will
not be a major handicap in using CBD approach.

By developing the power system software based on
component, maintenance is easier as any change in any
component does not propagate and affect other components.
This development also shows the potential of CBD in
developing power system analysis components as off-the­
shelf products, Power system software developer can
therefore maximize time and energy in developing high
quality components of his expertise, letting other experts, the.
non-power system components developers , develop and
extend functionalities of other components. This will
minimize the cosl of developing and maintaining high
quality software.

VIII. ACKNOWLElJOMENT
The authors gratefully acknowledge the assistance rendered
by the Department of Electrical Engineering and the Faculty

of Engineering, University of Ma laya in the work reported in
this paper,

IX. REFERENCES
[I] "SPOOLES 2.2: Sparse Object Oriented Linear Equations Solver",

which i� avail"hle al
hllp:II\\-ww .nell ih,org./hnalg./�r(1oksJsp{\11 h.!;:;�,2. hlml.

26

121 Jmllcs W.lkl1lmcl, J"lmIUiilbcl(mId Xiuoyc S.Li, "SupcrUJ tlscr
(,uide", wldch is �vail"ble at
hllp:I/"''''II".lIrr,r,[!.",f,· � ia"yr/Stll'l"11 I!,

IJI A,F. Neyer, F.F. W" un" K> hllh".-, "Ohjcct Oticnled I'mllroml11ins
Ibr Flc,ihlc sonwarc: EX:lIl1l'lc or A Loml Flow", IEEE TnmslIctio"
0" I'"wer Sy.lc"", Vut. 5, No. J, A"gu'l 1 '190.

14 j E.i':. ZhllU, "Objcct-oricnlnl I'l1Igr�ll1ll1ing, (' I' lIml I'llwer SY�lcm
Simulation", IEEE Trnn,"ctinll nn Power Systems, Vnl.ll. No, I.
hbruUlY 1')%.

151 Il. lIaka'vik, A.Tllolen, "Power Sy'tem MOdeling and Spnrse Matrix

Opcruliulls Usillg Objccl·Oriclltcu 1'1'\Jgl�lllIl,illg", IEEE Tmll. On
Power System, Vol. 9, No.2, May, 1994.

161 Fuley M., Uose A., Mitchell W, unu !'austini A.: "An Object Based
Graphical User Interface for Power Syslems", IEEE Transactions on
Power Systems, Vol. 8, No. I, February 1')')1

171 Khalid M. Nor, Tnufiq A. Oalli, Hazlie Moknlis, "The Applicalion of
Component Based Methodology in Developing Visual I'ower Syslem
Analysis Tool", Proceeding of the 22M conference on IEEE I'ES
PICA, Sydney, 2000.

{SI Chappel, David, "The Next Wave: Coml'0nent Software Enlers the

Mainstream", White Papers, which is availabte at
htlr:(/\\"\\"w.18tional.cmll.

[91 W.F Tinney and CE lIarl,"Power now solution by Newton's

method", IEEE Trans. (Power App. Sys). vol. PAS-86, pp.1449-1456,
Nov. 1967.

(101 B. Stott and o. Asae, "F.st Oecoupled Load Flow", IEEE Trans.
(Power App. Sys), vol. PAS·93, pp.859·869, May/June, 1974.

