National Power and Energy Conference (PECon) 2003 Proceedings, Bangi, Malaysia 22

Object Oriented Sparse Linear Solver
Component for Power System Analysis

Hazlie Mokhlis, and Khalid Mohamed Nor, Senior Member, IEEE

Abstract--Thls paper describes the development of a sparse
linear solver component for solving linear equation in power
system analysis. The solver is developed into a component by
using Object Oriented Programming and Component Based
Development methodologies. This component Is then integrated
with the load flow and fault analysls components as power
system analysis software. By developing the solver and the
power system analyses into a different component, the
engineering analysis becomes Independent from the sparse
linear solver. Therefore, the solver can be replaced with other
solver, which may be proprietary code, or when better or
improved solver becomes available in future. The replacement
will not cause any need to modify the load flow and fault
analysis components. By using Component Based Development,
the software becomes flexible to be updated and extended.

Keywords--Linear solver, component, object-oricuted power
system- model, component-based system development,
Nomenclature

I. INTRODUCTION

In any type of power system analyses, a sparse linear solver
to solve matrix equation such as inversion is the core part

of such analysis. Without this solver, power system
analyses cannot be solved. The solver will determine the
accuracy of the solution and also the analysis solution time,
whether slow or fast. Thus, il is very important to have a
reliable solver, which can solve matrix equation involving
various types of large scale sparse matrices in power system
analysis. The solution time taken in solving malrix equation
also needs to be fast especially for real time application.

For along time, it has been a practice in power system
analysis software developmient to combine the electrical
analysis together with the matrix solver such as in load flow
application [3, 4]. This approach made the electrical analysis
and the solver analysis in the program being coupled
together. Modification on particular variable or function may
propagate to the whole source codes of both parts, which
lead to a massive modification. Due to this problem,

software maintenance became difficult, time consuming and -

costly. This problem can be avoided by devetoping the
solver scparately from the engineering analysis before
combining.them together. In order to develop power system
analysis software from different part, an Object Oriented
Programming (OOP) and Component based developrent
(CBD) methodologies can be applied.

This work was supported in part by the University of Malaya, Kuala
Lumpur Malaysia, under JRPA grant project.

Hazlie Mokhlis is with the Department of Elcctrical Engineering,
University of Malaya, (e-mail: hazli@um.cdu.my).

Khalid Mohamed Nor is with the Department of Electricat FEnginecring.
University of Mataya (e-mail: khalid@um.edu.my).

0-7803-8208-0/03/817.00 ©2003 [EEE.

By using OOP, the problem of upgrading can be reduced.
There are many reports on the application of OOP for power
system application [5-7]. Although OOP has shown to help
in maintaining sofiware, this is only at the source codes level
since the codes still have to be recompiled whenever their
functionalities need to be extended. These limitations can be
soived by using CBD, where application is built in whole or
in part from existing pieces [B]. Component provides many
advantageous to software deveiopment such as it allow cross
language, simpler to understand and use, and support visual
programming. These advantageous have lead to its usage in
developing power system analysis such as in [7], where QOP
and CBD were both applied. By using CBD, the software
became reusable since each of components inside the
application is independent between each other. Changing on
any component will not affect the rests. The functionality of
the component can also be extended without recompiling it.

Since the CBD methodology provides a way of
developing software from various components, power
systeimn analysis and sparse lincar solver can be developed
into different components. The engineering analysis will be
able to use the this solver component to solve linear equation
involve in il. However, to build from scratch the solver is
time consuming since it involves complex mathematical
analysis, which may not be easy to undersland and develop
in a short time. Therefore, it is an advantage to use an
existing solver (source codes) that available in the market or
public domain rather than developing it frem scratch. This
solver can be prepared into a component before integrated it
with power system analysis component to be power system
amalysis sollware,

There are few examples of public domain solvers such as
‘Spooles’, ‘SuperLU’ and ‘Boeing’ {1, 2, 3}. These solvers
have been tested and proven to work in sotving various type
of sparse matrix. By using such existing solver, cost and
time of power system software development can be reduced.
Furthermore, the electrical analysis will be belter design
since the developer can concentrate in the engineering part
and leave the detail of mathematic to the mathematicians.

