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Photonic band gap in a superconductor-dielectric superlattice
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We foresee applications and interesting possibilities of incorporating the photonic crystals concept into
superconducting electronics. In this paper, we present interesting features of the computed lower band structure
of a nondissipative superconductor-dielectric superlattice using the two-fluid model and the transcendental
equation[Pochi Yeh,Optical Waves in Layered Medi&Viley Series in Pure and Applied Opti¢d/iley, New
York, 1988]. The necessary conditions for approximating the complex conductivity by an imaginary conduc-
tivity is derived and the feasibility of achieving the conditions are discussed. The superlattice dispersion
obtained is similar to that of the phonon-polariton dispersion in ionic crystal. We found a nonlinear
temperature-dependent “polariton gap” and a low-frequefmgsma gap, and suggested the existence of a
photon-superelectron hybrid around the polariton gap. The polariton gap may be observed in an infrared-
microwave regime using a high: superconductor with sufficiently low normal-fluid relaxation time
(=10 %s), and in an optical regime using lower penetration déptB0 nm and extremely low relaxation
time (=10 's).

[. Introduction.Much work has been done on the compu- similar to the plasma frequency gap in alkali metals. The
tation of the band structures of electromagnetic waves propadistinct results from this new material structure compared to
gating in two- and three-dimensional dielectric periodicthe all-dielectric superlattice are discussed.
structures since it was showthat these periodic structures  Il. Theory. The two-fluid modélis used to describe the ac
can be designed to produce the required band structures. TRéectrodynamics of a superconductor at nonzero temperature.
band structures explored were mainly fabricated from dielecThis model has been proven successful in describing the per-
tric material$~* typically used in the semiconductor tech- formance of high-frequency superconductive devices.
nology. Dielectric periodic structures can be designed td\ccording to the two-fluid model, the complex electrical
mold the light propagation in integrated semiconductor op-fonductivityo=a,+ o of a superconductor in the presence
toelectronics where electronic and optical signals coexist an8f a time harmonic_electromagnetic .f'eld is due to the
transform between each other. unpawed-nprmal electrons, and-the paired superelect_rons

Recently, combinations of various materials for the desigrﬁfemc densityn, andns, respectively, where=ns+ny is

of photonic crystals have been studied. Sigattal® found o |rt1§‘)|tne:|t d?cr;rsg O;eéiﬁgﬁgfg ngn?kl';?nthe ;?:E:T:tgnngmﬁzs
wider photonic band gaps when dielectric constarand y P gp y

lati bilitwe h thei . | i diff for both normal electrons and superelectrons, we have the
relative permeability. have their maximum values in differ- complex conductivity as given in Ref. 9,

ent materials and suggested using magnetically tuned ferrite

r_naterlals. Elegtrlc— and magnenc—fleld—de_pendent materlgls o= (€2/m)[{n,7/(1+ Pw?)+ 5 w)7nd2)}
like ferroelectrics, ferromagnets, and ferrimagnets were in-
vestigated in two-dimensional photonic crysthErequency- —j{7?on,[(1+ 20?) + ng/w}]. (oN]

dependent dielectriésand metalli€ photonic crystals have

been studied, too. We foresee novel applications and inteffor nonzero frequency, E@l) reduces to

esting possibilities of incorporating the photonic crystals

concept into superconducting devices. From this motivation, o=(2/m)[n,7(1—jrw)/(1+ 20?) —jng/w]. (2)

in this paper we study the band structure of a one-

dimensional nondissipative superconductor-dielectric supedn order to find the condition that enables for imaginary con-

lattice. ductivity approximation, we first assume th&iw?<1. If we
We describe the electromagnetic response of a typicaet 0.01 as sufficiently much less than 1, we hawe0.1/r

nonmagnetic superconductor using the two-fluid motfel (Condition 1. At a fixed temperaturer(T) is fixed, and

via the complex conductivity. The necessary and sufficientherefore we restrict our study to the low-frequency regime.

conditions that reduce the complex conductivity to imaginaryHere, Eq.(2) reduces to

conductivity are derived, since we are interested in a nondis-

sipative superlattice. The superconductor satisfies the Gorter- o(w)=(e4/m[n,7(1—jrw)—jns/ w]. 3

