

Abstract—this paper presents experiences of developing a power
system analysis software using a combination of Object Oriented
Programming (OOP) and Component Based Development (CBD)
methodologies. In this development, various power system
analyses are developed into software components. These
components are integrated with graphical user interface
components to build up a power system analysis application. By
using both OOP and CBD methodologies, updating or adding new
algorithm can be done to any specific component without
affecting other components inside the software. The component
also can be replaced with any other better component whenever
necessary. Hence, the software can be maintained and updated
continuously with minimum resources. The performance of the
components is described in comparison with the non-component
applications in terms of reuse as well as execution time.

I. INTRODUCTION
Power system analysis software has evolved from purely

numerical computation programs to sophisticated software
application with many usability features to enhance user
productivity. Most power system analysis applications now
have tools to automate tedious data preparations as well as
results post-processing. Examples of such productivity tools
are friendly graphical user interfaces, intuitive one-line
diagramming facilities to visualize power system, and database
management system.

The tools are the products of continuous advancements in
computer hardware and software technology. In order to
develop a high quality power system analysis application,
integration of software development from diverse expertise
such as power system engineering, mathematics, software
engineering, database, computer-aided design and user
interface design is required. The multi-specialization
requirement practically means that the application
development has to be done with many specific tasks modules.

Development of an application in software modules has
been practiced ever since early computer programming in the
form of source code library. The main usage was to minimize
the number of codes and to manage compilation of large
applications in which only the modified parts are recompiled.
The compiled libraries (binary parts) later are developed into a
dynamically linked libraries (DLL) in the Microsoft windows
and shared objects in UNIX. These are late binding libraries to
optimize memory resources by optimizing the address space.
With DLL, the possibility of composing reusable software
modules to develop software application just like integrated

circuits being used to build electronic products look to be just
around the corner. In reality before real integration of reusable
modules into software applications can be done meaningfully,
many hurdles need to be overcome.

One of the hurdles is that libraries are language dependent
where a library in one language cannot be used in another.
Compilers generally do not conform to common standards and
thus the libraries need to be compiled with different compilers.
This is impractical as most developers cannot afford to support
many library versions for the different compilers. No doubt
that many programming languages can call other languages but
it is only on a one-to-one basis such as a subroutine in
FORTRAN language called from C/C++ language.
Furthermore since languages such as FORTRAN or C do not
provide standard for binary interoperability, most binary
calling standard between languages are vendor specific
compiler dependent.

Another hurdle in creating reusable software modules is in
the form of dependencies. A module is at least dependent on
another. Generally many modules have more than one
dependency. These dependencies may be via other modules
such when a part X is used a function in part Y which is
dependent on part Z and thus making X indirectly dependent
on Z. In a tightly integrated package a module dependencies
extend deep into implementations of other modules and in
many directions. In this case the integration of any module
upgrades or any module replacement is a complicated task and
prone to error.

An important principle about module dependencies is that a
module should be concerned only on the outcome and not how
the outcome was derived. Hiding information about an object
and exposing only necessary things to a client is called
encapsulation. Encapsulation is actually an important concept
in object oriented programming (OOP) where the exact
implementation of functions in an object and the exact format
and layout of the object data is only of concern to the object
itself. However there is no standard framework that exists in
OOP through which software objects created by different
vendors can interact with one another within the same memory
address space. This has produced OOP objects that cannot
interact across software module or software application
boundary in a meaningful way. The OOP objects therefore are
confined to code level reusability (class reuse), where it
becomes language dependent and may even be compiler
specific dependent [1].

OOP frameworks are characterized by a massive structure

Development of Power System Analysis Software
Using Object Components

K. M. Nor1 , H. Mokhlis2, H. Suyono2, M. Abdel-Akher2, A-. H. A-. Rashid2 , and Taufiq A. Gani3

1Depart. of Elect. Power Engineering 2Depart. of Elect. Engineering 3Depart. of Computer Science
University of Technology Malaysia University of Malaya University Science Malaysia

Johor, Malaysia Kuala Lumpur, Malaysia Penang, Malaysia

mostly because OOP implementations such as inheritance have
not prevented introduction of cross dependencies among
classes. The obvious consequence has been that objects were
so tightly coupled that even the simplest application had to link
the entire system [2].

Component technology is introduced to address many of the
above issues. Szyperski [3] defines a component as: "A
software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is
subject to composition by third party."

In order for a component to be deployed independently, it
must be well separated from other components and its
environment. Since a component communicates with its
environment only through interfaces, it must have clearly
specified interfaces which are separated from its
implementation. Component integration and deployment
should be independent of the component development life
cycle and there should be no need to recompile or re-link the
application when updating with a new component. Examples
of component technology are the Microsoft COM and OMG
CORBA.