In this project, ‘SuperLU’ is used as the solver and has
been developed into a component. Although it is a public
domain code, it still has the same capability ceingarcd to
other in solving sparse linear equation. It uses many latest
techniques, such as graph reduction technique in matrix
factorization. Furthermore, it can also solve very
unsymmetrical matrices. The package comes with real and
complex matrices solver, in both single and double precision
versions.

This paper will present a report on the development of an
object oriented matrix solver component. Its application in
foad flow and fault analyses application will also be
discussed.

[I. INTRODUCTION TO SUPERLU

SuperL.U is a general purpose library for the direct
solution of large, sparse, non-symmetric systems of linear
equations on high performance machines. It was developed
by the University of California, through Lawrence Berkeley
National Laboratory. It is a license free, which can bé used
for research with particular conditions. The library is written
in ANSI C and is callable from either C or FORTRAN.
Since it is implemented in ANSI C, it need to be compiled
with standard ANSI C compilers.

SuperLU contains a set of subroutines libraries for solving
sparse linear system of

AX=B (1)
where A is a square, nonsingular, n x n sparse matrix and X
and B are dense »n x nrhs matrices, where nrhis is the number
of right-hand sides and also the solution vectors. SuperLU
provides functionality to solve equation 1 for both real and
complex matrices, in both single and double precision.

Basically, SuperLU uses LU decompositicn technique in
solving linear equation. The library routines perform LU
decomposition with partial pivoting. Matrix A is factorized
to decompose into L. and U matrices as follow,

A-X=(L'U)-X=B (2)
by first solving for vector y such that

L-y=B 3)
and then solving

U-X=y)]

to get the solution of X. Equation 3 and 4 are solved using
forward and back substitution. The LU factorization routines
can handle non-square matrices of A but the solution for
equation 3 and 4 are performed only for square matrices.
Matrix A can be in a symmetrical or very unsymmetrical
structure.

SuperLU also provides routines to improve backward
stability, equilibrate the system, estimate the condition
number, calculate the relative backward error, and estimate
error bounds for the refined solutions.

II1. CLASSES FOR SPARSE LINEAR SOLVER

[n this project, the SuperLU source codes are rewritten
into OOP since the original codes are based on ANSI C with
a structural programming. There are also some modification
in the codes such as changing the maximum number of
precision that allowed for a double data type. This is because
the library was built under UNIX system, which is different
from a PC (Personal computer).

The source codes in the SuperLU package are grouped
into particular classes. This grouping is based on the data
type of the matrices, whether complex number or real
numbesr and also the type of accuracy required for the
analysis, whether single or double precision. The classes and
it relationship is shown in Figure 1.

TMathematicalSolver

‘ -
I TOoubleReal LTSingreCompIex |EoubIeComplexJ

Fig | Sparse Linear Solver Class Diagram

23

Four types of classes that are TSingleReal, TDoubleReal,
TSingleComplex, and TDoubleComplex are derived from
the base class, which is the TMathemathicalSolver class.
This relationship between the base class and derived classes
is called inheritance. The base class contains comnion
attributes of data and methods (functions) for the derived
classes such as the type of number for data, whether real or
complex number. Therefore, the same methods that required
in the derived classes do not need to be rewritten again in
those classes.

The derived classes are defined with polymorphism
relationship with the base class. By doing so, user can access
a same method with different operation depending on the
defined object, whether single or double precision. Besides
the existing functions in the solver, other basic operations
such as multiplication and addition involve one-dimensional
sparse matrix were also added into this solver classes. As an
example fragment of C++ code (header file} for single real
solver. is presented as follows,

class PACKAGE TSingleReal : public TMathematicalSolver -
{

private:

protected:

public:
void sCreate_CompCol_Matrix (...);
void sCreate_Dense_Matrix (...);
void sCreate_SuperNode_Matrix (...);

}

The above header file shows some examples of the
methods (functions) inside the Single Real class. These
methods have it own task in solving the equation. The
method of sCreate_CompCol_Matrix and
sCreate_Dense_Matrix for instance are called to set up
matrices A and B, respectively, in the data structure
internally used by SuperLU. Since the Single Real class is
derived from the base class of the Mathematical Solver
class, all the data and methods, which was defined as a
public or protected type.in the base class can be accessed
directly by it. This also applied for other derived classes i.e
Double Real, Single Complex and Double Complex. By
using classes, the solver becomes reusable that can be
extended with other functionility.