Casimir relationt* The dielectric layer is characterized by a

real dielectric constant in the frequency regime of interestWhen n,7<jns/w is satisfied, the complex conductivity

We apply the source free Maxwell’s equations and the well{EQ. (3)] approximates to imaginary

known transcendental equatfério compute the band struc-

ture for the dielectric-superconducting superlattice. We ob- o(w)=—je’n/mao. (4)

serve the dispersion curve splitting similar to the phonon-

polariton dispersion in bulk dielectric, which we refer as theAgain, using the 0.01 limit, we obtaia r<0.0Ing/n, (Con-

superpolarito{SP) gap and also the low-frequen¢yF) gap  dition 2).
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Condition 1 and Condition 2 enable the conductivity to be
simply expressed in terms of the London penetration depth

A, sincem/uone€®=\?,

o(w)=—/ pew\{. (5)

From the Gorter-Casimir restitng/n,=(T./T)*—1 and
the London penetration depth, we obtain

AT =AL(0)/V1=(T/Te)%, (6)

where the conductivityEq. (5)] is temperature dependent.

Combining Condition 1 and Condition 2 and using Eq.

(6), we have
ro<minimum (0.0 (T./T)*—1],0.1), (79
ro<minimum (0.01[ (A /\,)%2—1],0.2). (7b)

For the temperature range of O[QT./T)*—1]=0.1 or T
=<0.5491T., the frequency range must satisfw=0.1,
while for temperature range df.=T=0.5491T_, the con-

dition 7w=<0.01(T./T)*—1] must be satisfied for the

imaginary conductivity approximation to hold.
We consider a superlattice with perio&,” composed of
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FIG. 1. SuperpolaritofSP gap and low-frequenc{LF) gap for
E polarization (@), H polarization (X) and bulk superconductor
(solid line) at incidence angl&#=45°, 1A, =0.05, =15, andr
1

=3.

parameters: penetration depth, angle of incidence), di-
electric thickness ratio=d/a, and dielectric constarnit.

Ill. Results and discussiofwo band gaps are observed
in the vicinity of w,=c/\_ (Fig. 1). The low-frequency
(LF) band gap {4) ranges from zero frequency to a thresh-
old designated as&,. The LF gap is due to the combined

alternating superconducting layers and a dielectric layer ogffect of both superconducting material and the periodicity

thickness ‘t,” with each layer in they-z plane.

By using Eq.(5) in Maxwell's equations, the dispersion

for the superconducting layer can be written as
kZ=(wlc)?—(1I\)?, (89)

(8b)

where Eq.(8b) follows from the continuity of the fields

k2,=(w/c)?cog 60— (1 )?,

along they-zplane and is the angle of incidence relative to

normal of interfaces.

The transfer-matrix methddl gives the transcendental

equation for a lossless superlattice
coskga=cog ke(a—d)]cogk,d)—3(p/q+q/p)
Xsinks(a—d)]sin(k.d), 9

where kg is the Bloch wave vector andl, is the normal
component of the wave vect@rin the dielectric layer.

For E(H) polarization, the electric fiel&(H) is along the
y-z plane and we have

_kx_\/ e—sir’ 0
(P@e=3—= cos 60— (clo\)?

SX

(102

/ _kxkg_\/ e—sifd  1—(clwh)?
(POn=i 12~ N coZ 1 (clon, ) e

(10b)

The right-hand side of Eq9) is always real for reak,
even thoughkg, may be imaginary. The points k=0 and

kg=/a correspond to the band-gap edges and are used to

since w, does not coincide exactly witb/\, (as for bulk
superconductgrand the all-dielectric superlattice has no gap
ranging from zero frequency. Another band gap, { w)
ranges from frequency neaf\ , designated ass to the
next threshold designated as (Fig. 2). The splitting of the
lowest dispersion branch is similar to the phonon-polariton
dispersion curve for bulk dielectri¢. So, in the frequency
aroundw, , the dispersion property of the whole superlattice
is similar to a bulk ionic crystal. The frequency thresholds
w, andw are analogous to the longitudinal and transverse
optical phonons, respectively For convenience, we refer to
the (w,—w) band gap as a superpolaritid®P gap. At
frequencies neass, w1, andw,, the dispersion is superelec-
tronlike. At a frequency around the SP gap the normal com-
ponent electric field couples strongly with the superelectrons
to form the photon-superelectron hybri@giperpolaritons