Not much work has been reported in the application of
component technology for the development of power system
analysis applications [4-8]. This paper discusses our
experiences of developing a power system analysis application
using object component based software engineering approach.
The proposed software is categorized into two parts; they are a
stable part and an evolving part. The evolving part is modeled
as object software components whereas the stable part is
modeled by a pure an OOP class hierarchy. The strategy
adopted is to architect the application into a composition of
components. Many of the decompositions require power
system engineering expertise as they involve power system
algorithm reformulation.

This paper will also present the test performance of this
application and compare them to applications implemented in a
non component based approach in terms of execution time. A
measure of component reuse will be presented to show the
achievement of the application architecture. Also the paper
will discuss implications of the component based development

on the application life cycle such as issues of software upgrade
and maintenance.

II. POWER SYSTEM ANALYSIS SOFTWARE ARCHITECTURE
The software architecture of a program or computing system

is the structure of the system which comprises software
elements, the externally visible properties of those elements,
and the relationships among them. The power system analysis
software is developed by composition of components. The
component functions can be divided into two main parts which
are the control or analysis components and the interface
components.

The analysis components result from the decomposition of
power system solution algorithms. The decomposed solution
algorithms are encapsulated inside independent software
components. The solution algorithm components relationship
is drawn in Fig. 1 using Unified Modeling Language (UML)
notation. These components perform different power system
analysis such as balanced power flow, unbalanced power flow,
transient stability, fault calculations, and harmonic analysis.
The architecture, shown in Fig. 1, can be updated by adding
new components for performing additional power system
analysis; also any component can be replaced by other
component which has efficient or improved algorithm. From
the components relationship shown in Fig. 1, particular
components are developed based on existing components such
as unbalanced power flow components that reuse the balanced
power flow components [7-8]. Therefore, many components
are developed with minimum resources since other
components contribute in their development.

In addition to the analysis components given in Fig. 1,
graphical user interface (GUI) components are required for
developing user friendly power system analysis application.
The GUI consists of components to display graphical drawings
such as single line diagram and presentation of results such as
tables and charts. This will enable the application user to draw
single-line diagram of a power system, and to perform power
system analysis such as load flow, unbalanced load flow…etc.

The analysis and interface components are the software
evolving part since they are subject to be updated or replaced
to fulfill the user requirements. The software stable part is
shown in Fig. 2; it does not do any type of calculations as it
only represents the physical elements in a power system. The
stable part is not modeled as software components but instead
is modeled in a pure object oriented paradigm design. The
model involves a set of classes related to each other by
inheritance and composition to optimize maximum reusability.

III. OBJECT ORIENTED POWER SYSTEM MODEL (OOPSM)
 There is various object oriented power system models have

been presented such as in [9-10]; these models are tightly
coupled to the evolving parts. In order to produce high degree
of extendable model, which can be extended in the future, the
class hierarchy should be modeled at the right granularity.

Figure. 1 Power System Analysis Component Relationship: The
Evolving Part

cPowerSystemDevice

cNodecBranch

cLoad cACGenerator cStatcom cHVDC

cUPFCcTwoWinding

cSSSC

cSVScCconstantPowercImpedanceLoad

cLinecTransformer cTransMultiWinding

cMultiNodeDevice

Legends
Inheritance

Composition

 Three Phase Devices Non Linear Devices Exciter and Machine Devices

Basic Model [7]

Extended to

Figure. 2 Object Oriented Power System Model (OOPSM): The Stable Part

In the proposed development, the physical electrical
network is represented by a standalone class library. The
library models the power system devices such as busbars,
generators, transformers, transmission lines, loads…etc. The
proposed approach is to design a model based on the primitive
data of the basic linear circuit elements i.e. node, branch, and
source. These classes are developed such that they become
common ancestor for the other elements in a power system.
This is because any electrical devices can be modeled as an
equivalent circuit comprising of these primitive elements.

Using the UML notation, all classes are used to model
power system devices and their relationships are drawn in Fig.
2. A base class, cPowerSystemDevice, is designed to share all
common data and method for its derived classes. Basic
properties such as the number of devices, the identity number
(ID) and the name of the device are defined in this class. These
properties are common to any type of devices in an electrical
network. The basic device model [7] shown in Fig. 2 is
extended for modeling new devices such as three-phase power
system elements, non-linear devices, and exciter systems and
turbine governing systems.