IV. COMPONENT DEVELOPMENT AND INTEGRATION

The discussed mathematical solver classes are packed into
a package. In C++ Builder, a package is a special dynamic
link library used by C++ application and the Integrated
Development Environment (IDE), or both. This package
consists of files with the extension type of BPL, BPI, OBJ,
and LIB. This package is then installed so as it will be
registered in the IDE component palette. The same
procedures were applied in developing load fiow and fault
analysis components. The component palettes are now ready
to be used.

In order to deliver components to user, both ‘BPI" and
‘BPL’ files as well header files with the extension ‘h* need
to be supplied. These files are sufficient for application that
use component in runtime application. However,
applications that are linked statically to a component,
additional files with extension of ‘LIB’ and ‘CBJ’ type are
also need to be supplied. The supplied header files contain
only public members with their protected and private

members are taken out. The reason is to hide members that
are not accessible in the derived classes from misused.

In order to integrate the components, all the required
components need to be installed first. Then, a main program
application is created and all the required functions of the
components are called in the main program. Besides the
usual application under DOS environment, the load flow and
fault component also have been successfully integrated with
Graphical User Interface (GUI) components and other
component as user-friendly Visual Power System Analysis
Tool sofiware [8]. This tool is built by architecting
component systens that play e main role in drawing onc-
line diagram, capturing database, and performing analysis
such as load flow, symmeltrical and unsymmetrical faults.
The interactions between these comnpenents in the developed
software are shown in Figure 2.

Data Input

Sparse Linear

Load Flaw Solver
Component Component
-1+ Data Preparation
‘ N
tegends { Fault Calculation } Fault Calculation
(O component et Component
1E3 ponctons S22 b

Result
Fig 2 Interactions between Components

In the above figure, the load flow and fault components
use sparse linear solver component. The functions of the
solver can used to solve equation by calling them in the load
flow and fault components. In order to do this, the solver is
defined in both component. For fault component, it can
receives analysis result from the load flow component such
as the voltage on buses, or it can also analyze data directly
from the data input.

The data for analysis are supplied by user through the data
input component. This component could be a database or a
group of functions to read text files. In our data input
component, user has the choice to provide data by reading
text files in the format of IEEE or from database. The
supplied data will be processed first in the Data preparation
function inside the load flow and fault component. These
data will be prepared according to the data structure uses in
load flow and fault analysis. By having these function, load
flow and fault analyses components are independent from
the structure of the data supplied to it. Thus, any data with
different data stsucture can be supplied as long as it is the
right data. The functions can also be considered as an
interface-laver for other application or components to
communicate with the load flow and fault components.

The interaction between components shows independency
between components. Modification in any of the analysis
components or the solver component inside this application
will not affect each other. The solver component can also be
replaced with other suitable one without affecting the load
flow and fault analysis components. Therefore, at any time a
better solver could be chosen to replace the existing
component in Lhe application.

24
By developing application based on components, adding,
changing or modifying any component in the application is
possible without affecting other components. Because of
this, other data input component based on other data format
likes PSSE or other types ofanalysis such as stability
analysis components can also be integrated into (his
application. Another important advaniage of using
component is that it can be added with other derived classes
without need to recompile the existing component. For an
example, if we want fo create a new function such as 1o get
an inversion matrix, what we need to do is to creale a new
component class by deriving it from the base class. Only this
component is compiled and not the base class.

V. THE AFPLICATION OF MATRIX SOLVER COMPONENT

In order to use Superl.U solver, the involve matrices in
load flow and fault analyses need to be prepared according
to the matrix storage format use in SuperLU. The storage
format is called compressed column format. Basically, the
matrix A in the equation 1 needs to be stored in three
different one dimensional arrays. The arrays are referred to
as af], asub|] and xe[], which stores the nonzero coefficients
of matrix A, their raw indices, and the indices indicating the
beginning of each column in the coefTicient and row index
arrays. The total number of the nonzero element of the
matrix A alsc needs to be specified.

A. Fault Analysis Application

In fault analysis, matrix inversion is required to get a bus
impedance matrix. This matrix is obtained by inversing bus
admittance matrix of the power system network. The
diagonal elements of the bus impedance matrix, which are
the Thevenin impedances of the network is used to calculate
the fault current at various buses.