At frequencies well above,, the dispersion becomes pho-
tonlike and the whole superlattice can be represented by an
effective dielectric constangd/a, characterized by a trans-
lated linear electromagnetic wave dispersifig. 2),

ﬁ)_ﬁ)lszC/ \/Sd/a.
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Bloch wave vectorkg, and inverse London penetration

depth 1\, are all normalized in units of 2/a. The band
structure is computed using E@) with four predetermined

kg
FIG. 2. Fitting of H-polarization dispersion curves around the
superpolariton gap using E@l12) (solid lineg, with w,=0.061,
@ =0.05, andw; =0.018. The straight line is plotted from Ed.1).
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FIG. 3. SP gapO), LF gap(®), w, (+), andw (X) versus
1/\, with §=45°, ¢=5, andr =0.5. The straight line serves as a
reference, withw=c/\ .

FIG. 4. Superpolariton gafD), low-frequency gaf®), andw
(+) versus angle of incidenc@ with 1/A; =0.47, ¢=5, andr
=0.5.

only becomes obvious for largexl/. The approximate ana-

At a frequency beloww, , even though the wave vector in lytical expression for the LF gap size as a function\of, e,
the superconducting layer is purely imaginary, propagatingndr has been found as
modes still exist in the superlattic&ig. 1) with dispersion o 1
characterized by the lower superpolariton branch. Here, the wy=Asin" (1 )cos H(r)/e. (13
electromagnetic energy is not lost but transferred into super- In Figs. (4)—(6) the gaps are plotted with the superpolari-
electron oscillations via strong photon-superelectron couton cutoff value of (1X, ;) =0.47, estimated from Fig. 3. The
pling. monotonic variations ofv, and SP gap size with, 6, &,

Figure 1 shows that the splitting is solely due to the cou-and r (Figs. 3—6 terminate at the “kinks.” These points
pling between the superelectrons and the normal componentark the upper SP effect limits at {4/;)=0.47 (Fig. 3),
of electric fieldE,, which is nonzero only foH polarization  e.=5 (Fig. 5, andr,=0.5 (Fig. 6), and the lower limits at
at oblique angle of incidenced¢ 0). The splitting is not  6.=45° (Fig. 4. For\ <\ ¢, 0<0., e>e., andr>rg,
purely due to Bragg reflection but is uniquely due to both thethe SP effect vanishes and the gap-w defines the normal
periodicity of the superlattice and the superconducting mategap instead of the SP gap. The SP gap size is maximum for
rial, since dielectric superlattices do not have such a%ap 9razing anglef=90° and when the normal component elec-
and Fig. 1 shows that the SP gap does not exist in bulltfic field E, is maximum(Fig. 4). This supports the expla-
superconductor. In contrast, the phonon-polariton gap arisd&tion that the existence of the SP gap is due to normal-

for reasons not due to periodicity of atomic lattidewe  €lectric-field—superelectron coupling. At 6., the normal
found an analytical dispersion relation that fits well at theCompPonent electric field is sufficiently stronger for photon-
frequency arouna/\, (Fig. 2 superelectrons coupling, leading to the band splitting. The

SP gap increases with (Fig. 5). At sufficiently high ¢
(>e&p), the fields in the dielectric layer become highly con-
centrated at the expense of the fields in the superconducting
layer. The weak photon-superelectron coupling leads to the
vanishing SP effect. At the limit of bulk superconductor (
=0), the LF gap approaches\l/, while at the limit of bulk
dielectric ¢ =1) the LF gap vanishes to ze(big. 6).

(kgC)?~As(d/a)(w5— 0?)(w?— wd)/(w?— w?)