IV. SOFTWARE OBJECT COMPONENTS
The power system analysis application was developed by

integrating various object components. These components are
classified into three categories. The first category includes the
components that are developed in our research group (In-
House Developed Components). They include the components
that are required for solving the power system problems. The
second category is the components that are developed from
legacy systems. The legacy systems are pre-existing systems
that was created using other design methods and techniques
[11]. These legacy systems can be wrapped and integrated with
the other components. The last category includes the
Commercial Off-The shelf Components. This category of
components is not power system engineer’s proficiency area;
therefore they are acquired from a third party vendor. In the
proposed development, they include components for
visualization of the single-line diagram of an electrical network
and others for presentation the results of the power system
analysis computational engine.

A. Newly Developed Components (In-House Developed
Power System Analysis Components)

1) Balanced Load Flow Object Components
A balanced power system is solved by two components

which utilize Newton Raphson method (NR) and Fast
Decoupled method (FD) respectively. The components are
inherited from a common ancestor base class. The base class
contains common data and methods that are required for any
balanced power flow algorithm. The base class also contains
interface methods for exchanging data between load flow
components and other systems. The detailed mathematical
models for both NR and FD components can be found in [7].

The NR and FD components have the same interface since it
is developed based on the OOPSM and inherited from the base
class. The NR and FD components encapsulate their own
solution algorithm only. This makes a power flow object
versatile. For example, if a load flow object has been declared
as an instance of the NR component in an application or a
component system, changing the declaration to become an
instance of the FD component will not require any change in
the code implementation of that application or that component.

The behavior of the components is controlled by two flag
interfaces. The first flag enables the user to perform one
iteration balanced power flow, and then the solution is hold
inside the component till the solution is resumed in next
iterations. The second flag checks the convergence inside the
component. Therefore the two flags enable the user to perform
the iteration process inside or outside the component. This is
useful and powerful in many applications or computational
systems that reuse the power flow as a part of their solution
process.

2) Unbalanced Load Flow Object Components
Unbalanced load flow can be solved using phase coordinates

without simplifications. However the advantage of the
application of symmetrical components that the size of the
problem is reduced in comparison to phase coordinates load
flow. The unbalanced load flow in the proposed architecture
takes the advantage of the application of component
technology and the sequence components since the balanced

power flow can be reused for solving the positive sequence
power flow without any modification [8].

The unbalanced power flow using symmetrical components
is decomposed into three-sub-problems that include a positive
sequence power flow. The symmetrical components have been
used to solve unbalanced systems with accurate results that are
tested with other algorithms developed in phase coordinates.
The complete mathematical models and the solution algorithm
for the unbalanced load flow in symmetrical components are
given presented in [8]. The unbalanced power flow has been
extended for solving radial systems that contains unbalanced
laterals and will be reported in near future.

The interface of the unbalanced power flow is encapsulated
inside one base class. The class is developed using object
oriented approach; since it handles the balanced load flow as
an object. This object behaves as black box, it communicates
with its surroundings with its interface.

The behavior of the power flow object is controlled by its
flag interfaces. The first flag interface is adjusted such that the
positive load flow object performs one-iteration and then the
solution is hold inside the object till the solution is resumed.
The second flag interface checks the mismatch tolerance is
acceptable or not at every iteration. The solution of the positive
sequence network is returned outside the power flow object at
every iteration by its own interface.

3) Fault Analysis Component
A base class for fault calculation components was designed

to share common properties for balanced and unbalanced
faults. The balanced and unbalanced faults have common
positive sequence impedance. However balanced fault only
uses positive sequence impedance in determining the voltage
value under fault condition. In addition to positive sequence
impedance, unbalanced faults reuse both the negative and zero
sequence impedances.

In the fault calculation design, positive sequence impedance
are declared in the base class and granted to balanced and
unbalanced components. The unbalanced fault is broken down
to three types, encapsulated inside three different components.
They are the single line fault, double line fault and line-to-line
fault. Therefore, each type of the unbalanced faults is
independent on the other types and changing or updating any
component will not affect the other components. The fault
calculation component system reuses the same power system
model exhibited in Fig. 2.

4) Transient Stability and Harmonic Analysis
In addition to the power flow and fault calculations object

components described above, other components have been
developed for transient stability analysis and balanced
harmonic power flow analysis. Now a component for
unbalanced harmonic power flow analysis is being investigated
and tested.

5) Data Preparation Components
This group of components is responsible for preparing the

input data for the power system analysis components. The

A

B
D

D : Calculation form control window
E: Buttons/pull down menus for user program control

C

A: Balanced power flow result window
B: Viewing of single line diagram window
C: Single line d iagram design window

E

Figure. 3 Main Window of the developed power system analysis software: The 300 Bus IEEE Test Case

group includes interface components for the following:
standard IEEE data format, sequence components data for
different devices, machine and exciter data, unbalanced power
system data for line, and non linear devices data.