Unfortunately, the SuperLLU package does not provide an
inversion operation since it uses the LU decomposition
technique in solving equation !, which not involving any
inversion process. However, we can manipulate the
functions provided in SuperLU to develop a function for
inversion purpose. Using the LU decomposition provided by
SuperL.U and back substitution routines, it is possible to find
the inverse of a matrix column by column. To explain this,
consider a linear set of system of equation 1 with matrix A
has dimensional of n x n. The developed inversion function
will factorize matrix A once to develop L and U matrices.
Matrix B is supplied with a value of 1 in the first row and
the rest of the elements are zero. These matrices then are
supplied into a SuperLU solving routine to get the X matrix

.of the equation. The result of this X matrix is the elements of

the first celumn eof the inverse of matrix A. The same
process is repeated by changing the value one of matrix B
into the second row to get the second column of the inverse
matrix A. These processes are continued until all the
columns of the inverse matrix A are obtained.

B. Load Flow Application

Different from fault apalysis application, load flow
application would be able to use directly the routines
provided in Super[LU to solve the involve equation. For
Newton Raphson (NR) load [low analysis, the involve
equation is [9]:

[Ij ﬂ [iﬁwHﬁZ} (©)

~ g
H

whereas for Fast Decoupled (FD) method, it has the same
form of equation as in NR but with two decoupled equations
[10]:

(aprv]=[8las]
Where,
AP, AQ active and reactive power mismatch vectors

(aQ/V]=[8"][aV] (8

AV, A0 : voltage magnitude and angle correction vectors

B, =1/ X, By = Xy KRG + X3))
By=-31Xy By==) By +S;l2 (10)
iek iek

(R and X are the resistance and reactance of transmission
line)

In order to solve equation 6, 7 and 8 of the NR and FD
methods using the sparse linear solver solver component, the
Jacobian matrix of NR and FD methods need to be prepared
first according to the SuperLU format. A function called
Construct structyre is developed in both component to
prepare the asub[) and xa[] arrays. Functions to develop one
dimensional arrays for Jacobian[), B’[] and B’’[] are also
developed in the load flow component.

The process of developing the data structure according to
SuperLU format for NR method is shown in the flow chart
of Figure 3. The flow chart shows how data structure for H
and J matrices of the Jacobian matrix are determined. The
process is starts by setting three variables to their initial
value. These variables are co/, which represented the column
number of matrices H and J, the index indicates the index
number of asub, and the nonzero variable indicates for the
total number of non-zero elements in the Jacobian matrix.
Then, the connections between two busses (send bus and
receive bus) are checked whether they are equal to the col
value or not. If one of them is equal to the col, the receive
bus is then checked whether equal to col or not, and then the
asub is taken value accordingly as shown in the flow chart
and the nonzero value is increased by one. This process is
repeated until all the branch data have been checked (7 is
equal to the total number of branch). After this, a sorting
process is done to rearrange the asub array according to the
order of row number of the matrix. This is because the
connections data between two busses usually not in
appropriate order.

25

[col = 1, j=1,indax=0, nonzeroii

For Helement

send[i]==col
or recvlij==col ?

Yes

-
|
I
|
1
I
|
|
I
|
@mmdex]:recvii] |fsub|index]=send{i] J :
|
]
|
|
|
|
|
|
i

- rOther algorlithm for Crealing !
} struclure for N & L matrix |

Fig 3 Data structure development in NR method

The next process is to develop the structure of the matrix
J. For this the asub of the H matrix, which has been found
are used. After all the asub of the nonzero element of the J
matrix have been found, the xa indicates the total number of
non zero values in one column of the Jacobian matrix is
taken the index value. The process is end when all the co/
value is equal to the total bus number of the system.

For the N and L matrices, the data structure development
is by manipulating all the result obtained from H and J
matrices. Similar process is also taken in developing bus
admittance matrix in fault analysis to fulfill the storage
format of SuperLU.

VI. COMPONENT PERFORMANCE EVALUATION

The objective of this test is to evaluate the performance of
the software that developed based on the component over
the non component software in term of execution time. For
this purpose, two software applications are devglppgd. using
C++ Borland Builder version 6.0 for solving load flow
analysis. The first one is integrated from the discussed
components and another one is developed based on OOP
only. The execution times are taken for solving load flow
analysis using both methods and matrix factorization
operation involve in the NR method. The test is carried out
by using Pentium III, 450 Mhz, RAM 64 MB (Personal
Computer). The data tests are from IEEE test data involving
118 and 300 bus system and TNB data of 664 bus systems.