12

= wzse(w),

whereA=1 for the lower branch and=(1—w;/w)? for
the upper branch, angi(«) is the equivalent dielectric func-  The frequency within the LF gap and SP gap are approxi-
tion. mately belowc/2\, and aroundc/\, (Fig. 3. So, the SP

The gap sizes increase with the decrease in penetratiastfect may be observable for the frequency range araund
depth(Fig. 3). The less the fields can penetrate into the su-

perconducting layer, the more the fields are concentrated in
the dielectric layer. The greater the difference in field distri-
bution between the dielectric layer and the superconducting
layer, the larger the gap splitting, because it leads to greater
contrast of electromagnetic field distribution between the up-
per and lower frequencies of a band gap. As 1éxceeds
0.47, the field penetration becomes sufficiently smaller that
the SP effect vanishes. The photon-superelectrons coupling
is less extensive and confined around the layer interfaces.
The upper polariton branch vanishes and transform into a
Bragg dispersion branch fow,<1/A, . We see thatw,
>1/A >w when the SP effect exists, white~1/\ in the

0.4~

.....

2

limit of sufficiently small 1A, (below 0.02 (Fig. 3. The LF
gap seems independent of polarizatiéig. 1) and the angle
of incidence# (Fig. 4). The dependency of the LF gap @n

FIG. 5. Superpolariton gaf®), low-frequency gag®), andw
(+) versus dielectric constant with 1/\ =0.47, §=45°, andr
=0.5.
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=5.

~c/\, . From Eq.(7b), we have(a) x?—0.01xs—1<0 for _m)' For - example, at Top=0.93Tc, [AL(T)=2Aio
L =2 um] the abscissa of 0.4 in Fig. 3 correspondse um
Xx>1.0488 or T.=T=0.5491 T., which implies thqts and the SP gapu,— w)/27= 12 THz (infrared microwavi
=9.5, (b) x=1/0.1s for x<1.0488 orT=<0.5491T,, which  The gperating frequency and the SP gap size are in the same
implies thats=9.5, too, where ¥ (x=\_/\,)<®, 0<(t  order and are mainly determined by the penetration depth via
=T/T.)<1, ands=\ ,/cr. w~cl/\ . Therefore, in order to operate at higher frequen-
Therefore, the condition ,/7=3x10° ms ™t is required  cies, say 1&Hz (300 nm=optical regime, the penetration
to observe the SP effect in an essentially lossless superlatticéepth has to be as small as 50 nm. For this, materials with
The condition is not a stringent one. Even if the condition isextremely low normal-fluid relaxation time(<10 '’s) are
not strictly satisfied but reasonably close to satisfied, we caneeded. Thus\,, and r are the critical parameters and it is
expect to observe the SP dispersion characteristics close it the SP threshold that determines the operating frequency
the results presented in our model. However, our model apregime and the feasibility of using existing superconducting,
plies best whem /7 is well beyond 3<10°ms L. This  since it is always possible to choose the lattice ratio, dielec-
requirement is most probably satisfied for highsupercon- tric constant, or incident angle, which give the SP effect.
ductors(HTSC's) that have 0-K penetration depth as high as IV. Conclusion.In summary, we have discussed basic
~1.0 um (Ref. 13 (BaPh ;Biy.£0; compound. The re- properties of the dispersion, polaritonlike gap and lower-
quired relaxation time for the normal electrons at belawis  frequency gap of a dielectric-superconductor superlattice.
less than a maximum allowable valug,~10 °s. Thisis We find the required condition,,/7=3x10° to observe
the typical value for most solid materials at temperaturegshe SP effect as discussed in our model. The SP effect may
beyond 100 K Therefore, it can most probably be satisfied be observed in microwave/far-infrared regime using HTSC
by HTSC's operating at temperatuil,, betweenT(7,,)  material that satisfies the Gorter-Casimir relation at tempera-
andT,, in the highly nonlinear regime of (T), correspond- ture extremely close td.. The highly nonlinear temperature
ing to large variations in the gaps sizes for a small change idependence of the gap may be useful for temperature sensi-
Top (Fig. 7). Having determined the specific HTSC material tive devices. The SP effect may also be observed in the op-
to be used, we can now decide on the dimension of the latticecal regime if the superconducting layer has an extremely
period “a” from the abscissa of Fig. 3 and the SP gap,( low relaxation time.
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