The advantage of separating the data preparation
components from the analysis is that, in many cases, the
system data will be available in different formats. Therefore,
the user of the software application will be able to execute
analysis in different input data formats, i.e. without drawing
the single line diagram.

B. Wrapping Legacy Code
Software components allow reusing pre-existing codes that

was created using other designs and technologies. This is done
in the proposed development for the linear solver components.
The linear solver components employ the SuperLU library
[12]. SuperLU library utilizes many latest computation
techniques, such as graph reduction technique in matrix
factorization and it can handle very unsymmetrical matrices.
SuperLU library was developed using C language and contains
four different routines. The routines were designed to solve
sparse matrices with single and double precision in real and
complex formats.

The four SuperLU routines are encapsulated inside four
independent components without modifying their original code
[7]. Wrapping the codes into components allows it to be
integrated with other components in the software. The wrapper
was developed using an object oriented interface. This
interface includes methods such as SetObject() and GetObject.
The object in these methods refers to the standard sparse data
storage format such as compressed column storage or
compressed row storage. These objects called the SuperLU
library functions which are written in C Language.

C. Commercial Off-the shelf Components
Many components such as graphics and data base are

available commercially. Therefore, acquiring these
components from third party vendors accelerates the
development time and increase the software capability. These
components include DbCAD component for Graphical
Database, Cad Engine for single line diagram, and TeeChart
Pro for 2D and 3D for charting design. The DbCAD
component is a library which has many services for Computer
Aided Drawing (CAD) applications. DbCAD manages the
graphic entities as single vectors, which are selectable,
editable, and displayable in the graphic window with specified
properties (color, layer, line type, etc). The TeeChart Pro
component is a charting component, which has many features
such as creating various chart types including 2D and 3D
charts. The TeeChart Pro component is used for plotting the
dynamic behavior of synchronous machines in transient
stability simulation.

V. APPLICATION SOFTWARE EVALUATION

A. Application Description
The window, shown in Fig. 3, displays a prototype of the

proposed CBD power system analysis application. The
application is developed from the components given in Table
1. The window shows the IEEE 300 bus single line diagram.
The application has many facilities that makes it user friendly.
The main application window contains features needed by the
software application such as main menu, tool bar, image list,
etc. The software application uses multiple document
interfaces. More than one drawing forms can be opened within
the main application window at the same time. In the dialog
box that is shown in Fig. 3, which is marked as D, a slack bus
and a calculation method needs to be selected. The slack bus is
chosen from a combo box containing all of the available busses
in the diagram. The calculation methods, i.e. load flow or fault
calculation, unbalanced power flow…etc. are chosen from
another combo box as well. Other parameters, i.e. as base for
MVA, maximum iteration, and tolerances, need to be keyed in.
After keying in the parameters, the calculate button is clicked
to start any power system analysis calculation.
B. Component Reuse in the Software Application

The power system analysis application is developed by
integrating our own components, legacy components, and
commercial off-the shelf components. The reuse measurement
for these components is carried out by counting the total
number of components reused and those developed from
scratch to perform a specific power system analysis. The
reusability of components in the power system analysis
application is presented in Table 1. For example, seven
components are required to solve unbalanced power flow; only
one component is developed from scratch. Therefore the reuse
percentage is equal to 86%. The average percentage of reuse
for developing the whole power system analysis application is
around 73%. This is because there are many components are
shared to perform the different power system analyses.
C. Application Performance

The performance test is conducted to reveal the difference
on execution time between component software and non-
component software. In order to do this, a component based
software and non-component software with the same algorithm
and object-oriented codes were developed. The component-
based application is prepared by reusing the power flow and
mathematical solver components, which were delivered in the
library files. On the other hand, these files are included into the
non-component power flow application. In this test, the
execution time for solving load flow is taken for both balanced
NR and FD power flow methods.

The 118-bus system and 300-bus system were used as the
test system. The performance of the proposed CBD application
is compared with a non-component application (structural) for
both NR and FD methods. The results of the execution time are
reported in Table 2 and Table 3. It is clear that the component
software application consume a slightly more time compared
to the non-component application. The additional time required
for the CBD application is less than 10% for large systems.

The component application consumed slightly more time
because the component application needs to read library files,
which are separated from the application files when they are
executed. Therefore, time is consumed in the process of
transferring parameters message to and from the functions of
the library. However in the non-component application, calling
function takes place in the same memory block of the
application, which made the CPU time slightly less than the
case in the component-based application.