Table 2 Newtgn Raphson Load Flow Execution Time

System CPU time {in seconds)
Component Non Component

(18 Bus Q.16 0.10

300 Bus 1.93 1.30

0664 Bus 11.81 10.49

‘lable 3 Fast Decoupled Execution Fime

System CPU time (in seconds)
Componenl Non Component

118 Bus 0.019 0.012

300 Bus 0.058 0.039

604 Bus 0.129- 0.082

Table 4 Matrix Facforizations and Inversion Lxeeution Fime

Matrix Size CPU time(in seconds)
Component Non omponenl
236 x 236 0.05 0.04
600 x 600 0.64 0.45
1328x1328 3.89 3.18

All the load flow analysis tests show convergence creteria,
which prove the ability of SuperLU in solving matrix
equation involving large scale sparse matrices. The
execution time of solution is presented in table 2,3 and 4. lts
clear that executien time of application based on component
requires more time compared to the non-component. The
extra execution time is caused by the overhead given by
object oriented classes, where a lot of passing massages are
involved. As the number of busses increase, the difference in
execution time became smaller. Moreover if the test is run
under a more powerful processor, the execution time can be
reduced.

VII. CONCLUSION

This paper has presented the application of public domain
source code, which was developed into a sparse linear solver
component. The integration of the component with load flow
and fault components has been explained. Although the
performance test shows an extra execution time, it not so
significant compared with the benefits offered by CBD.
Writing more efficient codes er using more powerfil
computer can reduce the extra time. Since computer
processor speed continues to increase, execution time will
not be a major handicap in using CBD approach.

By developing the power system software based on
component, maintenance is easier as any change in any
component does not propagate and aifect other components,
This development also shows the potential of CBD in
developing power system analysis components as off-the-
shelf products. Power system software develeper can
therefore maximize time and energy in developing high

quality components of his expettise, letting other experts, the .

non-power system components developers, develop and
extend functionalities of other components. This will
minimize the cost of developing and maintaining high
quality software.

VIlI. ACKNOWLEDGMEN'Y

The authors gratefully acknowledge the assistance rendered
by the Department of Electrical Engineering and the Facuity
of Engineering, University of Malaya in the work reported in
this paper.

26
IX. REFERENCES

[1] “SPOOLES 2.2: Sparse Object Oricnted Linear Equations Solver™,
which is availgble al
Dip:/wwsenetlib org/linalg/spooles/sponles 2,2 il

12| James W.Denmel, John R GilserUaned Xinoye S.0i, “Superbt) User
Guide"”, which is availablc at
Inp/ivwwnerse.govl - sinoye/Super | H,

131 A Neyer, ¥ Wu and K, Thof, "Objeet Otiented Prograniming
for Flexible Soflware: Fxample ot A foad Flaw™, WEEE Transaction
on Power Systems, Volb. 5, No. 3, Augest 1990,

(4] 1LZ. Zhow, “Object-oriented Progranuing, CHEoand Power System
Simulation”, IEGE Transaction on Power Systems, Veol.ll, Na. 1,
February 1996.

{5] B. tlakavik, A.T.Holen, "Power System Modeling and Sparse Matrix
Operations Using Object-Oriented Progiaimming”, 1EEL Tran, On
Pewer System, Vol. 9, No. 2, May. 1994,

16] foley M., Bose A., Mitchell W. and Faustini A.: “An Ubject Based
Graphical User Interface for Power Systems™, 1IELE Transactions on
Power Systems, Vol. 8, No. 1, February 1993.

[7} Khalid M. Nor, Taufig A. Gani, Hazlic Mokhlis, “The Applicalion off
Component Based Mcthodology in Developing Visual Power System
Analysis Tool”, Proceeding of the 22™ conference on IEEL PES
PICA, Sydney, 2000.

(8] Chappel, David, “The Next Wave: Component Sollware Enters the
Mainstream”, White Papers, which is available al
lwip//www . rational.con.

[9) W.F Tinney and C.E Hart,”Power flow solulion by Newton's
method”, IEEE Trans. (Power App. Sys), vol. PAS-86, pp.1449-1456,
Nov. 1967.

[10] B. Stott and O. Asac, “Fast Decoupled Load Flow “, 1EEE Trans.
(Power App. Sys), vol. PAS-93, pp.859-869, May/June. 1974.