VI. CONCLUSION
The paper has presented the application of CBD and OOP

for developing power system analysis application software.
The different components have been integrated into power
system analysis software. The OOP and component technology
produces a high degree of reusability, flexibility, and
maintainability of a power system analysis application. A
measure of the components reuse for developing the power
system analysis application has shown that the component
reuse is about 73%. The components also can be replaced at
any time with other best component from third party.
Therefore the maintenance of the power system analysis
application requires only local updating of components rather
than global updating of applications. For example, in the
future, the proposed software can be added with other power
system analyses such as optimization, power quality analysis,
or updating the graphical user interface. The performance of
the application is also tested, that there is no much difference
between component and non-component system in terms of
execution time.

REFERENCES
[1] D. de Champeaux, D. Lea and O. Faure, “Object-Oriented System,

Assison-Wesley, 1993.
[2] I. Joyner, A C++ Critique, second edition 1992. Available at:

http://www.literateprogramming. com/c++critique.pdf
[3] Szyperki C., “Components Software-Beyond Object Oriented

Programming”, Reading: Addison-Wesley, 1998
[4] Khalid M. Nor, T. A. Gani, H. Mokhlis, “The Application of Component

Based Methodology in Developing Visual Power System Analysis Tool”,
Proceeding of the 22nd conference on IEEE PES PICA, Sydney 2001.

[5] Lu, F.Y,; Chen S,” Using component technology in power system
simulations”, IEEE Power Engineering Society Winter Meeting,
2002., Vol. 1, No.1, Jan. 2002, pp. 684 - 689

[6] Dzafic, I, Glavic, M., Tesnjak, S., “A Component-Based Power System
Model-Driven Architecture”, Letter, IEEE Transactions on Power
Systems, Vol. 19, No. 4, Nov. 2004 , pp. 2109 – 2110

[7] Khalid M. Nor, H. Mokhlis, T. A. Gani, “Reusability techniques in load-
flow analysis computer program”, IEEE Transactions on Power Systems,
Vol. 19, No. 4 , Nov. 2004, pp. 1754 – 1762

[8] M. Abdel-Akher, Khalid M. Nor, A-H. A. Rashid, “Improved three-
phase power-flow using sequence components”, approved for
publication in IEEE Trans. on Power Systems ID TPWRS-00409-
2004.R1

[9] A.F. Neyer, F.F. Wu and K. Imhof, “Object Oriented Programming for
Flexible Software: Example of A Load Flow”, IEEE Transaction on
Power Systems, Vol. 5, No. 3, August 1990.

[10] Jun Zhu and L.Lubkeman, “Object-Oriented Development of Software
Systems for Power System Simulation”, IEEE Trans. (Power App. Sys),
Vol. 12, No. 2, May 1997.

[11] Ivar Jacobson, “Object-Oriented Software Engineering” Addison-Wesley
Publishing Company. 1992.

[12] J. W Demmel et. al, “A Supernodal Approach to Sparse Partial
Pivoting”, SIAM Journal on Matrix Analysis and Applications Vol 20 ,
No 3. pp.720 -755, 1999. The Library available at:
http://crd.lbl.gov/~xiaoye/SuperLU/

TABLE 1
REUSABILITY OF COMPONENTS IN THE POWER SYSTEM APPLICATION

Power System Analysis Type
Component

BPF TSA UPF HPF FCA URD

DB X √ √ √ √ √
SLD X √ √ √ √ √
AM X √ √ √ √
SLS √ √ √ √ √
NR X √ √ √ √ √
FD X √ √ √ √ √

TRA X
MES X
UPF X √ √
HPF X
FC X

CHART √ √
URD X

17 78 83 88 88 83
% REUSE

AVERAGE 72.83%
Note: X indicates the components developed from scratch

√ indicates components reused
Where:
DB Data Base TRA Trapezoidal Solver
SLD Single Line Diagram MES Modified Euler Solver

AM Admittance Matrix BPF Balanced Power Flow
SLS Sparse Linear Solver UPF Unbalanced Power Flow
NR Newton Raphson HPF Harmonic Power Flow
FD Fast Decoupled FC Fault Calculation
TSA Transient Stability CHART Charting Components
URD Unbalanced Radial Distribution

TABLE 2
NEWTON RAPHSON LOAD FLOW EXECUTION TIME

CPU time (in second) Data test system Non-component Component
IEEE-118 0.027344 0.039062
IEEE-300 0.289062 0.312500

TABLE 3

FAST DECOUPLED LOAD FLOW EXECUTION TIME
CPU time (in second) Data test system Non-component Component

IEEE-118 <0.001 <0.001
IEEE-300 <0.001 0.01

